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Vedoućı diplomové práce: Doc. RNDr. Jan Trlifaj, CSc.

Studijńı program: Matematika
Studijńı obor: Matematické struktury
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V Praze dne 9.4.2004 Jan Št’ov́ıček
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Katedra (ústav): Katedra algebry
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1 Introduction

The general idea behind introducing homological dimensions was a wish to
find a measure for a deviation of the module category over a given ring R from
the “ideal” categories of vector spaces, where every object is projective. The
classical Wedderburn-Artin theorem reveals that the same property of every
object being projective arises exactly when R is a finite product of matrix
rings over skewfields. The notion of the global dimension of a ring reflects
this fact and gives us other characterisation of these so called semisimple
rings.

Although this approach was successful in many cases, there are examples
where it does not meet up the expectations. So the finitistic dimensions
appeared. The principle is the same, but they measure a complexity only for
particular subcategories of modules.

The topic of the interest here are the finitisic dimension conjectures.
Namely the second one, which is a variant of a problem publicized by Bass
already in 1960, but is not completely solved so far. It states that the little
finitistic dimension is finite whenever R is a finite dimensional algebra. Of
course, there is a lot of partial results in this direction achieved by various
means, and covering many situations.

The idea pursued in this text is the connection between the second fini-
tistic dimension conjecture and tilting theory.

In section 2, there is an overview of theoretical results employed later.
The proofs are often omitted, since many of them are well-known, and they
are not meant to be the point of this text. The connection between finitistic
dimensions and tilting classes is made precise by theorem 2.30.

The necessary results specific to artin algebras are given in section 3.
Although the statements in this section are implicitly used eg. in [17], the
proofs seem to be hard to find. So the complete proofs derived from the more
special ones in [3] are given here.

An example of a finite dimensional algebra given by Igusa, Smalø and
Todorov is studied in detail in section 4. The point here is that although
the existence of a tilting module for the tilting class (P<∞)⊥ is ensured by
the theory, this does not clarify its inner structure. A description of it, or
more precisely of its corresponding linear representation, is done; so it is
possible to determine values of linear maps on suitably chosen base vectors.
On the way, there are “side effect” results, such as the characterisation of
indecomposable modules from P<∞, the description of the lattice of tilting
classes of a finite type, or the example of modules from (P<∞)⊥ that are not
direct limits of finitely presented modules thereof.

The last section focuses on the conjecture that every 1-tilting class is of a
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finite type. It translates the conjecture using the definition of bundles, and
shows that if R is a left coherent, then a finite type of a tilting class cannot
be determined only by its pure-injective modules.
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2 Preliminaries

In the following text, let R denote (associative unital) ring, R-Mod (Mod-R)
the category of left (right) R-modules respectively. Let R-mod and mod-R
be the corresponding full subcategories of finitely presented modules. For
convenience, the word module itself will mean a left R-module.

2.1 Some homological facts

Let us recall some basic facts from homological algebra which will be used
freely throughout this text. For the most part, proofs are omitted in this
section, since they are well-known and usually quite long and technical. The
details could be found eg. in [15].

The key notion here is the Ext functor. Let M, N be modules and

· · · d3→ P2
d2→ P1

d1→ P0 → M → 0

be a projective resolution of M ; that is, a long exact sequence with Pi’s
projective, i < ω. Applying the functor HomR(−, N) to this resolution, we
will get a complex:

0 → HomR(P0, N)
d′1→ HomR(P1, N)

d′2→ HomR(P2, N) → · · ·

The n-th homology group Ker d′
n+1/ Im d′

n is denoted Extn
R(M, N).

Then Extn
R(M, N) depends functorially on both M, N in a natural way.

As a consequence, if S is another ring and RMS is an R-S-bimodule, then
Extn

R(M, N) is also a left S-module. And similarly for N . Further, it turns
out that Extn

R(M, N) does not depend on a praticular choice of a projective
resolution of M , since the groups constructed using different resolutions are
naturally isomorphic.

The following fact is important. It shows that Ext “describes a right
non-exactness of the Hom functor”.

