
ALGEBRAIC GEOMETRY (NMAG401)

JAN ŠŤOVÍČEK
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1. Affine varieties

The basic objects which we will be concerned with in this chapter are the
solution sets of systems of polynomial equations over a field.

In what follows, K will be a field and K will denote its algebraic closure.
Algebraically closed fields are important because they are often best behaved
from the viewpoint of solving polynomial equations. Typical examples of
fields which we may consider are R, C, Q, Q, finite fields Fq and their

algebraic closures Fq.
The set of all polynomials over K in variables x1, . . . , xn will be denoted

by K[x1, x2, . . . , xn]. The polynomials with the natural operations form a
commutative K-algebra. Recall that a commutative K-algebra is, by defini-
tion, a set R together with structures of

(1) a commutative ring (R,+,−, 0, ∗, 1) and
(2) a vector space (R,+,−, 0, k · − (k ∈ K)),

such that the operations +,−, 0 are common to both the structures and,
moreover, for each k ∈ K and f, g ∈ R we have the equality (k · f) ∗ g =
k · (f ∗ g).

We will encounter several others K-algebras further in the text. In prac-
tice one usually denotes the multiplication in R and the scalar multiplication
by elements of K by the same symbol. This does not cause any confusion
since if R has at least two elements, the field K can be identified with a
subfield of R via the embedding

K � R, k 7→ k · 1.

We will also need the notion of homomorphism of K-algebras, which is
by definition simply a map ϕ : R → S between K-algebras which is simul-
taneously a homomorphism of rings and vector spaces.
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Another basic notion is one of affine space of dimension n ≥ 1 over the
field K. It is defined simply as the Cartesian product

AnK = K ×K × · · · ×K︸ ︷︷ ︸
n times

Given a point P = (a1, . . . , an) of the affine space AnK and a polynomial
f ∈ K[x1, x2, . . . , xn], the value of f at P is

f(P ) = f(a1, . . . , an) ∈ K.

It is useful to note that that if P is fixed, the map

K[x1, x2, . . . , xn]→ K, f 7→ f(P )

is a homomorphisms of K-algebras which is called evaluation homomor-
phism.

We say that P is a zero of f if f(P ) = 0. Given a set S ⊆ K[x1, x2, . . . , xn],
the set of all common zeros of all the polynomials in S will be denoted by
V(S). That is,

V(S) = {P ∈ AnK | f(P ) = 0 (∀f ∈ S)}

If S = {f1, . . . , fr} is finite, we will often write V(f1, . . . , fr) in place of
V(S).

This brings us to a key definition.

Definition. An affine algebraic set over a field K is a subset of an affine
space AnK of the form V(S), where n ≥ 1 and S ⊆ K[x1, x2, . . . , xn] is a set
of polynomials.

Thus, an affine algebraic set is none other than the solution set of a
(possibly infinite) system of polynomial equations over K. We will often
leave out the adjective ‘affine’ where there is no danger of confusion, e.g.
before we start to discuss projective geometry and projective algebraic sets.

Some elementary properties of algebraic sets are summarized in the fol-
lowing lemma.

Lemma 1. Let K be a field and n ≥ 1. Then:

(1) ∅ and AnK are algebraic sets.
(2) Arbitrary intersections of algebraic subsets of AnK are again algebraic

sets.
(3) Finite unions of algebraic subsets of AnK are again algebraic sets.

Proof. (1) We have ∅ = V(1) a AnK = V(0).
(2) Use that

⋂
i∈I V(Si) = V(

⋃
i∈I Si).

(3) One checks that given sets S1, . . . , Sn of polynomials, we have

V(S1) ∪V(S2) ∪ · · · ∪V(Sr) = V(S1S2 · · ·Sr),

where

S1S2 · · ·Sr = {f1f2 · · · fr | fi ∈ Si (∀i = 1, 2, . . . , r)}. �

Lemma 1 is on one hand completely constructive, but on the other hand
especially part (3) may lead to inconveniently large systems of equations in
direct computations.
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The main point of the latter lemma is that algebraic sets fit well with the
definition of the collection of closed sets in a topological space. To that end,
let us recall the definition of a topological space, which is meant to be an
abstraction of the properties of open and closed subsets of Euclidean spaces,
so that one can abstractly argue about notions like continuous maps, dense
subsets or closures of sets.

Definition. A topological space is a pair (X, τ), where X is a set and τ is
a set of subsets of X such that:

(1) ∅ and X belong to τ .
(2) Arbitrary unions

⋃
i∈I Ui of elements Ui ∈ τ are again in τ .

(3) Finite intersections U1 ∩U2 ∩ · · · ∩Ur of elements U1, U2, . . . , Ur ∈ τ
are elements of τ .

The subsets of X which belong to τ are called open subsets of X and their
complements are called closed subsets of X.

As was already mentioned, algebraic subsets of AnK then form closed sub-
sets of a topology by Lemma 1.

Definition. The topology on AnK whose closed subsets are the algebraic
sets is called the Zariski topology.

In order to exhibit one of the crucial properties of the Zariski topology,
we need the following

Observation. Consider a set S ⊆ K[x1, x2, . . . , xn] of polynomials and let I
be the ideal generated by S. In details,

I = {
r∑
i=1

aifi | r ≥ 0, f1, . . . , fr ∈ S a g1, . . . , gr ∈ K[x1, x2, . . . , xn]},

i.e. I consists of all linear combinations of elements of S with coefficients
from the ring K[x1, x2, . . . , xn].

Then we have V(S) = V(I). Indeed, on one hand V(S) ⊇ V(I) since
S ⊆ I. On the other hand, any point P ∈ V(S) is a zero of each polynomial
from I by the above description of I.

Therefore, it one can expect that properties of algebraic sets will depend
on those of ideals of polynomial rings. One fundamental feature of these
rings is that they are noetherian.

Definition. A commutative ring R is called noetherian if it satisfies either
of the equivalent conditions (the equivalence is not proved here, we refer
to standard courses or textbooks in commutative algebra, e.g. to [AM69,
Chapter 6]):

(1) Each ideal I ⊂ R is finitely generated, i.e. there is r ≥ 0 and poly-
nomials f1, f2, . . . , fr ∈ I such that

I = {
r∑
i=1

aifi | a1, . . . , ai ∈ K[x1, x2, . . . , xn]}.

(2) Each non-decreasing chain of ideals I1 ⊆ I2 ⊆ I3 ⊆ · · · of R stabi-
lizes. That is, there existsN ≥ 1 such that IN = IN+1 = IN+2 = · · · .
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Proposition 2 (Hilbert Basis Theorem). If R is a noetherian ring, so is
the ring R[x]. In particular, K[x1, x2, . . . , xn] is noetherian for each field K
and natural number n ≥ 1.

Proof. See for instance [AM69, Theorem 7.5]. �

We obtain as immediate consequences chain conditions of algebraic sets
and their complements, as well as the fact that each algebraic set is deter-
mined by a finite collection of equations.

Corollary 3. For each algebraic set X ⊆ AnK there exist r ≥ 0 and polyno-
mials f1, f2, . . . , fr ∈ K[x1, x2, . . . , xn] so that X = V(f1, f2, . . . , fr).

Proof. Let I ⊆ K[x1, x2, . . . , xn] be an ideal such that X = V(I) (we are
using the previous observation) and choose a set of generators f1, f2, . . . , fr
of I. Then X = V(f1, f2, . . . , fr). �

Corollary 4. Let K be a field and n ≥ 1.

(1) Each non-increasing chain X0 ⊇ X1 ⊇ X2 ⊇ · · · of algebraic (equiv-
alently: Zariski closed) subsets of AnK stabilizes.

(2) Each non-decreasing chain U0 ⊆ U1 ⊆ U2 ⊆ · · · of Zariski open
subsets of AnK stabilizes.

Proof. In view of De Morgan laws, it suffices to prove the first statement.
To that end, consider a chain X0 ⊇ X1 ⊇ X2 ⊇ · · · of algebraic subsets of
AnK and for each Xj an ideal Ij ⊆ K[x1, x2, . . . , xn] such that Xj = V(Ij).

We may without loss of generality assume that I1 ⊆ I2 ⊆ I3 ⊆ · · · . In-
deed, note that V(I2) = V(I1 + I2), V(I3) = V(I1 + I2 + I3), and in general

V(Ij) = V(
∑j

k=1 Ik). We can therefore replace each Ij by the sum
∑j

k=1 Ik
and the sums are ordered by the inclusion as required.

However, the chain I1 ⊆ I2 ⊆ I3 ⊆ · · · must stabilize by Proposition 2.
That is, there is N ≥ 1 such that IN = IN+1 = IN+2 = · · · , and hence
XN = XN+1 = XN+2 = · · · . �

The latter corollary inspires the coming definition.

Definition. A topological space (X, τ) is noetherian if each non-decreasing
chain U0 ⊆ U1 ⊆ U2 ⊆ · · · stabilizes.

Example. Consider the natural Euclidean topology on the set of complex
numbers. It is not noetherian since we for instance have the strictly increas-
ing chain of open discs U1 ⊆ U2 ⊆ U3 ⊆ · · · as in Figure 1:

Uj = {z ∈ C | ||z|| < j}.

Example. Since a non-zero polynomial in C[x] has only finitely many zeros,
algebraic subsets of A1

C are precisely the finite subsets of A1
C and all of A1

C.
It is now easy to verify condition (1) from Corollary 4 for A1

C directly.

By now we know that AnK is a noetherian topological space. More gen-
erally, given any algebraic subset X ⊆ AnK , the algebraic subsets of X form
a topology on X, which is again called the Zariski topology and which is
obviously again noetherian.

