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Roots of Dynkin and Eucledian
diagrams—continued



Reminder [Kra, §4.3]

• Let Γ be a Dynkin or a Euclidean diagram and

q(x) =
∑
i∈Γ0

x2i −
∑
i≤j

dijxixj

• Then (x , y) = q(x + y)− q(x)− q(y) is positive semidefinite
and q(x) = 1

2(x , x).

• A root is a non-zero element of ∆ = {x ∈ Zn | q(x) ≤ 1}.
• Facts about roots ([Kra, Prop. 4.3.1]):

1. The basis vector ei is a root for each i ∈ Γ0.
2. x is a root iff −x is a root.
3. Each root x is positive (x > 0) or negative (x < 0).
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Finiteness for roots—the Euclidean case [Kra, §4.3]

Proposition (Proposition 4.3.1(2) and (4))
Let Γ be Euclidean. Then:

1. If x ∈ ∆ and y ∈ rad q, then x + y ∈ ∆.

2. ∆/ rad q is finite.

Proof.
• q(x + y) = q(x) + (x , y) + q(y) = q(x). This proves 1.

• Let δ ∈ Zn be the smallest positive radical vector and i ∈ Γ0

such that δi = 1.

• If x ∈ ∆, then y := x − xiδ ∈ ∆ defines the same coset in
∆/ rad q and yi = 0.

• Moreover, both δ + y and δ− y are positive roots (look at the
i-th coordinate!)

• Hence −δ < y < δ. 3



Finiteness for roots—the Dynkin case [Kra, §4.3]

Corollary (Proposition 4.3.1(5))
If Γ be Dynkin, then ∆ is finite.

Proof.
• There is a Euclidean diagram Γ̃ such that Γ is obtained by

deleting a vertex i from Γ̃.

• A root of Γ can be viewed as a root of Γ̃ whose i-th
coordinate is 0.
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Reflections



Simple reflections [Kra, §3.2]

• Let Q be a finite quiver, q(x) =
∑

i∈Q0 x
2
i −

∑
α : i→j xixj and

(x , y) = q(x + y)− q(x)− q(y), as before.
• Assume Q has no loops, i.e. no • bb . Then

(ei , ei ) = 2〈ei , ei 〉 = 2.
• In that case, we can always define the reflection with respect

to vertex i :
σi : Zn → Zn

x 7→ x − 2
(x , ei )

(ei , ei )
ei = x − (x , ei )ei .

• Observation: σ2i = 1Zn .
• Observation:

(
σi (x), σi (y)

)
= (x , y) (∀x , y ∈ Zn).

• Observation: If the underlying graph of Q is Dynkin or
Euclidean, then σi permutes roots (as q(x) = q

(
σi (x)

)
).
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Why reflections?

• If q is positive def. (= Q Dynkin), then (−,−) : Zn ×Zn → Z
extends to a scalar product (−,−) : Rn × Rn → R.

• Then we can also extend σi to Rn → Rn and we really get a
reflection with respect to the hyperplane orthogonal to ei :

eiOO
x

77

σi (x) ((
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Reflections and roots [Kra, §4.3]

Lemma ([Kra, Lemma 4.3.2])
Let Q be a quiver whose underlying graph is Dynkin or Euclidean,
and let i ∈ Γ0. If x is a positive root and σi (x) is not positive, then
x = ei .

Proof.
• If σi (x) is not positive, then σi (x) < 0.

• But σi (x) = x − (x , ei )ei , so σi (x)j = xj for each j 6= i .

• It follows that xj = 0 for all j 6= i , so x = ei .

Example e2 oo
σ1 // e1 + e2[[

σ2

��
−e1̂̂

σ2
��

oo

[[ EE

//

����

e1

−e1 − e2 oo σ1
// −e2 7



Coxeter transformation



Change or orientation and admissible orderings [Kra, §3.1]

Definition
Let Q be a finite quiver. An ordering of vertices Q0 = {1, 2, . . . , n}
is admissible, if (∃α : i → j) =⇒ (i > j).

Examples
Q = (3→ 2→ 1).

Definition
If Q is a quiver and i ∈ Q0, we denote σiQ the quiver obtained
from Q by changing orientation of the arrows incident at i .

Lemma
An ordering Q0 = {1, 2, . . . , n} is admissible iff i is a sink of
σi−1 · · ·σ1Q for each i ∈ Q0.

Examples
Q = (3→ 2→ 1) σ1Q = (3→ 2← 1) 

σ2σ1Q = (3← 2→ 1) σ3σ2σ1Q = Q.
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Coxeter transformation [Kra, §4.4]

Definition
Let Q be a finite quiver with an admissible ordering of vertices,
Q0 = {1, 2, . . . , n}. The automorphism

c : Zn → Zn,

x 7→ σn · · ·σ2σ1(x)

is called the Coxeter transformation.