Proposition 2.1. Let M be a module and 0 → X → Y → Z → 0 be a short
exact sequence of modules. Then there are long exact sequences:

0 → HomR(M, X) → HomR(M, Y ) → HomR(M, Z) →
→ Ext1

R(M, X) → Ext1
R(M, Y ) → Ext1

R(M, Z) → · · ·
· · · → Extn

R(M, X) → Extn
R(M, Y ) → Extn

R(M, Z) → · · ·
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and

0 → HomR(Z, M) → HomR(Y, M) → HomR(X, M) →
→ Ext1

R(Z, M) → Ext1
R(Y, M) → Ext1

R(X, M) → · · ·
· · · → Extn

R(Z, M) → Extn
R(Y, M) → Extn

R(X, M) → · · ·

There is also an equivalent definition of Ext1
R. Two short exact sequences

0 → N → X → M → 0 and 0 → N → Y → M → 0 are said to be equivalent
if there is a commutative diagram:

0 −−−→ N −−−→ X −−−→ M −−−→ 0∥∥∥ e

�
∥∥∥

0 −−−→ N −−−→ Y −−−→ M −−−→ 0

Necessarily, any map e in such a diagram must be an isomorphism. Let us
denote E(M, N) the set of equivalence classes of short exact sequences in the
shape 0 → N → X → M → 0. For a given exact sequence δ denote [δ] its
equivalence class.

Take an exact sequence δ : 0 → N → X → M → 0 and a map f : M ′ →
M . Then we have a pull-back diagram:

δf : 0 −−−→ N −−−→ Xf −−−→ M ′ −−−→ 0∥∥∥
� f

�
δ : 0 −−−→ N −−−→ X −−−→ M −−−→ 0

It can be shown that [δ] = [ε] implies [δf ] = [εf ]. Thus, we have a map
E(f, N) : E(M, N) → E(M ′, N). It can be easily checked that E(−, N) is ac-
tually a contravariant functor; that is E(idM , N) = idE(M,N) and E(fg, N) =
E(g, N) ◦ E(f, N). Similarly, from a map g : N → N ′ we obtain a map
E(M, g) : E(M, N) → E(M, N ′) using a push-out. Again, E(M,−) is actu-
ally a covariant functor. There is an important proposition connecting these
two functors:

Proposition 2.2. Let f : M ′ → M and g : N → N ′ be homomorphisms of
left R-modules. Then E(f, N ′) ◦ E(M, g) = E(M ′, g) ◦ E(f, N).

Given homomorphisms f : M ′ → M and g : N → N ′, this fact allows
us to define a map E(f, g) : E(M, N) → E(M ′, N ′) as E(f, g) = E(f, N ′) ◦
E(M, g) = E(M ′, g) ◦ E(f, N).

Now we can define an addition in E(M, N), so called Baer sum; it makes
E(M, N) an abelian group. Let δ : 0 → N → X → M → 0 and ε : 0 → N →
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Y → M → 0 be exact sequences. Then we put [δ] + [ε] = E(∆, σ)([δ ⊕ ε]),
where δ ⊕ σ is an exact sequence

δ ⊕ ε : 0 −−−→ N ⊕ N −−−→ X ⊕ Y −−−→ M ⊕ M −−−→ 0,

∆ : M → M ⊕M is a diagonal map (∆(x) = (x, x)), and σ : N ⊕N → N is
a map adding up components of the direct sum.

It can be shown that E(M, N) is isomorphic to Ext1
R(M, N) as an abelian

group, and these isomorphisms are functorial in both variables M, N . The
zero in Ext1

R(M, N) corresponds to an equivalence class of split exact se-
quences. Thus, we have the following useful lemma:

Lemma 2.3. Let M, N be left R-modules. Then Ext1
R(M, N) = 0 if, and

only if, every extension of N by M splits.

The Ext groups are also closely related to the notions of projective and
injective modules. We have the following characterisation:

Lemma 2.4. Let M be a left R-module. Then:

1. M is injective if, and only if, Ext1
R(X, M) = 0 for all X if, and only

if, Extn
R(X, M) = 0 for all X and all n ≥ 1,

2. M is projective if, and only if, Ext1
R(M, X) = 0 for all X if, and only

if, Extn
R(M, X) = 0 for all X and all n ≥ 1.