Although the following definition in principle makes sense for arbitrary
topological spaces, it is mainly useful for the noetherian ones.
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Figure 1. The reason why the Euclidean topology on C is
not noetherian.
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X = V(x2 − y2)

Figure 2. An example of a reducible algebraic set – X is
the union of X1 = V(x− y) and X2 = V(x+ y).

Definition. A non-empty topological space (X, τ) is called reducible if it
can be expressed as X = X1 ∪ X2 where X1, X2 $ X are proper closed
subsets. Otherwise it is called irreducible.

A simple example of a reducible algebraic set can be seen in Figure 2.
Note also that if we work over an infinite field, both the lines in Figure 2
are already irreducible. This is because an algebraic proper subset of a line
is finite.

There is a special terminology for algebraic sets which are irreducible.

Definition. An irreducible affine algebraic set is called an affine variety.

Remark. The terminology is unfortunately not completely unified in the
literature. Some authors use the term ‘variety’ for all algebraic sets and
then they speak of ‘irreducible varieties’ when necessary.

The main result about irreducibility is the following theorem, which in
particular implies that each algebraic set X can be expressed in a unique
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Figure 3. A tree of closed subsets of X in the proof of Theorem 5.

way as an irredundant union of varieties. The varieties in such an expression
are called the irreducible components of X.

Theorem 5. Let (X, τ) be a non-empty noetherian topological space. Then
there exists an expression X = Z1∪Z2∪· · ·∪Zr where r ≥ 1 and Z1, Z2, . . . , Zr
are irreducible closed subsets of X such that Zi 6⊆ Zj whenever i 6= j. Such
an expression of X is unique up to reordering the terms in the union.

Proof. We first claim that X can be expressed as a finite union of irreducible
closed subsets (see also the remark below for another and perhaps more
standard argument). If X itself is irreducible, we are done. Otherwise we
can express X as a union X = X1 ∪X2 of closed subsets properly contained
in X. If both X1 and X2 are irreducible, we are done. If not, say if X1 is
reducible, we write X1 = X11 ∪ X12, and similarly for X2. If we continue
like that by induction, we can construct a tree as in Figure 3. It is at most
countable, it has X as the root and each vertex has at most two children, all
the arrows stand for proper inclusions of closed subsets of X, and its leaves
are labeled by irreducible subsets.

If the tree is finite, we are done as X is the union of the irreducible
closed subsets at the leaves by the construction. Thus, let us assume for the
moment that the tree is infinite. Since all the vertices have finitely many
children, we can use a combinatorial result, so-called Kőnig’s Lemma, which
says that the tree must have an infinite branch

X
%
//Xi1

%
//Xi1i2

%
//Xi1i2i3

%
// · · · .

However, the existence of such a branch contradicts the assumption on
(X, τ), so the tree must have been finite and the claim is proved.

Let now consider an expression X = Z1 ∪ Z2 ∪ · · · ∪ Zr with all the Zi
irreducible and r ≥ 1 smallest possible. Then clearly Zi 6⊆ Zi′ whenever
i 6= i′, or else we would have X = Z1 ∪ · · · ∪ Zi−1 ∪ Zi+1 ∪ · · · ∪ Zr

To prove the uniqueness, suppose that X = Y1 ∪ · · · ∪ Ys is another
expression with the Yj irreducible and Yj 6⊆ Yj′ whenever j 6= j′. Note that
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for each 1 ≤ i ≤ r we have

Zi = Zi ∩X = Zi ∩
s⋃
j=1

Yj =

s⋃
j=1

(Zi ∩ Yj).

Since Zi is irreducible, we must have Zi = Zi∩Yj , or in other words Zi ⊆ Yj
for some 1 ≤ j ≤ s. Similarly, for any Yj there exists Zi′ such that Yj ⊆ Zi′ .
By combining the two observations, for each i there are indices j and i′ such
that

Zi ⊆ Yj ⊆ Zi′ .
However, in such a situation the assumptions enforce i = i′ and Xi = Yj .
Moreover, given any i, the index j such that Xi = Yj must be unique.
Similarly, for each j there exists unique i with Yj = Xi. It follows that r = s
and there is a permutation σ such that Xi = Yσ(i) for each 1 ≤ i ≤ r. �

Remark. The existence part of the latter theorem is often proved without
Kőnig’s Lemma using the following observation about noetherian topological
spaces:

Given any non-empty collection S of closed subsets of a noetherian topo-
logical space (X, τ), there exists an element of S which is minimal with
respect to inclusion. To see that, suppose that the converse is true. Since
S is non-empty, we can pick a closed set Z1 ∈ S. Since Z1 is not minimal,
there exists Z2 ∈ S with Z1 % Z2. Since Z2 is not minimal in S either,
we find Z3 ∈ S such that Z2 % Z3, and so on. By induction, we can thus
construct a chain

Z1 % Z2 % Z3 % Z4 % · · ·
in S, which again contradicts the assumption that (X, τ) is noetherian.

In fact, the latter observation characterizes noetherian topological spaces.
Suppose now that (X, τ) is a noetherian topological space. At this point

we can easily prove that each closed subset Z ⊆ X is a finite union of
irreducible ones, which implies the existence part of Theorem 5. Indeed, if
this is not the case, there must be a closed subset Z ⊆ X which is not a finite
union of irreducible ones and is minimal such with respect to inclusion. In
particular Z is not irreducible itself, so that Z = Z1∪Z2 for some Z1, Z2 $ Z.
By the minimality, both Z1 and Z2 are finite unions of irreducible closed
subsets, and so must be Z – a contradiction.

We conclude the section by an algebraic characterization of irreducibility.
Given a set of polynomials S, we defined the set V(S) = {P ∈ AnK | f(P ) =
0 (∀f ∈ S)} of their common zeros. We can also reverse the process, start
with a subset X of an affine space AnK and consider the set of all polynomials
which vanish everywhere on X.

Definition. The ideal of a set X ⊆ AnK is defined as

I(X) = {f ∈ K[x1, x2, . . . , xn] | f(P ) = 0 (∀P ∈ X)}.

One readily checks that I(X) ⊆ K[x1, x2, . . . , xn] is indeed an ideal of the
polynomial ring, so the terminology is consistent. Basic properties of the two
assignments S 7→ V(S) and X 7→ I(X) and their relation are summarized in
the following lemma.
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Lemma 6. Let K be a field, n ≥ 1, X,X1, X2 ⊆ AnK and S, S1, S2 ⊆
K[x1, x2, . . . , xn].

(1) If X1 ⊆ X2, then I(X1) ⊇ I(X2).
(2) If S1 ⊆ S2, then V(S1) ⊇ V(S2).
(3) I(∅) = K[x1, x2, . . . , xn] and, if the field K is infinite, we also have

I(AnK) = {0}.
(4) I(V(S)) ⊇ S and V(I(X)) ⊇ X. Moreover, X := V(I(X)) is the

smallest algebraic subset of AnK containing X. In other words, X is
the closure of X with respect to the Zariski topology.

(5) I(V(I(X))) = I(X) and V(I(V(S))) = V(S).

Proof. Parts (1), (2), (3) and (4) are completely straightforward once one
unravels the definitions. The single exception is the equality I(AnK) = {0}
for K infinite, where we refer to Exercise 5.

To prove (5), note that I(V(I(X))) ⊇ I(X) and V(I(X)) ⊇ X by (4), and
hence also I(V(I(X))) ⊆ I(X) by (1). It follows that I(V(I(X))) = I(X) and
the proof of the other equality is analogous. �

Now one easily obtains the following important result.

Theorem 7. Let K be a field and X ⊆ AnK a non-empty algebraic set. Then
X is irreducible if and only if I(X) is a prime ideal of K[x1, x2, . . . , xn].

Proof. We prove an equivalence between the negations. Note that non-
emptiness of X implies that I(X) $ K[x1, x2, . . . , xn].

Suppose first that I(X) is not a prime ideal, so that there exist polynomi-
als f1, f2 6∈ I(X) such that f1 · f2 ∈ K[x1, x2, . . . , xn]. Consider for i = 1, 2
the algebraic sets

Xi = V(I(X) ∪ {fi}).
Since fi does not vanish everywhere on X, we have X1, X2 $ X. On the
other hand, each P ∈ X is a zero of f1 or f2 because f1 · f2 ∈ I(X), so we
have X = X1 ∪X2. It follows that X is reducible.

The other implication is similar. Suppose that X = X1∪X2 and X1, X2 $
X. Then I(X1), I(X2) % I(X) (indeed, if we had I(Xi) = I(X), then Xi =
V(I(Xi)) = V(I(X)) = X by Lemma 6(4), which is a contradiction). It
follows that we can choose f1 ∈ I(X1)\ I(X) and f2 ∈ I(X2)\ I(X), and that
f1 · f2 vanishes everywhere on X. Hence f1 · f2 ∈ I(X) and I(X) is not a
prime ideal. �

Exercises.

(1) Describe the algebraically closed fields Q and Fq where q is a power
of a prime number.

(2) Let K be an algebraically closed field and f, g ∈ K[x, y]. Show that
(a) the algebraic set V(f) is infinite and
(b) if f, g are coprime in K[x, y], then the algebraic set V(f, g) is

finite.
(3) Show that if K is algebraically closed, the subvarieties of the affine

plane A2
K are precisely

(a) singletons {P}, P ∈ A2
K ,

(b) subsets of the form V(f) with f ∈ K[x, y] irreducible (these are
called irreducible plane curves), and
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(c) A2
K itself.

(4) Show that if K is algebraically closed and f ∈ K[x, y] is irreducible
(or more generally square-free, i.e. not divisible by a square of an
irreducible polynomial), then I(V(f)) = (f). Hint: Use Exercise 2.

