Algebraic Invariants in Knot Theory Practicals 13

Filippo Spaggiari

3 January 2023, Prague

Exercise 1 (7.1.1, 7.1.6 rev). Find and prove a formula that determines the number of components of the torus link K(q, r). Moreover, show that each component of the torus link K(q, r) is a torus knot, and determine its parameters.

Exercise 2. Let $q, r \in \mathbb{Z}$ with $r \neq 0$ and gcd(q, r) = 1.

- (i) Show that if $q = 0, \pm 1$ or $r = \pm 1$, then K(q, r) is the trivial knot.
- (ii) Show that if q and r are not equal to 0 and ± 1 then
 - (a) K(-q, r) is the mirror image of K(q, r).
 - (b) K(-q, -r) is the knot with opposite orientation of K(q, r).
 - (c) K(-q, -r) is equivalent to K(q, r).
 - (d) K(q,r) is an invertible knot.

Exercise 3. Prove that $K(q,r) \cong K(r,q)$ for every $q, r \in \mathbb{Z}$.