The last lemma is not very convenient when we need to test a projectivity
or injectivity, since we have to show that Ext1

R(M,−) or Ext1
R(−, M) vanishes

for a proper class of all modules. Fortunately, the statement can be refined
in many cases in such a way that vanishing of Ext needs to be tested only for
a set of modules. In the case of injectivity, Baer lemma and proposition 2.1
imply that cyclic modules are sufficient. In the case of projectivity we need
R to be left perfect, and then we only need to be concerned about simple
modules [22, 2.2]. If R is non-perfect, however, the non-existence of such a
testing set of modules is consistent with a set theory (ZFC+GCH) (cf. [24,
2.5]).

Proposition 2.5. Let M be a left R-module. Then:

1. M is injective if, and only if, Ext1
R(C, M) = 0 for all cyclic left R-

modules,

2. for R left perfect, M is projective if, and only if, Ext1
R(M, S) = 0 for

all simple left R-modules.
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Next, let M be a module and p : P → M be an epimorphism with P pro-
jective. Then the kernel of p is called a syzygy of M , and is denoted Ω1(M).
Higher syzygies of M are defined by induction, (n + 1)-th syzygy Ωn+1(M)
is defined as Ω1(Ωn(M)). Similarly, if i : M → I is a monomorphism with I
injective, the cokernel of i is called a cosyzygy of M and is denoted Ω−1(M).
Higher cosyzygies of M are defined as well: Ω−(n+1)(M) = Ω−1(Ω−n(M)).
For the sake of completeness put Ω0(M) = M .

Of course, the syzygies and cosyzygies of M are not determined uniquely.
But they offen behave in the same manner with respect to Ext. As an
example we can state the so called dimension shifting theorem. It is useful
eg. for turning Extn of something to Ext1 of something else.

Theorem 2.6. Let M, N be left R-modules and n > 1. Then:

1. Extn
R(M, N) ∼= Extn−1

R (Ω1(M), N),

2. Extn
R(M, N) ∼= Extn−1

R (M, Ω−1(N)).

Now we can define other principal notions for this text.

Definition 2.7. The projective dimension pdM of a module M is the small-
est n < ω, such that there is a projective resolution:

0 → Pn → · · · → P1 → P0 → M → 0

If no such n exist, we say pd M = ∞.
Dually, the injective dimension id M is the smallest n < ω, such that

there is a following injective coresolution; that is, a long exact sequence with
Ii’s injective:

0 → M → I0 → I1 → · · · → In → 0

If no such n exist, we say id M = ∞.

Clearly, pd M = 0 if, and only if, M is projective, and id M = 0 if, and
only if, M is injective.

Proposition 2.8. Let M be a left R-module and n < ω. The following
statements are equivalent:

1. pd M ≤ n,

2. Ωn(M) is projective,

3. Extn+k
R (M, X) = 0 for all X and all k ≥ 1,

4. Extn+1
R (M, X) = 0 for all X.
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Moreover, if R is left perfect, there is one more equivalent condition:

5. Extn+1
R (M, S) = 0 for all simple modules S.

Proposition 2.9. Let M be a left R-module and n < ω. The following
statements are equivalent:

1. id M ≤ n,

2. Ω−n(M) is injective,

3. Extn+k
R (X, M) = 0 for all X and all k ≥ 1,

4. Extn+1
R (X, M) = 0 for all X,

5. Extn+1
R (C, M) = 0 for all cyclic modules C.

Definition 2.10. A left global dimension of the ring R is defined as:

gl. dim R = sup{pdM |M ∈ R-Mod}

The global dimension gl. dimR should in some sense “measure” a com-
plexity of the module category R-Mod. A ring R is semisimple if, and only
if, gl. dim R = 0, and R is hereditary if, and only if, gl. dimR ≤ 1. So for
example gl. dim Z = 1 and it can be shown that gl. dim k[x1, . . . , xn] = n for
the polynomial ring in n variables, with coefficients in a field k.