(5) Show that I(AnK) = {0} if K is an infinite field.
Hint: Use induction on n. Write f ∈ K[x1, x2, . . . , xn] as f =∑d
i=1 fix

i
n with f0, . . . , fd ∈ K[x1, x2, . . . , xn−1]. Then note that

if P = (a1, . . . , an−1) ∈ An−1
K and fi(P ) 6= 0 for some i, then

f(a1, . . . , an−1, x) ∈ K[x] has only finitely many zeros.
(6) Show that a non-empty topological space (X, τ) is irreducible if and

only if each non-empty subset of X is dense.
(7) Proving irreducibility of an algebraic set is in general a difficult task.

The following criterion is sometimes useful (see e.g. Exercise 3 in
Section 2).

Let f : X → Y by a continuous map between non-empty topolog-
ical spaces.
(a) Prove that if X is irreducible and f is surjective, than Y is

irreducible.
(b) Prove more generally that if X is irreducible and f has dense

image in Y , then Y is irreducible.

2. Polynomial and rational maps

So far we have studied algebraic sets alone, as isolated objects. Now we
are going to discuss possible choices of classes of maps connecting them.
Since algebraic sets are defined in terms of vanishing of polynomials, the
most natural choice is to consider maps which are on coordinates given by
evaluating polynomials.

Definition. Let K be a field and X ⊆ AnK and Y ⊆ A`K be algebraic
sets. A map f : X → Y is a polynomial map if there exist polynomials
f1, f2, . . . , f` ∈ K[x1, x2, . . . , xn] such that for each P = (a1, a2, . . . , an) ∈ X
we have

f(P ) =
(
f1(P ), f2(P ), . . . , f`(P )

)
.

Lemma 8. Let X,Y, Z be an algebraic sets over K. Then:

(1) If f : X → Y and g : Y → Z are polynomial maps, so is the compo-
sition g ◦ f : X → Z. Moreover, the identity map idX : X → X is a
polynomial map.

(2) Polynomial maps f : X → Y are continuous with respect to the
Zariski topologies on X and Y .

Proof. (1) Suppose that X ⊆ AnK , Y ⊆ A`K and Z ⊆ AmK . If f : X → Y is a
polynomial map given by f1, f2, . . . , f` ∈ K[x1, x2, . . . , xn] and g : Y → Z is
given by g1, g2, . . . , gm ∈ K[y1, y2, . . . , y`], then the composition g◦f : X → Z
is given by h1, h2, . . . , hm ∈ K[x1, x2, . . . , xn], where

(1) hi(x1, . . . , xn) := gi
(
f1(x1, . . . , xn), . . . , f`(x1, . . . , xn)

)
.

The identity map idX is given by the monomials x1, x2, . . . , xn.
(2) Suppose that f : X → Y is a polynomial map given by polynomials

f1, f2, . . . , f` ∈ K[x1, x2, . . . , xn] (i.e. X ⊆ AnK and Y ⊆ A`K . We must show
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that f−1(Z) is Zariski closed in X for each Zariski closed subset Z ⊆ Y . Fix
such a subset Z ⊆ Y and some polynomials g1, g2, . . . , gm ∈ K[y1, y2, . . . , y`]
such that Z = V(g1, g2, . . . , gm). Then the gi define a polynomial map

f : Y → AmK ,
P 7→

(
g1(P ), g2(P ), . . . gm(P )

)
.

Clearly, f−1(Z) is the preimage of the origin (0, 0, . . . , 0) ∈ AmK under the
composition g ◦ f : X → AmK . In particular,

f−1(Z) = V(h1, . . . , hm),

where the polynomials hi are as in (1). �

Remark. The proof of Lemma 8(2) in fact shows that Zariski topology is
defined precisely in such a way that

(1) polynomial maps are continuous, and
(2) singletons are Zariski closed.

An important special case of polynomial maps are those where the target
algebraic set is the affine line.

Definition. The set {f : X → A1
K | f is a polynomial map} is called the

coordinate ring of X and denoted by K[X].

The terminology may need some comments. Since A1
K = K and K is

naturally a K-algebra, the set of maps polynomial f : X → A1
K has a natural

K-algebra structure too, with the operations defined pointwise. To be more
specific, if f1, f2 : X → A1

K are polynomial maps and k ∈ K, we can define
f1 + f2, f1 · f2 and kf1 in such a way that for each P ∈ X we put

(f1 + f2)(P ) = f1(P ) + f2(P ),

(f1 · f2)(P ) = f1(P ) · f2(P ), and

(kf1)(P ) = k(f1(P )).

We leave it for the reader to check that these new maps are again polynomial
maps. The zero and the unit in the algebra of polynomial maps X → A1

K are
just the constant maps with the corresponding value in K. We will always
consider K[X] with this K-algebra structure.

We defined the coordinate ring of X as a ring of certain functions on X,
but there is also a different, more algebraic point of view.

Lemma 9. Let X ⊆ AnK be an algebraic set. Then there is an isomorphism
of K-algebras

K[x1, x2, . . . , xn]/ I(X)→ K[X]

f + I(X) 7→ (P 7→ f(P )).

Proof. Any polynomial f ∈ K[x1, x2, . . . , xn] tautologically defines a poly-
nomial map X → A1

K which sends each P ∈ X to f(P ). One readily checks
that this assignment defines a homomorphism of K-algebras

ϕ : K[x1, x2, . . . , xn]→ K[X].

Since any polynomial map X → A1
K has to be given by some polynomial f

by the very definition, this homomorphism of algebras is surjective. However
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X Y

A1
Kf c

Figure 4. An illustration how the map f∗ : K[Y ] → K[X]
acts. It is defined via f∗ : c 7→ c ◦ f .

ϕ may not be injective. In fact, the polynomials in the kernel are precisely
those which vanish on all of X, or in other words, the kernel of ϕ is precisely
I(X). The conclusion follows from the isomorphism theorem. �

This observation is rather important for it allows us to deduce algebraic
properties of K[X]. For instance, K[X] is always a noetherian ring since
K[x1, x2, . . . , xn] is such. Another consequence of the lemma, which follows
together with Theorem 7 and which we will use later in the section, is the
following.

Corollary 10. An algebraic set X over K is irreducible if and only if its
coordinate ring K[X] is a domain.

Let us now explain the word ‘coodrinate’ in the term coordinate ring.
This is related to so-called coordinate functions. If X ⊆ AnK and 1 ≤ i ≤ n,
the i-th coordinate function is the function given by

ci : X → A1
K ,

P = (a1, a2, . . . , an) 7→ ai.

This is a polynomial function which, under the isomorphism of Lemma 9,
corresponds to the coset xi + I(X). Since the ring K[x1, x2, . . . , xn]/ I(X) is
generated as a K-algebra by the cosets x1 + I(X), x2 + I(X), . . . , xn + I(X),
so is K[X] generated as a K-algebra by c1, c2, . . . , cn.

Next we will focus on how coordinate rings interact with polynomial maps
between algebraic sets. To this end, let f : X → Y be a polynomial map
and c : Y → A1

K an element of K[Y ]. Then the composition c ◦ f : X → A1
K

is again a polynomial map, hence an element of K[X]. If we fix f and vary
c, we obtain a map

f∗ : K[Y ]→ K[X],

c 7→ c ◦ f.
The situation is illustrated in Figure 4.

It is straightforward to check directly from the definitions that the just
defined map f∗ is a homomorphism of K-algebras. To summarize, we have
a procedure which produces from every polynomial map f : X → Y a ho-
momorphism of K-algebras f∗ : K[Y ] → K[X]. We again collect some ele-
mentary properties of this procedure.

Lemma 11. If f : X → Y and g : Y → Z are polynomial maps, that (g ◦
f)∗ = f∗ ◦ g∗. Moreover, id∗X = idK[X].
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Proof. The first part essentially just a reformulation of the associativity of
the composition c◦ (g ◦f) = (c◦ g)◦f for each polynomial map c : Z → A1

K .
The second part is trivial. �

Remark. The latter lemma together with Lemma 8(1) has a natural inter-
pretation from the point of view of the theory of categories. On one hand,
we have a category of algebraic sets over K and polynomial maps among
them. On the other hand we have the category of commutative K-algebras
and homomorphisms among them. The latter lemma says that there is a
contravariant functor between the two which sends an algebraic set X to its
coordinate ring K[X] and a polynomial map f to the homomorphism f∗.

One of the main results presented in this section is that the assignment
f 7→ f∗ in fact provides us with a bijection between the sets of polynomial
maps and homomorphisms. In the terminology used in the last remark, this
can be rephrased to that the functor from the category of algebraic sets to
that of commutative algebras is fully faithful.

Theorem 12. Let K be a field and X,Y be algebraic sets over K. Then
the assignments f 7→ f∗ yields a bijection between the sets of

(1) polynomial maps X → Y , and
(2) homomorphisms of K-algebras K[Y ]→ K[X].

Proof. We start with showing that the assignment f 7→ f∗ is injective. That
is, given two polynomial maps f, g : X → Y such that f∗ = g∗, we must
prove that f = g. Suppose that Y ⊆ A`K and c1, c2, . . . , c` : Y → A1

K are the
coordinate functions for Y . Then the equality between f∗ and g∗ implies
that for each 1 ≤ i ≤ ` we have

ci ◦ f = f∗(ci) = g∗(ci) = ci ◦ g.
In particular, for any point P ∈ X we have

ci(f(P )) = ci(g(P )),

or in other words, f(P ) and g(P ) have the same coordinates in Y ⊆ A`K .
This clearly means that f(P ) = g(P ) for each P ∈ X, which is further
equivalent to the fact that f = g.

