Algebraic Invariants in Knot Theory Practicals 13

Filippo Spaggiari

3 January 2023, Prague

Exercise 1 (7.1.1, 7.1.6 rev). Find and prove a formula that determines the number of components of the torus link $K(q, r)$. Moreover, show that each component of the torus link $K(q, r)$ is a torus knot, and determine its parameters.

Exercise 2. Let $q, r \in \mathbb{Z}$ with $r \neq 0$ and $\operatorname{gcd}(q, r)=1$.
(i) Show that if $q=0, \pm 1$ or $r= \pm 1$, then $K(q, r)$ is the trivial knot.
(ii) Show that if q and r are not equal to 0 and ± 1 then
(a) $K(-q, r)$ is the mirror image of $K(q, r)$.
(b) $K(-q,-r)$ is the knot with opposite orientation of $K(q, r)$.
(c) $K(-q,-r)$ is equivalent to $K(q, r)$.
(d) $K(q, r)$ is an invertible knot.

Exercise 3. Prove that $K(q, r) \cong K(r, q)$ for every $q, r \in \mathbb{Z}$.