It could be easily seen that if gl. dim R is finite, it is equal to the smallest
n < ω, such that Extn+1(M, N) = 0 for all M, N . Therefore, also gl. dim R =
sup{id M |M ∈ R-Mod}. Further, put k = sup{pd C|C is cyclic}. Then
Extk+1(C, X) = 0 for all X and all cyclic modules C if k is finite. In this
case Extk+1(C, X) = 0 for all X and all C by proposition 2.9. So we have
the following fundamental theorem:

Theorem 2.11. gl. dim R = sup{pd C|C is cyclic}. In other words, a global
dimension of R is attained on cyclic modules.

Another functor which is used many times below is Tor. It is constructed
in a similar fashion as Ext, but this time using a tensor product. Let M be
a left R-module and N a right R-module, and take a projective resolution of
M :

· · · d3→ P2
d2→ P1

d1→ P0 → M → 0

Applying the functor N ⊗R − to this resolution, we will get a complex:

· · · d∗3→ N ⊗R P2
d∗2→ N ⊗ P1

d∗1→ N ⊗ P0 → 0
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The n-th homology group Ker d∗
n/ Im d∗

n+1 is denoted TorR
n (M, N).

It turns out that TorR
n (M, N) depends functorially on both M, N , and

it does not depend on a particular choice of a projective resolution of M .
Moreover, if we took a projective resolution of the right module N and applied
the functor − ⊗R M , we would get the same TorR

n groups as well. It is not
hard to see that TorR

n (M,−) and TorR
n (−, N) are covariant additive functors

in a natural way.
There are analogues of properties of Ext stated below for Tor. Since both

the variables M, N in TorR
n (M, N) have essentially the same role and the only

difference is we have to change left modules for right ones and vice versa, the
assertions below will be stated only for one variable, and the reader is left to
write down the symmetric statements if necessary.

Proposition 2.12. Let M be a left R-module and 0 → X → Y → Z → 0
be a short exact sequence of right R-modules. Then there is a long exact
sequence:

· · · → TorR
n (X, M) → TorR

n (Y, M) → TorR
n (Z, M) → · · ·

· · · → TorR
1 (X, M) → TorR

1 (Y, M) → TorR
1 (Z, M) →

→ X ⊗R M → Y ⊗R M → Z ⊗R M → 0

Proposition 2.13. Let M be a left R-module. The following conditions are
equivalent

1. M is flat,

2. TorR
n (X, M) = 0 for all X and all n ≥ 1,

3. TorR
1 (X, M) = 0 for all X,

4. TorR
1 (C, M) = 0 for all cyclic right R-modules C.

Proposition 2.14. Let M be a left R-module, N be a right R-module and
n > 1. Then TorR

n (N, M) ∼= TorR
n−1(N, Ω1(M)).

Inspired by projective and injective dimensions, we can define a weak
dimension wd M of a module M as the smallest n < ω, such that there is a
flat resolution:

0 → Fn → · · · → F1 → F0 → M → 0

If no such n exist, we put wd M = ∞.

Proposition 2.15. Let M be a left R-module and n < ω. The following
statements are equivalent:
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1. wd M ≤ n,

2. Ωn(M) is flat,

3. TorR
n+k(X, M) = 0 for all X and all k ≥ 1,

4. TorR
n+1(X, M) = 0 for all X,

5. TorR
n+1(C, M) = 0 for all cyclic right R-modules C.

Let S be a ring, RM be a left R-module, SNR be an S-R-bimodule and SX
be a left S-module. It is well-known that there is an isomorphism functorial
in all three variables:

HomS(N ⊗R M, X) ∼= HomR(M, HomS(N, X))

If RM is a finitely presented left R-module, RN ′
S is an R-S-bimodule and

X ′
S is an injective right S-module, there is also a functorial isomorphism [10,

3.2.11]:
HomS(N ′, X ′) ⊗R M ∼= HomS(HomR(M, N ′), X ′)

Slightly adjusted, these isomorphisms are also valid substituting HomR

by Extn
R and the tensor product by TorR

n . But first, we need a generalization
of the notion of a finitely presented module. We say a module M is FPn

provided it has a projective resolution

· · · → Pi → · · · → P1 → P0 → M → 0

with projective modules Pi finitely generated for i ≤ n. Then FP0 modules
are precisely the finitely generated ones, and FP1 modules are precisely the
the finitely presented ones. Note that all the classes FPi, i ≥ 1, coincide over
coherent rings, and all the classes FPi, i ≥ 0, coincide over noetherian rings.