Next we prove that f 7→ f∗ is surjective. To this end, fix a homomorphism
α : K[Y ]→ K[X]. Our task is to find f : X → Y such that α = f∗. However,
if such f∗ exists, it is unique by the previous part and it must satisfy

α(ci) = f∗(ci) = ci ◦ f.
Thus, the only possible way to define f is using the formula

(2) f(P ) = (α(c1)(P ), α(c2)(P ), . . . , α(c`)(P ))

for each P ∈ X. Note here that α(ci) ∈ K[X], so in particular α(ci) are
polynomial maps X → A1

K . Therefore, the formula (2) yields a polynomial
map

f : X → A`K .
Our next task is to prove that the image of f is contained in Y , so that f

actually is a polynomial map f : X → Y . To see that, fix some polynomials
g1, g2, . . . , gr ∈ K[y1, y2, . . . , y`] such that Y = V(g1, g2, . . . , g`). We must
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show that gj(f(P )) = 0 for each 1 ≤ j ≤ r and P ∈ X. Using (2), this
translates to the requirement that

gj
(
α(c1)(P ), α(c2)(P ), . . . , α(c`)(P )

)
= 0.

To obtain the latter identity, it suffices to prove that

gj
(
α(c1), α(c2), . . . , α(c`)

)
= 0

in the coordinate ring K[X]. Since α : K[Y ]→ K[X] is a homomorphism of
K-algebras, we have

gj
(
α(c1), α(c2), . . . , α(c`)

)
= α

(
gj(c1, c2, . . . , c`)

)
,

so it suffices to prove the identity

gj(c1, c2, . . . , c`) = 0

in the coordinate ring K[Y ]. Since the K-algebra operations on K[Y ] are
defined pointwise, it suffices to check the identity

gj
(
c1(Q), c2(Q), . . . , c`(Q)

)
= 0

for each point Q = (b1, b2, . . . , b`) ∈ Y . However, we have ci(Q) = bi by the
definition of the coordinate functions, and hence

gj
(
c1(Q), c2(Q), . . . , c`(Q)

)
= gj(b1, b2, . . . , b`) = gj(Q).

Now gj(Q) vanishes for each 1 ≤ j ≤ r and Q ∈ Y because we started with
Y = V(g1, g2, . . . , g`). The conclusion is that, indeed, f(P ) ∈ Y for each
P ∈ X and the recipe (2) defines a polynomial map f : X → Y .

Finally, we verify that α = f∗ as homomorphisms K[Y ] → K[Y ]. We
see immediately from (2) that α(ci) = f∗(ci) holds for the coordinate func-
tions c1, c2, . . . , c` ∈ K[Y ]. As the coordinate functions generate K[Y ] as
a K-algebra, this implies that the homomorphisms α and f∗ are equal, as
required. �

We call two algebraic sets X and Y over K isomorphic if there exist
polynomial maps f : X → Y and g : Y → X such that g ◦ f = idX and
f ◦ g = idY . An isomorphism of algebraic sets is a bijection and, moreover,
the coordinates of Y polynomial depend on those of X and vice versa.

A typical class of isomorphism are so-called affine coordinate changes.
These are isomorphism

f : AnK → AnK ,
(a1, a2, . . . , an) 7→M · (a1, a2, . . . , an)t + ~c,

where M is an invertible n × n matrix over K, ~c ∈ Kn is a column vector,
and we use the natural vector space structure on AnK . The inverse f−1 sends
(b1, b2, . . . , bn) to M−1 ·(b1, b2, . . . , bn)t−M−1 ·~c. More generally, is Y ⊆ AnK
is an algebraic set, so is the image f(Y ) ⊆ AnK and f induces an isomorphism
between Y and f(Y ). This is often used to simplify the form of a collection
of polynomial equations defining Y .

An immediate consequence of Theorem 12 is an algebraic characterization
of when algebraic sets are isomorphic.

Corollary 13. Two algebraic sets X and Y are isomorphic if and only if
their coordinate rings K[X] and K[Y ] are isomorphic K-algebras.
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x

y

X = V(y2 − x(x− 1)(x+ 1))

Figure 5. The zero set of the polynomial y2−x(x−1)(x+1)
over the field of real numbers.

There is another class of maps between algebraic sets (or more precisely
certain subsets of them) which is very useful in practice – rational maps. For
simplicity we will restrict our attention only to varieties over infinite fields.
The coordinate ring K[X] of a variety X is a domain, so we can form the
quotient field which we denote by K(X) and call the function field of X.

Example. If X = AKn , then K[X] = K[x1, x2, . . . , xn] and

K(X) = K(x1, x2, . . . , xn) =
{f
g
| f, g ∈ K[x1, x2, . . . , xn], g 6= 0

}
.

Example. Let K = C (in fact, the example would work for any algebraically
closed field K of characteristic different from 2) and let X be the variety
X = V(y2 − x(x− 1)(x+ 1)) ⊆ A2

K . The real part X ∩ A2
R is depicted in

Figure 5.
The coordinate ring of X is isomorphic to K[x, y]/(y2−x(x−1)(x+1)) and

the coset of x in K[X] is transcendental over K since no non-zero polynomial
g ∈ K[x] is contained in (y2−x(x− 1)(x+ 1)) (use Exercise 4 in Section 1).
Thus, K(X) has a subfield isomorphic to K(x) and the coset of y is algebraic
over K(x) since it satisfies the equation y2 − x(x− 1)(x+ 1) = 0. It follows
that K(X) is a quadratic extension of K(x),

K(X) ∼= K(x)[
√
x(x− 1)(x+ 1)].

If X is a variety, the elements f
g ∈ K(X) are called rational functions

on X. In fact, the fraction f
g only defines a function

U → A1
K ,

P 7→ f(P )

g(P )

(3)

on the Zariski open subset U = X \V(g), which is non-empty, so dense since
X is irreducible.
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A word of warning is due here. Although the polynomial rings over a field
K[x1, x2, . . . , xn] are well known to be unique factorization domains (UFDs
for short), coordinate rings K[X] of varieties other than affine spaces very
often do not possess the unique factorization property. In particular, there is
often nothing like a unique reduced fraction expressing an element of K(X).

We simply have to consider different different fractions f1
g1

= f2
g2

expressing

the same element of K(X), which may a priori define different functions as

in (3). However, if both f1(P )
g1(P ) and f2(P )

g2(P ) are defined for P ∈ X, then the

values in K are equal since the equality of fractions in K(X) means that
f1g2 = f2g1 in K[X] and hence also f1(P ) · g2(P ) = f2(P ) · g1(P ) in K.

Example. Let K be a field and X = V(x1x4 − x2x3) ⊆ A4
K . We can identify

X with the set of all singular 2 × 2 matrices ( x1 x2x3 x4 ) over K. Then we
have x1

x2
= x3

x4
∈ K(X). The functions defined by the fractions using the

rule (3) return for a given 2× 2 matrix in the domain of definition a scalar
k ∈ K which is the ratio of the first and the second column. However, the
first fraction defines a function on U1 = X \V(x2) while the second one on
U2 = X \V(x4).

Since the two functions give the same values on U1 ∩ U2, we can ‘glue’
them together to a function r : U → A1

K , where U = U1∩U2 = X \V(x2, x4).

It can be shown that there is no single expression f
g = x1

x2
in K(X) which

would define r via (3) on all of U . We cannot do better in the sense that we
need at least two different ways to express the fraction to define r.

The above considerations motivate the following definition.

Definition. Let X be a variety, P ∈ X and r ∈ K(X). We say that r is

regular at P if there exist f, g ∈ K[X], g 6= 0 such that r = f
g ∈ K(X) and

f(P )
g(P ) is defined. Otherwise, P is called a pole of r.

Lemma 14. Let X be a variety and r ∈ K(X). The set of poles of r is an
algebraic subset of X and the set of points at which r is regular is non-empty
and Zariski open in X.

Proof. The set of poles of r can be obtained as⋂
f
g

=r

V(g),

which is obviously an algebraic set by Lemma 1(2), so Zariski closed in X.
The set of points at which r is regular is then Zariski open in X. �

Similarly to the definition of polynomial maps between algebraic sets, we
can define rational maps between varieties as those which are coordinatewise
computed by rational functions.

Definition. Let X ⊆ AnK and Y ⊆ A`K be varieties over K. A rational
function from X to Y is a function r : U → Y where U is a non-empty
Zariski open subset of X and there exist r1, r2, . . . , r` ∈ K(X) such that

r(P ) =
(
r1(P ), r2(P ), . . . , rn(P )

)
for each P ∈ U .
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In the spirit of the discussion above, the symbol ri(P ) for the evaluation

of ri ∈ K(X) at P means that we pick a fraction ri = f
g with f, g ∈ K[X]

and g(P ) 6= 0 and we put ri(P ) = f(P )
g(P ) .

Lemma 15. Let X,Y be varieties over K, let ∅ 6= U ⊆ X be Zariski open
and let r : U → Y be a rational map. Then r is continuous.

Proof. We first treat the special case where Y = A1
K , i.e. where r is com-

puted by a single element r1 = f
g ∈ K(X). Given any point P ∈ U , we can

choose f, g so that g(P ) 6= 0. It follows that r(P ′) = f(P ′)
g(P ′) on a Zariski open

neighborhood UP of P in U . Indeed, we can simply take

UP = {P ′ ∈ U | g(P ′) 6= 0}.

