Algebraic Invariants in Knot Theory Practicals 8

22 November 2022, Prague

Let A be a symmetric matrix (think of it as the matrix of a quadratic form). We denote its signature by $(z(A), p(A), n(A))$, where $z(A)$ the number of zeros, and $p(A), n(A)$ are the number of positive / negative values, in its diagonal form. Let $\sigma(A)=p(A)-n(A)$.

For a link K, we define its signature by $\sigma_{K}=\sigma\left(M_{K}+M_{K}^{T}\right)$, and nullity by $n_{K}=z\left(M_{K}+M_{K}^{T}\right)$.

Recall that K^{*} denotes the mirror image of K, and M_{K} denotes the Seifert matrix of K.

Exercise 1 Prove that $M_{K^{*}}=-M_{K}^{T}$. Conclude that if K is a knot, then $\Delta_{K^{*}}=\Delta_{K}$ (so the Alexander polynomial cannot distinguish a knot from its mirror image).

Exercise 2 Let $A \sim_{S} B$. Prove that $\sigma\left(A+A^{T}\right)=\sigma\left(B+B^{T}\right)$ and $n\left(A+A^{T}\right)=$ $n\left(B+B^{T}\right)$. Conclude that the signature and nullity are link invariants.

Exercise 3 Calculate the signature of the two trefoils, and of the figure- 8 knot.
Exercise 4 Prove that $\sigma_{K^{*}}=-\sigma_{K}$ for every link.
Exercise 5 Prove that if K is a knot, then $n_{K}=0$ and σ_{K} is an even number.