Proposition 2.16. Let R, S be rings and n ≥ 1. Then:

1. if RM is a left R-module, SNR is an S-R-bimodule and SX is an in-
jective left S-module, there is an isomorphism functorial in all three
variables:

HomS(TorR
n (N, M), X) ∼= Extn

R(M, HomS(N, X))

2. if RM is an FPn+1 left R-module, RN ′
S is an R-S-bimodule and X ′

S is
an injective right S-module, there is an isomorphism functorial in all
three variables:

TorR
n (HomS(N ′, X ′), M) ∼= HomS(Extn

R(M, N ′), X ′)
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Finally, we will focus on the relation of Ext and Tor with limits and
colimits of families of modules. It is well-known that a covariant Hom functor
commutes with limits and a contravariant Hom functor sends colimits to
limits in an arbitrary category. There are additional relations in categories
of modules, namely HomR(M,−) commutes with direct limits for any M ∈
R-mod and N ⊗R − commutes with direct sums and direct limits for any
N ∈Mod-R. These statements can be partially extended to Ext and Tor,
as we can see in the following lemmas. Notice that unlike a covariant Hom
functor, Extn

R(M,−) does not commute with inverse limits in general.

Lemma 2.17. Let M be a module, (Nα) an arbitrary family of modules and
(Lβ , fβγ) an arbitrary directed system of modules. Then the following holds
for each n < ω:

1. Extn
R(M,

∏
α Nα) ∼=

∏
α Extn

R(M, Nα),

2. Extn
R(M, lim−→Lβ) ∼= lim−→Extn

R(M, Lβ) provided that M is FPn+1,

3. Extn
R(

⊕
α Nα, M) ∼=

∏
α Extn

R(Nα, M),

4. Extn
R(lim−→Lβ, M) ∼= lim←−Extn

R(Lβ , M) provided that M is pure-injective.

Lemma 2.18. Let M be a module, (Nα) an arbitrary family of right mod-
ules and (Lβ, fβγ) an arbitrary directed system of right modules. Then the
following holds for each n < ω:

1. TorR
n (

⊕
α Nα, M) ∼=

⊕
α TorR

n (Nα, M),

2. TorR
n (lim−→Lβ , M) ∼= lim−→TorR

n (Lβ, M).

2.2 Cotorsion pairs and approximations of modules

This section gives an overview of basic properties of cotorsion pairs and their
relation to the approximation theory of modules. The notion of cotorsion
pair, originally called “cotorsion theory”, was introduced by Salce in the
case of abelian groups [19]. More detailed and exhaustive overview of related
state-of-the-art results could be found in [23].

First, we fix a notation. Let n < ω. We will denote Pn (In, Fn) the class
of all modules of projective (injective, weak) dimension at most n. The class
of all modules of finite projective (injective, weak) dimension will be denoted
by P (I, F). The class of all pure-injective modules will be denoted PI. If
C is an arbitrary class of modules, we will denote C<∞ = C ∩ R-mod.
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Let M be a left or right R-module. Then the character module
HomZ(M, Q/Z) will be denoted as M c. Note that pure-injective modules
are precisely the direct summands of character modules.

Let C be a class of modules. We will define Ext1 orthogonal classes:
C⊥ = {M ∈ R-Mod|Ext1

R(X, M) = 0 for all X ∈ C} and ⊥C = {M ∈
R-Mod|Ext1

R(M, X) = 0 for all X ∈ C}.

Definition 2.19. A cotorsion pair is a pair C = (A,B) of classes of modules,
such that A = ⊥B and B = A⊥. The class A ∩ B is called a kernel of C.