Now note that if V ⊆ A1
K is Zariski open, then r−1(V ) ∩ UP is Zariski

open in X. This is clear if V = ∅. If, on the other hand, V is non-empty,
V must be of the form V = A1

K \ {b1, . . . , br}, where b1, . . . , br ∈ K = A1
K

are finitely many elements of K. Then, however,

r−1(V ) ∩ UP = U ∩
{
P ′ ∈ X | f(P ′)− bi · g(P ′) 6= 0 (∀i ∈ {1, . . . , r})

}
.

If we let P vary, the open subsets UP , P ∈ U , cover U . Since r−1(V )∩UP
is open for each P , so is

r−1(V ) =
⋃
P∈U

r−1(V ) ∩ UP .

Hence r : U → Y is continuous if Y = A1
K .

In the general case, we can use a similar trick as for Lemma 8(2). If Y ⊆
A`K and Z = V(g1, g2, . . . , gm) ⊆ Y is Zariski closed (here g1, g2, . . . , gm ∈
K[y1, y2, . . . , y`]), then the compositions

gi ◦ r : U → A1
K

are easily seen to be rational maps. Moreover, Z =
⋂m
i=1 g

−1
i (0) and, thus,

r−1(Z) =
⋂m
i=1(gi ◦ r)−1(0). Since all (gi ◦ r)−1(0) ⊆ U are closed by the

first part, so is r−1(Z). �

Literally, the definition of a rational r : U → Y function includes the
choice of its domain, the non-empty Zariski open set U . However, we know
already that we can extend the domain of definition of r to the (in general
bigger) open set U ′ consisting of all points P ∈ X at which all the rational
functions r1, r2, . . . , r` are regular. We will call such points the regular points
of r. Indeed, we can simply define r′ : U ′ → Y again via

r′(P ) =
(
r1(P ), r2(P ), . . . , rn(P )

)
.

Then r′ is uniquely determined by r, the image of r′ is still contained in
Y ⊆ A`K (see Exercise 5) and r′|U = r.

In the sequel, we will use the following terminology and notation which
precisely capture the situations where the above extensions of two rations
maps r : U → Y and s : V → Y are equal (recall Exercise 6 in Section 1).
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Definition. Let X and Y be varieties over K and let r : U → Y and s : V →
Y be two rational functions from X to Y (where ∅ 6= U, V ⊆ X are Zariski
open). Then r and s are equivalent if there exists a non-empty Zariski open
subset W ⊆ U ∩ V such that r|W = s|W .

We will denote an equivalence class of r by the symbol r : X 99K Y (the
dashed arrow is to indicate that r is defined only on a subset of X).

The composition of a pair of polynomial maps or the composition of a
rational map followed by a polynomial map (cf. the proof of Lemma 15)
are always well defined rational maps. The question of when a pair of
rational maps r : X 99K Y and s : Y 99K Z can be composed is, however,
more delicate. At the very least, the image of r must contain at least one
point P ∈ Y at which s is regular. If this condition is satisfied, then the
composition s ◦ r : X 99K Z can be defined and is a rational map (or, more
rigorously, an equivalence class of rational maps) again.

Indeed, suppose that we have rational maps r : U → Y and s : V → Z,
where U ⊆ X and V ⊆ Y are non-empty Zariski open. If the intersection
r(U) ∩ V is nonempty, so is the preimage r−1(V ) ⊆ U . Hence we have a
well defined composition

s ◦ r : U ∩ r−1(V )→ Z,

P 7→ s(r(P )),

which is defined on the non-empty open subset U ∩ r−1(V ) ⊆ X. The fact
that s ◦ r is rational, i.e. that the coordinates of s(r(P )) are computed by
evaluating elements of K(X) at P , is proved in way completely analogous
to Lemma 8(1).

An important situation in which the composition s◦ r is always defined is
when the image r(U) is Zariski dense in X (equivalently, when the preimage
r−1(V ) of any non-empty open subset V ⊆ Y is again non-empty). Note
that this is in fact a property of the equivalence class of r, i.e. it does not
depend on the particular choice of the domain of definition of r. For such
rational maps r : X 99K Y we have an analogue of Theorem 12. Given any
s ∈ K(X), the composition s ◦ r : X 99K A1

K is represented by a unique
element of K(Y ), and we again have a K-algebra homomorphism

r∗ : K(Y )→ K(X),

s 7→ s ◦ r,
which operates as in Figure 4. Note that since the field K(Y ) has no non-
trivial ideals, r∗ has to be injective.

Theorem 16. Let K be a field and X,Y be varieties over K. Then the
assignments r 7→ r∗ yields a bijection between the sets of

(1) equivalence classes of rational maps X 99K Y whose image is dense
in Y , and

(2) homomorphisms of K-algebras K(Y )→ K(X).

Proof. The proof is completely analogous to that of Theorem 12, with minor
modifications only.

To prove the injectivity, suppose that Y ⊆ A`K and that we have rational
maps r, s : X 99K Y such that r∗ = s∗. Since all the coordinate functions
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c1, c2, . . . , c` : Y → A1
K are actually elements of K(Y ), we deduce that ci◦r =

r∗(ci) and ci ◦ s = s∗(ci) are equivalent rational functions X 99K A1
K . In

particular ci(r(P )) = ci(s(P )) for each i = 1, 2, . . . , ` whenever both r and
s are regular at P . This just says that r(P ) = s(P ) whenever both r and s
are regular at P or, in other words, that r is equivalent to s.

To prove surjectivity, suppose that we have a homomorphism α : K(Y )→
K(X). If we evaluate α at the coordinate functions ci =: Y → A1

K , i =
1, 2, . . . , `, we obtain rational function ri = α(ci) ∈ K(X). As in the proof
of Theorem 12, we define our candidate preimage of α as

r : U → A`K
P 7→

(
r1(P ), r2(P ), . . . , r`(P )

)
where U is the set of all points P ∈ X at which all the ri ∈ K(X) are
regular. Using exactly the same argument as in the proof of Theorem 12,
we observe that in fact r(U) ⊆ Y , so r defines a map

r : U → Y.

Clearly r is a rational map and, since r∗(ci) = ci ◦ r = α(ci) for each
i = 1, 2, . . . , ` and c1, c2, . . . , c` generate K(Y ) as a field extension of K, we
have r∗ = α.

The last thing to observe is that the image of r is dense in Y . To this end,
recall that r∗ : K(Y ) → K(X) is injective. Given any polynomial function
g : Y → A1

K which vanishes on r(X) ⊆ Y , we have r∗(g) = g◦r = 0 in K(X)
and, hence, g = 0. Now the Zariski closure of r(X) in Y is precisely the set
of common zeros in Y of all such polynomial maps g (recall Lemma 6(4)),
which is clearly of Y . (Compare the argument to Exercise 7b.) �

Analogous to the notion of a polynomial isomorphism, one can study
the situation where there are two mutually inverse rational maps between
varieties. This is of course a much coarser way to compare two varieties, but
nevertheless it is a very useful notion.

Definition. Let K be a field and X,Y be varieties over K. A rational map
r : X 99K Y is called a birational equivalence if there exist a rational map
s : Y 99K X such that both compositions s ◦ r and r ◦ s are defined and
equivalent to the identity maps on X and Y , respectively.

The varieties X and Y are birationally equivalent if there exists a bira-
tional equivalence r : X 99K Y .

The birational equivalence is indeed an equivalence relation on varieties
over K. Whereas the reflexivity and symmetry is trivial, the transitivity
follows from the fact that a birational equivalence always has a dense image,
which in turn follows from the coming lemma.

Lemma 17. Suppose that r : X 99K Y is a birational equivalence with a
rational inverse s : Y 99K X, as above. Then there exist non-empty (hence
dense) open sets U ⊆ X and V ⊆ Y such that r and s are defined on U and
V , respectively, and r|U : U → V and s|V : V → U are inverse bijections.
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X
r //

Y
s

oo

U
r|U //

∪

OO

Y.
s|V

oo

∪

OO

Proof. Denote by U ′ ⊆ X the domain of definition of r and by V ′ ⊆ Y the
domain of definition of X. That is, we have actual maps r : U ′ → Y and
s : V ′ → X.

We define U = U ′∩r−1(V ′) and V = V ′∩s−1(U ′). Then clearly r(U) ⊆ V ′
and, since s(r(P )) = P for each point P ∈ X where the composition is
defined, it follows that r(U) ⊆ s−1(U ′). In particular, we have proved that
r(U) ⊆ V and, by symmetry, s(V ) ⊆ U . It follows that r and s restrict
to mutually inverse bijections between U and V since we assumed that
s(r(P )) = P and r(s(Q)) = Q whenever defined. �

Remark. Suppose that K = K is algebraically closed and that X,Y ⊆ A2
K

are irreducible plane curves. That is, X = V(f) and Y = V(g) for some
irreducible polynomials f, g ∈ k[x, y].

In view of Exercise 3 in Section 1, non-empty open sets in X are precisely
complements of finite subsets of X and the same is true for Y . In particular,
if r : X 99K Y and s : Y 99K X are mutually inverse birational equivalences,
they restrict to bijections

X \ {P1, P2, . . . , Pk}� Y \ {Q1, Q2, . . . , Qm}
for finite collections of points P1, P2, . . . , Pk ∈ X and Q1, Q2, . . . , Qm ∈ Y .
We refer to Exercises 8 and 9 for explicit examples.

As a straightforward corollary of Theorem 16, we also get an algebraic
characterization of birational equivalence.

Corollary 18. Two varieties X,Y over K are birationally equivalent if and
only if the function fields K(X) and K(Y ) are isomorphic as K-algebras (i.e.
as field extensions of K).

An especially nice situation arises when a variety is birationally equivalent
to an affine space.

Definition. A variety X over an infinite field K is rational if it is bira-
tionally equivalent to AnK for some n ≥ 1.