Example
If Q = (3→ 2→ 1), then e2

((

e1 + e2

��

−e1

66

oo

[[ CC

//

����

e1

vv
−e1 − e2

OO

−e2

hh

c : e2 7→ e1,

e1 7→ −e1 − e2.
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Fixed points of the Coxeter transformation [Kra, §4.4]

Lemma ([Kra, Lemma 4.4.3])
Let x ∈ Zn. Then c(x) = x iff x ∈ rad q.

Proof.
The following statements are equivalent for x ∈ Zn:
• c(x) = x ,

• xi = σi (x)i
(

= xi − (x , ei )
)

for each i ,

• (x , ei ) = 0 for each i .
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Coxeter and positivity in the Dynkin case [Kra, §4.4]

• If Q is of Dynkin type, then c : Zn → Zn permutes the finite
set ∆.
• In particular, for each i there is ri > 0 such that chi (ei ) = ei .
• It follows that ch = 1Zn for some h > 0. The smallest such h

is called the Coxeter number.

Lemma ([Kra, Lemma 4.4.4])
Let Q be of Dynkin type and x ∈ Zn. Then ∃r ≥ 0 such that
c r (x) is not positive.

Proof.
• Put y =

∑h−1
r=0 c

r (x).

• Then c(y) = y , so y ∈ rad q = {0}.
• Consequently, c r (x) is not positive for some 0 ≤ r < h.
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Enumerating roots in the Dynkin case

• Let Q be of Dynkin type with admissibly ordered vertices
Q0 = {1, 2, . . . , n} and x a positive root.

• Let r ≥ 0 and 1 ≤ s ≤ n be smallest possible such that

σsσs−1 · · ·σ1(σn · · ·σ2σ1)r (x) < 0.

• Then σs−1 · · ·σ1(σn · · ·σ2σ1)r (x) = es (recall Lemma ).

• Thus, each positive root has an expression of the form

(σ1σ2 · · ·σn)rσ1 · · ·σs−1(es),

where all the intermediate roots

σt · · ·σn(σ1σ2 · · ·σn)r
′
σ1 · · ·σs−1(es)

for all shorter expressions are also positive!
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Reflection functors [Kra, §3.3]

• Let Q be a quiver with a sink i ∈ Q0. So i is a source in
Q ′ := σiQ.
• We define additive functors S−i : RepK(Q ′)� RepK(Q) : S+

i .
• Consider M = (Mi , fα) ∈ RepK Q and the exact sequence

0 −→ M ′i
(f ′α)−→

⊕
(α : j→i)∈Q1

Mj
(fα)−→ Mi

• We define S+
i (M) = (M ′i , f

′
α) as follows

1. M ′i is as above and M ′j = Mj if j 6= i .
2. If (α : i → k) ∈ Q ′1, then f ′α is as above, and if

(α : j → k) ∈ Q ′1 has j 6= i , then f ′α = fα.

• If N = (Ni , gα) ∈ RepK(Q ′), then S−i (N) is defined dually
using

Ni
(gα)−→

⊕
(α : i→j)∈Q′

1

Nj
(g ′

α)−→ N ′i −→ 0
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Reflections versus reflection functors [Kra, §3.3]

• Consider Q with a sink i ∈ Q0, Q ′ := σiQ, and

S−i : RepK(Q ′)� RepK(Q) : S+
i .

• Then we have natural morphisms

ιi : S−i S+
i (M)� M,

πi : N � S+
i S−i (N).

Lemma ([Kra, Lemma 3.3.2])

1. M ∼= (S−i S+
i (M))⊕ Coker ιi and

Coker ιi is a direct sum of copies of the simple S(i).
2. N ∼= (S+

i S−i (N))⊕ Ker πi and
Ker πi is a direct sum of copies of the simple S(i).

3. If M ∈ repK(Q) and M has no summand isomorphic to S(i), then
dimS+

i (M) = σi (dimM).
4. If N ∈ repK(Q ′) and N has no summand isomorphic to S(i), then

dimS−i (N) = σi (dimN). 14



Reflections of indecomposable representations [Kra, §3.3]

Lemma ([Kra, Lemma 3.3.3])
Let Q be a quiver, i ∈ Q0 a sink and M = (Mj , fα) ∈ repK(Q)

indecomposable. TFAE:

1. M 6∼= S(i).

2. S+
i (M) 6= 0.

3. S+
i (M) is indecomposable.

4. S−i S+
i (M) ∼= M.

5. The map (fα) :
⊕

α : j→i Mj → Mi is surjective.

6. σi (dimM) > 0.

7. σi (dimM) = dimS+
i (M).
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Bijections between indecomposable representations [Kra, §3.3]

Theorem ([Kra, Theorem 3.3.5])
Let Q be a quiver with sink i ∈ Q0 and Q ′ = σiQ. Then the
functors S+

i and S−i induce mutually inverse bijections between

1. the isomorphism classes of indecomposable representations of
Q and

2. the isomorphism classes of indecomposable representations of
Q ′,

with the exception of the simple representation S(i) (both over Q
and Q ′), which is annihilated by these functors.

Moreover, dimS±M = σi (dimM) for every indecomposable
representation M of the corresponding quiver which is not
isomorphic to S(i).
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