
Is it really knotted?
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Four pictures, one knot
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Is it really knotted?

If you think it cannot be untangled, PROVE IT!
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Knot recognition

Knot equivalence = a continuous deformation of the space that transforms
one knot into the other.

Fundamental Problem

Given two knots (or knot diagrams), are they equivalent?

Is it (algorithmically) decidable?

Yes, very hard to prove. (Haken, 1962)

If so, what is the complexity?

Nobody knows. No provably efficient algorithm known.
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Knottedness

Knot equivalence = a continuous deformation of space that transforms
one knot into the other.

Fundamental Problem

Given a knot (or a knot diagram), is it equivalent to the plain circle?

Is it (algorithmically) decidable?

Yes, hard to prove. (Haken, < 1962)

If so, what is the complexity?

Nobody knows. No provably efficient algorithm known.
Known to be in NP ∩ coNP (under GRH).

[Hass-Lagarias-Pippenger 1999, Lackenby 2015; Kuperberg 2014]
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Complexity classes P, NP, coNP

Consider a decision problem (e.g., knot equivalence, or primeness).

P = there is a polynomial-time algorithm that decides the problem for
every input

NP = for every input with positive answer, there is a certificate that can
be verified in polynomial time

coNP = for every input with negative answer, there is a certificate that
can be verified in polynomial time

Example: problem: is a given number n prime?

coNP: m such that 1 6= m | n
NP: m that is coprime to n and ord(m) = n − 1 in Z∗

n

P: a complicated algorithm from 2002
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What is knot recognition good for?

(I don’t care too much.)

March 4, 2021 7 / 22



What is knot recognition good for?

(I don’t care too much.)

March 4, 2021 7 / 22



Knots are in chemistry
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Knots are in biology

... with applications towards antibiotics production (believe or not)
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Knots are everywhere

... with applications towards black magic (believe or not)

March 4, 2021 10 / 22



Reidemester moves

Knots are usually displayed by a regular projection into a plane.

Theorem (Reidemeister 1926, Alexander-Brigs 1927)

K1 ∼ K2 if and only if they are related by a finite sequence of Reidemeister
moves:

I. twist/untwist a loop;

II. move a string over/under another;

III. move a string over/under a crossing.
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Reidemeister moves, where is the problem?

Bad news: When unknotting, cross(K ) may increase

Good news: Lackenby (2015): not too much... ≤ 49 · cross(K )2

Lackenby’s idea: a special type of diagrams and moves (Dynnikov’s theory)
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Reidemeister moves, algorithmically?

Fact

Assume there is a computable function f (n) that bounds the number of
Reidemeister moves to transform equivalent diagrams with ≤ n x-ings.
Then knot equivalence is decidable.

Finding such f (n) is very difficult:

Coward-Lackenby (2014): ∃f computable (extremely fast growing)

Special case K2 =©:

Hass-Lagarias (2001): f exponential, f (n) = 210
11n

Lackenby (2015): f polynomial, f (n) = (236n)11

Hass-Nowik (2010): quadratic lower bound for unknot diagrams
... ∃K (n) ∼ ©, n = cross(K (n)), with at least n2/25 moves
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Recognizing knots, summary

Fundamental Problem

Given K1,K2, are they equivalent?

Haken (1961): ∼ © is decidable (in EXP-time)

Haken (1962): ∼ is decidable (in EXP-time)

Hass-Lagarias-Pippenger (1999): ∼ © is in NP (certificate: certain
normal surface)

Coward-Lackenby (2014): ∼ is decidable by bounding Reidemeister
moves

Lackenby (2015): ∼ © is in NP by bounding Reidemeister moves
(certificate: a sequence of Reidemeister moves)

Agol (2002, not published): ∼ © is in coNP assuming GRH

Kuperberg (2014): ∼ © is in coNP assuming GRH
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Proving impossibility (i.e., certifying inequivalence)

Problem: Given K1 6∼ K2, prove it!

... example: 6∼ © !

... develop invariants, properties shared by equivalent knots:

K1 ∼ K2 implies P(K1) = P(K2)

... if P(K1) 6= P(K2), then P is a certificate of inequivalence

Classical invariants use various algebraic constructions to code some of the
topological properties of a knot.

the fundamental group of the knot complement

the Alexander, Jones and other polynomials

Heegaard-Floer homology, Khovanov homology, ...

etc. etc. etc.

Trade-off between computational complexity and ability to recognize knots.
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Alexander polynomial
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My own research: knot coloring

a combinatorial approach to certifying inequivalence

a practical tool for the knot recognition problem
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3-coloring

To every arc, assign one of three colors in a way that

every crossing has one or three colors.

Invariant: count non-trivial (non-monochromatic) colorings.

... i.e., if K1 ∼ K2, then col(K1) = col(K2).
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n-coloring

To every arc, assign one of n colors, 0, ..., n − 1, in a way that

at every crossing, 2· bridge = left + right, modulo n

Invariant: count non-trivial colorings.
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Quandle coloring

Fix a ternary relation T on a set of colors C .
To every arc, assign one of the colors from C in a way that

(c(α), c(β), c(γ)) ∈ T

?? Invariant ??: count non-trivial colorings, colT (K ).

Which relations T really provide an invariant?
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Quandle coloring

Fact (implicitly Joyce, Matveev (’82), explicitly Fenn-Rourke (’92))

Coloring by (C ,T ) is an invariant for all links if and only if T is a graph of
an operation ∗ such that for every x , y , z

(I) x ∗ x = x

(II) there is a unique u such that x ∗ u = y

(III) x ∗ (y ∗ z) = (x ∗ y) ∗ (x ∗ z)

Such algebraic objects (C , ∗) are called quandles.
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Knot recognition algorithm
IN: two knot diagrams K1,K2, a family of quandles Q
run over Q ∈ Q

if colQ(K1) 6= colQ(K2), then return “Q certifies inequivalence”
return “I have no idea”

can be turned into a decision procedure if K2 =©:
if Q = all finite quandles, and K1 6∼ ©, the algorithm always stops
in parallel, use an automated theorem prover to prove colQ(K ) = 0 for
every Q

the algorithm works well in practice [Fish, Lisitsa, S.]

for small inequivalent knots, small quandles are sufficient
SAT-solvers calculate colorings fast

Kuperberg’s certificate:
Q = conjugation quandles over the groups SL(2, p)
(i.e., if K1 6∼ K2 then ∃p not too large such that SL(2, p) certifies)

To prove more, and to make it faster in practice, we need to

know more about QUANDLES.
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