The assumption that K is infinite is imposed because then AnK indeed
is a variety (Lemma 6(3)). It is also clear that X can birationally equiv-
alent to AnK only for one natural number n. Indeed, the birational equiv-
alence implies that K(X) ∼= K(x1, x2, . . . , xn) and n can be recovered as
the transcendence degree of K(X). That is, n is the maximum number
of elements r1, r2, . . . , rn ∈ K(X) which satisfy no polynomial equation
g(r1, r2, . . . , rn) = 0 with 0 6= g ∈ K[x1, x2, . . . , xn].

Example. Suppose that K = K is algebraically closed and that X = V(f) ⊆
A2
K is and irreducible plane curve.
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It is well-known that the transcendence degree of K(X) over K is equal
to one one. To see that, assume without loss of generality that f ∈ K[x, y]
contains a non-zero term with a positive power of y and suppose that p ∈
K[x] is a non-zero polynomial. Since f cannot divide p in K[x, y], the coset
of p is non-zero in K[X] as well as in K(X). It follows that x ∈ K(X) is
transcendental over K. Now x and y generate K(X) as a field extension of
K and y ∈ K(X) is algebraic over K(x) because of the equality f(x, y) = 0.

It follows that if X is rational, it must be birationally equivalent to A1
K .

We conclude the section by illustrating how the results in this section
can be combined with a fact from abstract algebra to obtain a criterion for
rationality of irreducible plane curves. It in particular says that the mere
existence of maps like in Exercise 1 ensures that the curves are birational.

Proposition 19. Let K be an algebraically closed field and X = V(f) ⊆ A2
K

be an irreducible plane curve. Then the following are equivalent:

(1) X is rational.
(2) There is a non-constant rational map r : A1

K 99K X.

Proof. (1)⇒(2) We already know that if X is rational, it must be birationally
equivalent to A1

K and any birational equivalence r : A1
K 99K X is certainly

non-constant by Lemma 17.
(2)⇒(1) Suppose that r : A1

K 99K X is a non-constant rational map. We
will first show that the image r(U) is dense in X, where U ⊆ A1

K is the
domain of definition of r. Suppose for the moment that it is not, i.e. that
the Zariski closure r(U) is a proper subset of X. However, then r(U) must
be finite (Exercise 3 in Section 1), and therefore so is r(U) itself. As X is
irreducible, so is r(U) by Exercise 7 in Section 1. Being finite and irreducible,
r(U) must consist of a single point of X, or in other words, r : U → X is a
constant map, which contradicts our assumption.

Since r has a dense image, it induces a field embedding r∗ : K(X) →
K(A1

K) ∼= K(t) by Theorem 16. Now we invoke a result in algebra which
is known as Lüroth’s theorem (see for instance [vdW49, Ch. VIII, §63]): If
L is a subfield of K(t) such that K $ L ⊆ K(t), then L = K(g) for some
g ∈ K(t). In particular, we have a K-algebra isomorphism α : K(t′) ∼= L
given by α(t′) = g in this case:

If apply the result to L = r∗(K(X)) ⊆ K(t), we can express r∗ as a
composition of two K-algebra homomorphisms

(4) K(X)
∼= //K(t′) //K(t),

where the first one is an isomorphism and the second one sends t′ to g ∈ K(t).
Now X and A1

K are birationally equivalent thanks to the first isomorphism
and Corollary 18. �

Remark. A rational map r : A1
K 99K X as in Proposition 19(2) need not be a

birational equivalence itself. For instance the polynomial map r : t 7→ (t4, t6)
is a non-constant map A1

C → V(y2 − x3), but contrary to what Lemma 17
says about birational equivalences, there is no Zariski open subset U ⊆ A1

C
for which the restriction r|U is injective.
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The proof of Proposition 19 says instead that given non-constant r : A1
K 99K

X, we can express r as a composition of two rational maps

X A1
K

roo

g~~
A1
K

s

__

such that s : A1
K 99K X is a birational equivalence. To see this, apply Theo-

rem 16 to the composition in (4).

Exercises.

(1) In each of the following cases, find a surjective polynomial map
f : A1

C → X, describe the homomorphism of C-algebras f∗ : C[X]→
C[A1

C] ∼= C[t] and explain why f∗ is injective:
(a) X = V(y2 − x2(x+ 1)) ⊆ A2

C,
(b) X = V(y2 − x3) ⊆ A2

C,
(c) X = V(x3 − yz, y2 − xz, z2 − x2y) ⊆ A3

C.
(2) Show that in the polynomial maps f : A1

C → X in Exercises 1b and 1c
can be chosen to be bijective (even homeomorphisms with respect
to Zariski topologies). Show that these maps are nevertheless not
polynomial isomorphisms (in fact, C[X] 6∼= C[t] as C-algebras since
the latter one is integrally closed while the former one is not).

(3) Use either Exercise 7 in Section 1 or Corollary 10 to show that the
algebraic set X from Exercise 1c is irreducible.

(4) Find the pole set of h ∈ C(X) in the following cases:
(a) X = V(x1x4 − x2x3) ⊆ A4

C and h = x1
x2

= x3
x4

.

(b) X = V(y2 − x2(x+ 1)) ⊆ A2
C and h = y

x .

(c) X = V(y2 − x2(x+ 1)) ⊆ A2
C and h = y2

x2
.

(5) (a) Show that if X is an algebraic set, D ⊆ X is a dense subset (in
the Zariski topology) and f, g ∈ K[X] such that the restrictions
f |D = g|D are equal, then f = g in K[X].

(b) Show that is X is a variety, D ⊆ X is a dense subset and
r, s ∈ K(X) are such that r(P ) = s(P ) for each P ∈ D at
which both r and s are regular, then r = s in K(X).

Hint: Two elements f, g ∈ K[X] (or in K(X)) are equal if and
only their difference f − g vanishes.

Beware that 5a and 5b above are not purely topological state-
ments! There is indeed a standard result from topology which says
that if f, g : X → Y is a continuous map between topological spaces,
if f and g agree on a dense subset of X, and if Y is a Hausdorff
space, then f = g. However, Zariski topology is rarely Hausdorff
(consider even just A1

K for an infinite field K).
Here is an illustration what may go wrong in general. Let Y =

{0, 1} × R/ ∼, a disjoint union of two real lines with the usual Eu-
clidean topology where we identify (0, t) ∼ (1, t) for each t ∈ R\{0}.
Then Y looks like a real line, but with the origin doubled, and
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any open neighborhoods of [(0, 0)]∼ and [(1, 0)]∼ ∈ Y intersect non-
trivially. The two maps

fi : R→ Y

t 7→ [(i, t)]∼,

where i = 0, 1, are continuous and agree on the dense subset D =
R \ {0} ⊆ R, but f 6= g.

(6) We have seen that a coordinate ring K[X] of an algebraic set X is
generated as a K-algebra by the coordinate functions. The point of
this exercise to show a converse statement, namely that any finite set
of K-algebra generators of K[X] can become the set of coordinate
functions up to isomorphism.

Let K be an infinite field, X be an algebraic set over K and
suppose that f1, f2, . . . , fn ∈ K[X] generate the coordinate ring as a
K-algebra.
(a) Show that there is a surjective K-algebra homomorphism

α : K[y1, y2, . . . , yn]→ K[X]

given by α(yi) = fi, and that there is also a polynomial map

f : X → AnK
given by f(P ) =

(
f1(P ), f2(P ), . . . , fn(P )

)
.

(b) Show that α = f∗. Hint: use Exercise 5 from Section 1 to
identify K[AnK ] with K[y1, y2, . . . , yn].

(c) Let J = {g ∈ K[y1, y2, . . . , yn] | g(f1, f2, . . . , fn) = 0 in K[X]}.
Show that J is the kernel of α and also that J = I(f(X)), the
ideal of the image of f in AnK .

(d) Let Y = f(X) be the Zariski closure of the image of f in AnK .
Show that Y = V(J) and J = I(Y ).

(e) Show that the polynomial maps

X
f //Y

⊆ //AnK
correspond up to isomorphism of K-algebras to the K-algebra
homomorphisms

K[X] K[y1, y2, . . . , yn]/I
αoo K[y1, y2, . . . , yn]oooo ,

where α maps yi + I to fi.
(f) Show that α is an isomorphism of K-algebras and, hence, the

map f : X → Y is an isomorphism of algebraic sets. Finally,
show that the compositions

f1 ◦ f−1, f2 ◦ f−1, . . . , fn ◦ f−1 : Y → A1
K

coincide with the coordinate functions c1, c2, . . . , cn : Y → A1
K .

(7) Let f : X → Y be a polynomial map between algebraic sets over
a field K and denote by f∗ : K[Y ] → K[X] the induced homomor-
phism of the coordinate rings.
(a) Show that the Zariski closure f(X) ⊆ Y of the image of f

has a coordinate ring isomorphic to the image of the K-algebra
homomorphism f∗. Hint: Use ideas from Exercise 6.
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(b) Show in particular that f∗ is injective if and only if the im-
age of f is Zariski dense in Y (this also follows directly from
Exercise 5).

(c) Show also that f∗ is surjective if and only if f is a closed im-
mersion of algebraic sets, i.e. the image f(X) is Zariski closed
in Y and f induces a polynomial isomorphism to its image.

(8) Let K be an algebraically closed field of characteristic different from
2 and let f ∈ K[x, y] be an irreducible polynomial of total degree 2.
(a) Show that X = V(f) is a rational variety.
(b) Find explicit birational equivalences A1

K 99K X and X 99K A1
K

for f = x2 +y2−1 and f = x2−y2−1. Hint: the stereographic
projection with the projection point on the curve.

