Algebraic Invariants in Knot Theory Practicals 11

Filippo Spaggiari

13 December 2022, Prague

Exercise 1 (10.3.1 rev). Find a braids (with the fewest possible strings) whose closure is the equivalent to the following knots.

Exercise 2 (10.3.4). Suppose that σ_1 is a generator of the braig group B_2 . Prove that, for every m, n integers, $\sigma_1^m = \sigma_1^n$ if and only if m = n.

Exercise 3. Prove that

- (i) The braid group B_1 is the trivial group.
- (ii) The braid group B_2 is isomorphic to $(\mathbb{Z}, +, -, 0)$.
- (iii) For $n \ge 1$ the braid group B_n embeds into B_{n+1} .
- (iv) For $n \ge 3$, the braid group B_n is non-abelian, torsion-free, and it contains a subgroup isomorphic to the free abelian group on $\lceil \frac{n}{2} \rceil$ generators.