(c) Describe the solutions over Q of each of the equations x2+y2 = 1
and x2 − y2 = 1. Hint: Specialize the above to K = C.

(9) Find explicit birational equivalences between the affine line A1
C and

the varieties X = V(y2 − x3) and X = V(y2 − x2(x+ 1)) ⊆ A2
C.

Describe the solutions over Q of the equation y2 − x2(x+ 1) = 0.

3. Hilbert’s Nullstellensatz and consequences

Hilbert’s Nullstellensatz is a cornerstone result which establishes a very
tight connection between the geometry of an algebraic set and the algebraic
properties of its coordinate ring. It allows to completely answer natural
questions like which ideals of K[x1, x2, . . . , xn] are of the form I(X) or what
precise conditions a K-algebra R must satisfy to be a coordinate ring of
some algebraic set.

The price to pay for this is that now we will assume almost everywhere
from now on that our base field is algebraically closed. In the previous sec-
tions, we needed such an assumption only when we appealed to Lemma 6(3)
(i.e. we needed AnK to be irreducible) or to Exercise 3 in Section 1 (i.e. we
wanted to use the classification of subvarieties of the affine plane A2

K).
To start with, we briefly discuss basic fact about localization of commu-

tative rings. Algebraically this means making certain elements of a ring
formally invertible, in a way analogous to the construction of the field of
rational numbers from the ring of integers (or to constructing quotient fields
of commutative integral domains in general). The terminology comes from
the relation to algebraic geometry, where localization allows to inspect alge-
braic sets more locally in the Zariski topology. Some details on that aspect
will be included in the coming discussion too.

It has certain formal advantages to use the following abstract definition
of a localization via a universal property.

Definition. Let R be a commutative ring an S ⊆ R a set of elements. A
localization of R with respect to S is a ring homomorphism α : R → S−1R
from R with the following properties:

(1) the element α(s) is an invertible in S−1R for each s ∈ S,
(2) whenever β : R→ T is another ring homomorphism with β(s) invert-

ible for each s ∈ S, then there exists a unique ring homomorphism
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β : S−1R→ T such that β = β ◦ α:

R
α //

β ""

S−1R

∃!β
��
T.

The advantage of using this as a definition is that it determines S−1R
uniquely up to isomorphism. To see that, observe first that if β = α in
the definition, then necessarily β = idS−1R. Now if α : R → S−1R and
β : R → S−1R′ are two localizations in the sense of the definition, then
there exists ring homomorphism β : S−1R→ S−1R′ and α : S−1R′ → S−1R
such that β = β ◦ α and α = α ◦ β:

R
α

zz
β
��

α

$$
S−1R

β

// S−1R′
α
// S−1R

Then, however, α = α ◦ β ◦ α, so α ◦ β = idS−1R. For the same reason also
β ◦ α = idS−1R′ . Thus, α and β are mutually inverse ring isomorphisms.

To summarize, the only issue is to prove the existence of a localization.
We may use various constructions in various situations to do so (two of them
are shown below) or we may even guess what S−1R is in a particular case.
As long as the result satisfies the two conditions in the definition, it is as
good as any other ring homomorphism with the same properties.

A well known construction of the ring S−1R and the homomorphism
α : R → S−1R is via fractions. To that end, note that we can assume
without loss of generality that S is closed under multiplication, i.e. s1, s2 ∈ S
implies that s1s2 ∈ S. This is because a product of two invertible elements is
invertible in any ring. For a similar reason, we can without loss of generality
assume that 1 ∈ S.

If S is closed under multiplication and contains 1 ∈ R, we can construct
S−1R as the set of fractions r

s , where r ∈ R and s ∈ S. Formally, r
s is a

block [(r, s)]∼ of the equivalence relation on R× S given by

(5) (r1, s1) ∼ (r2, s2) if (∃s ∈ S)(r1s2s = r2s1s in R).

If R is an integral domain and 0 6∈ S, or more generally when S contains no
zero divisors (i.e. no elements s ∈ S such that st = 0 for non-zero t ∈ R),
the equivalence simplifies to a more familiar condition

(r1, s1) ∼ (r2, s2) if r1s2 = r2s1 in R.

However, in the presence of zero divisors we need the more complicated
condition even to make sure that ∼ is an equivalence. One reason is the
general fact that whenever st = 0 and s invertible in a ring, then t must
vanish in that ring. In the more complicated condition, we do none other
than apply this principle to t = r1s2 − r2s1 in what is going to be the ring
of fractions S−1R.

The following facts can be found in any textbook for commutative algebra,
e.g. in [AM69, Chapter 3]. The relation ∼ on R×S is indeed an equivalence
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relation and we can define ring operations the set S−1R := R× S/ ∼ in the
intuitive way:

r1

s1
+
r2

s2
=
r1s2 + r2s1

s1s2
, 0S−1R =

0

1
,

r1

s1
· r2

s2
=
r1r2

s1s2
, 1S−1R =

1

1
,

−r
s

=
−r
s
.

This yields a well defined commutative ring structure on S−1R and the
assignment

α : R→ S−1R,

r 7→ r

1

is a well-defined ring homomorphism. If R was a K-algebra, so is S−1R,
with the scalar multiplication k · rs for k ∈ K defined as kr

s . If r, s ∈ S, then

the multiplicative inverse of r
s exists in S−1R and is equal to s

r .

Proposition 20. [AM69, Proposition 3.1] The homomorphism α : R →
S−1R constructed above is a localization of R with respect to S. If β : R→ T
is a ring homomorphism which makes all the elements of S invertible, then
the uniquely defined homomorphism β acts as

β : S−1R→ T,

r

s
7→ β(r)

β(s)
.

One can also quickly see from the above construction when exactly S−1R
degenerated to a one-element ring, i.e. when 0

1 = 1
1 in S−1R. According

to (5), this happens if and only if 0 ∈ S. As one often wants to exclude this
degenerate option, this leads to a standard definition describing the sets of
elements of R with respect to which one wants to localize (i.e. the reasonable
sets of denominators):

Definition. A set of elements S of a commutative ring R is called a multi-
plicative set provided that

(1) 1 ∈ S and S is closed under multiplication (s1, s2 ∈ S implies
s1s2 ∈ S), and

(2) 0 6∈ S.

If we localize with respect to a single element f ∈ R, there is a more direct
way to construct {f}−1R which reveals another aspect of the localization. In
this case we will also use the customary shorter notation Rf for the localized
ring and call it the localization of R at f .

Lemma 21. Let R be a commutative ring and f ∈ R. Then the homomor-
phism

α : R→ R[x]/(xf − 1),

r 7→ r + (xf − 1)
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is a localization of R at f . In particular, if R is a finitely generated com-
mutative algebra over a field K, so is Rf .

Proof. Given g ∈ R[X], we will denote by g = g + (xf − 1) the coset of g.
We will prove that α is a localization directly from the definition. First of
all, we have x · f − 1 = 0 in R[X]/(xf − 1), so α(f) = f is invertible in
R/(xf − 1) with inverse x. Secondly, any ring homomorphism β : R → T
such that β(f) is invertible in T can be extended to a ring homomorphism

β1 : R[x]→ T,

g(x) 7→ g
(
β(f)−1

)
.

Since we have β1(xf − 1) = β(x)β(f) − 1 = β(f)−1β(f) − 1 = 0, the map
β1 induces a unique ring homomorphism

β : R[x]/(xf − 1)→ T,

g 7→ g
(
β(f)−1

)
.

One readily checks that β ◦α = β and that β is uniquely determined by this
property.

If R is a finitely generated algebra over a field K, then we have

R ∼= K[y1, y2, . . . , yn]/(g1, g2, . . . , g`)

for some n, ` ≥ 0 and g1, g2, . . . , g` ∈ K[y1, y2, . . . , yn]. Suppose that f ∈ R
corresponds to the coset of a polynomial f1 ∈ K[y1, y2, . . . , yn]. Then

Rf := R[x]/(xf − 1) ∼= K[y1, y2, . . . , yn, x]/(g1, g2, . . . , g`, xf1 − 1),

which again is a finitely generated commutative algebra over a field. �

If R = K[X] is a coordinate ring and f ∈ K[X], then the localization
homomorphism K[X]→ K[X]f has a clear geometric interpretation, which
we are going to explain now. This result still works for an arbitrary (not
necessarily algebraically closed or even infinite) field and an easy instance
for K = R, X = A1

R and f = x ∈ R[A1
R] ∼= R[x] is depicted in Figure 6.

Proposition 22. Let K be a field, X = V(g1, g2, . . . , g`) ⊆ AnK and algebraic

set and f ∈ K[x1, x2, . . . , xn]. If we define an algebraic subset Y ⊆ An+1
K by

Y = V(g1, g2, . . . , g`, xn+1f − 1) and we consider the map

u : Y → X,

(a1, a2, . . . , an, an+1) 7→ (a1, a2, . . . , an),

then:

(1) u is an injective polynomial map and its image is the Zariski open
subset Xf := {P ∈ X | f(P ) 6= 0} of X.

(2) u induces a homeomorphism Y → Xf (with respect to Zariski topolo-
gies).

(3) u∗ : K[X] → K[Y ] is a localization of K[X] at f (so that K[Y ] ∼=
K[X]f ).
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y

x

X = V(xy − 1)

x

u

Figure 6. The easiest instance of Proposition 22. The
polynomial map u : (x, y) 7→ x induces a homeomorphism
between the red hyperbola and the Zariski open subset
A1
R\{0} of the line on the right. The algebra homomorphism

u∗ : R[x]→ R[x, y]/(xy− 1) is a localization of R[A1
R] ∼= R[x]

at the element x.

Proof. (1) GivenQ = (a1, a2, . . . , an, an+1) ∈ Y , the last polynomial defining
Y says that an+1 · f(a1, a2, . . . , an) = 1. This can be equivalently expressed
as the condition that f(a1, a2, . . . , an) 6= 0 and

(6) an+1 =
1

f(a1, a2, . . . , an)
.

This shows that u is injective and its image is precisely Xf ⊆ X.
(2) The map u is clearly polynomial and hence continuous by Lemma 8(2).

To show that u : Y → Xf is a homeomorphism, it remains to convince oneself
that given any Zariski open subset U ⊆ Y , the image u(U) is Zariski open
in X. By Corollary 3, U is of the form

U = Y \V(h1, h2, . . . , hm)

for some polynomials h1, h2, . . . , hm ∈ K[x1, x2, . . . , xn+1]. Note that for a
point (a1, a2, . . . , an, an+1) ∈ Y we have hi(a1, a2, . . . , an, an+1) = 0 if and

only if h̃(a1, a2, . . . , an) = 0, where

h̃i = fei · hi
(
x1, x2, . . . , xn,

1

f(x1, x2, . . . , xn)

)
∈ K[x1, x2, . . . , xn+1]

and ei ≥ 0 is the highest exponent with which xn+1 occurs in hi. Therefore,

U = {(a1, a2, . . . , an, an+1) | h̃i(a1, a2, . . . , an) 6= 0 (∀i = 1, . . . ,m)}

and

u(U) = Xf ∩ {(a1, a2, . . . , an) | h̃i(a1, a2, . . . , an) 6= 0 (∀i = 1, . . . ,m)},

which is clearly Zariski open in X.
(3) Let α : K[X] → K[X]f be a localization of K[X] at f . Since the

polynomial function f ∈ K[X] has an invertible image under u∗ : K[X] →
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K[Y ] (the multiplicative inverse of f : Y → A1
K is the (n + 1)-st coordi-

nate function cn+1 : Y → A1
K , which is given by the polynomial xn+1 ∈

K[x1, x2, . . . , xn+1]), the universal property of α yields the K-algebra ho-
momorphism

γ : K[X]f → K[Y ],

k

fe
7→ k · xen+1.

We must prove that γ is a bijection. The surjectivity follows by a similar
trick as in the proof of part (2). If h ∈∈ K[x1, x2, . . . , xn+1], e ≥ 0 is the
highest power of xn+1 occuring in h and

h̃ = xen+1 · h
(
x1, x2, . . . , xn,

1

f(x1, x2, . . . , xn)

)
∈ K[x1, x2, . . . , xn],

then h and γ
(
h̃
fe

)
define the same polynomial function on Y . Regarding the

injectivity, suppose that γ
(
k
fe

)
= k · xen+1 vanishes everywhere on Y . Since

each point Q = (a1, a2, . . . , an, an+1) has non-zero last coordinate (thanks
to (6)), the polynomial k ∈ K[x1, x2, . . . , xn] must vanish everywhere on Y
and, thus, k vanishes everywhere on Xf ⊆ AnK as well. The product kf
vanishes even everywhere on X. Hence, kf = 0 in K[X] by definition and
k
fe = 0 in K[X]f by (5). �

After the preparation, we can focus on the weak version of Nullstellensatz.
The algebraic core is contained in the following proposition whose proof we
omit (it is taught in the introduction to commutative algebra and it can be
found for instance in [AM69, Corollary 5.24]).

Proposition 23. Let K be a field and L be a finitely generated commutative
K-algebra. If L is a field too, then L is a finite field extension of K.

Now we can state and proof a weak version of Nullstellensatz. It guaran-
tees the existence a solution for a system of polynomial equations fi = 0,
i ∈ I in variables x1, x2, . . . , xn over an algebraically closed field unless an ob-
vious obstruction appears—there can be no solutions if there are polynomials
c1, c2, . . . , cn and indices i1, i2, . . . , in such that c1fi1 +c2fi2 + · · ·+cnfin = 1.
The algebraic closedness is essential here—the equation x2+1 = 0 has no so-
lution over the reals, but neither there exists c ∈ R[x] such that c(x2+1) = 1.

Theorem 24 (Weak Nullstellensatz). Let K be an algebraically closed field,
n ≥ 1 and I $ K[x1, x2, . . . , xn] be a proper ideal. Then V(I) is non-empty
(i.e. there exists a common zero P ∈ AnK to all the polynomials in I).

Proof. The ideal I embeds into a maximal ideal M ⊆ K[x1, x2, . . . , xn] and
it suffices to prove that V(M) 6= ∅. However, L = K[x1, x2, . . . , xn]/M is a
field, so it is a finite field extension of K by Proposition 23. Since all finite
extensions are algebraic and, K being algebraically closed, it has no algebraic
extension except for L = K, we obtain an isomorphism of K-algebras

α : K[x1, x2, . . . , xn]/M
∼=→ K.
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Put ai = α(xi +M) and P = (a1, a2, . . . , an) ∈ AnK . Then we have for each
f ∈M :

f(P ) = f
(
α(x1 +M), α(x2 +M), . . . , α(xn +M)

)
= α(f +M) = 0. �

Before we state the usual version of Hilbert’s Nullstellensatz, we briefly
recall the concept of a radical ideal.

Definition. If R is a commutative ring and I ⊆ R is an ideal, then the
radical of I is defined as

√
I = {f ∈ R | (∃s ≥ 1)(f s ∈ I)}.

An ideal is a radical ideal if I =
√
I. The ring R is reduced if the zero ideal is

a radical ideal, i.e. that for each f ∈ R and s ≥ 1 we have fs = 0 =⇒ f = 0.

The following easy lemma summarizes what we need to know about rad-
ical ideals.

Lemma 25. Let I be an ideal in a commutative ring R.

(1) The radical
√
I is a radical ideal and I ⊆

√
I.

(2) The ideal I is radical if and only if the quotient R/I is reduced.
(3) The following implications hold:

I maximal ideal =⇒ I prime ideal =⇒ I radical ideal.

Proof. If fd ∈ I and ge ∈ I, then (f + g)d+e, (fg)max(d,e) and (−f)d ∈ I.

Hence
√
I is an ideal and clearly it contains I and its radical is

√
I again.

Furthermore, fd ∈ I in R if and only if (f + I)d = 0 in R/I, which proves
the second statement. Finally, it is well-known that I is a maximal ideal
if and only if R/I is a field and I is prime if and only if R/I is a domain.
Hence the last part follows from the obvious implications

R/I field =⇒ R/I domain =⇒ R/I reduced. �

Note that if X ⊆ AnK is any subset, the ideal I(X) ⊆ K[x1, x2, . . . , xn] is

a radical ideal (since P ∈ AnK is a zero of fd, d ≥ 1, if and only if P is a
zero of f). Hilbert’s Nullstellensats says that the converse is true as well
for algebraically closed fields—any radical ideal is the ideal of a subset of
X ⊆ AnK .

Theorem 26 (Hilbert’s Nullstellensatz). Let K be an algebraically closed

field, n ≥ 1 and J ⊆ K[x1, x2, . . . , xn] be an ideal. Then I(V(J)) =
√
J .

Proof. We only need to prove the inclusion I(V(J)) ⊆
√
J . Let us first

choose some generators g1, g2, . . . , g` ∈ K[x1, x2, . . . , xn] of the ideal J and
denote X = V(J) = V(g1, g2, . . . , g`) ⊆ AnK . Suppose that f ∈ I(X), then
we clearly have

X ∩ (AnK \V(f)) = ∅.
Now we apply Proposition 22 to obtain a homeomorphism

u : Y = V(xn+1f − 1)→ AnK ,

whose image is precisely AnK \V(f). By our assumption, we have

V(g1, g2, . . . , g`, xn+1f − 1) = u−1(X) = ∅
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Hence, by Theorem 24, the polynomials g1, g2, . . . , g` and xn+1f−1 generate
the unit ideal in K[x1, x2, . . . , xn+1]. If we identify K[X] with the localiza-
tion K[x1, x2, . . . , xn]f via Proposition 22(3), this translates to the fact that
the fractions g1

1 ,
g2
1 , . . . ,

g`
1 generate the unit ideal in K[x1, x2, . . . , xn]f , i.e.

there exist c1
fd
, c2
fd
, . . . , c`fs ∈ K[x1, x2, . . . , xn]f such that

c1

fd
· g1

1
+
c2

fd
· g2

1
+ · · ·+ c`

fd
· g`

1
= 1.

If we multiply this expression by fd, we obtain an equality

c1g1 + c2g2 + · · ·+ c`g` = fd

in K[x1, x2, . . . , xn], which says none other than f ∈
√
J . �

. . .

Exercises.

(1) Let K be a field. Describe explicitly the localization of R at an
element f in the following situations:
(a) R = K ×K and f = (1, 0).
(b) R = K[x, y]/(xy) and f = x.
(c) R = K[x, y, z]/(xz, yz) and f = y − z.

(2) An element e of a commutative ring R is called idempotent if e2 = e.
(a) Show that if e ∈ R is an idempotent, then the ideal eR has a

natural structure of a commutative ring. The operations are
simply the restrictions of the operations on R, with the excep-
tion of the unity, which is e for eR.

(b) Show that if e ∈ R is an idempotent, then so is f = 1 − e
and that e · f = 0. Show that there is a ring isomorphism
α : R → eR × fR given by α(r) = (er, fr). Find the images
of e and f under α and describe how the inverse isomorphism
α−1 : eR× fR→ R acts.

(c) With the same notation as before, show that the localization of
R at e is isomorphic to the factor ring R/(f) (this generalizes
Exercise 1a).
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