The cotorsion pairs are analogues of torsion pairs, where HomR is sub-
stituted by Ext1

R. This allows us to easily derive some basic properties of
cotorsion pairs. But one still should be cautious, since for example a kernel
of cotorsion pair need not to be trivial, unlike an intersection of torsion and
torsion-free classes of a torsion pair. In fact, the kernel is non-trivial when-
ever the cotorsion pair is complete in the sense set up below, and this is a
very usual case.

If C is an arbitrary class of modules, there are cotorsion pairs, such that
the second or the first class of the pair is the least one containing C; namely
(⊥C, (⊥C)⊥) and (⊥(C⊥), C⊥). The former is called a cotorsion pair generated
by C, the latter is a cotorsion pair cogenerated by C. If C has a representa-
tive set of elements S, then the first pair is generated by the single module∏

X∈S X, while the second one is cogenerated by the single module
⊕

X∈S X.
The class of cotorsion pairs could be partially ordered by an inclusion

in the first component. Using this ordering, the least cotorsion pair is
(P0, R-Mod), and the greatest pair is (R-Mod, I0). These cotorsion pairs
are called trivial.

In fact, the ordering on cotorsion pairs forms a complete lattice; we will
denote it LExt. Given a sequence of cotorsion pairs (Ai,Bi), i ∈ I, the
infimum in LExt is the pair (

⋂
i∈I Ai, (

⋂
i∈I Ai)

⊥) generated by
⋃

i∈I Bi, and
the supremum is (⊥(

⋂
i∈I Bi),

⋂
i∈I Bi). In general, LExt could be very large.

For example, in the case R = Z every partially ordered set embeds into LExt

by [11], LExt then being a proper class.
For a module of M and a class of modules C, a C-filtration of M is an

increasing sequence (Mα)α<κ, such that M0 = 0, M =
⋃

α<κ Mα, Mβ =⋃
α<β Mα for every limit ordinal β < κ, and the factors Mα+1/Mα are all

isomorphic to elements of C. A module M is called C-filtered provided it
has a C-filtration. The class C is closed under filtrations, if every C-filtered
module again belongs to C.

Except from the closure under filtrations, the following lemmas are easy
consequences of basic properties of the Ext functor. The closure under fil-
trations is proved by induction on the length of a filtration [9].
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Lemma 2.20. Let C = (A,B) be a cotorsion pair. Then:

1. A is closed under extensions, direct sums, direct summands and filtra-
tions,

2. A is closed under direct limits provided that C is generated by a class
of pure-injective modules,

3. A is a torsion-free class provided that C is generated by a class of mod-
ules of injective dimension at most 1.

Lemma 2.21. Let C = (A,B) be a cotorsion pair. Then:

1. B is closed under extensions, products and direct summands,

2. B is closed under direct limits, direct sums and pure submodules pro-
vided that C is cogenerated by a class of FP2 modules,

3. B is a torsion class provided that C is cogenerated by a class of modules
of projective dimension at most 1.

Replacing Ext by Tor in the definition 2.19, we can define a Tor-torsion
pair as the pair (A,B) of classes of modules, such that A = {A ∈ Mod-R|
TorR

1 (A, B) = 0 for all B ∈ B} and B = {B ∈ R-Mod|TorR
1 (A, B) =

0 for all A ∈ A}.
Similarly, we can define Tor-torsion pairs generated or cogenerated by a

class of modules. Again, Tor-torsion pairs form a complete lattice, this time
using a partial ordering by an inclusion in the second component. Let us
denote the lattice LTor. It could be proven that the cardinality of LTor is
bounded by 22κ

, where κ = card(R) + ℵ0. The least Tor-torsion pair in LTor

is (Mod-R,F0), the greatest one is (F0, R-Mod).
LTor actually embeds into LExt, mapping a Tor-torsion pair (A,B) to a

cotorsion pair (B,B⊥). The latter cotorsion pair is easily seen to be generated
by the class {Xc|X ∈ A} (cf. prop 2.16).

Lemma 2.22. Let (A,B) be a Tor-torsion pair. Then both A and B are
closed under extensions, direct sums and direct limits.

Now we will look at the connection of cotorsion pairs to approximations
of modules. The notions used here are special precovers and special preen-
velopes.

Definition 2.23. Let M be a module and C be a class of modules. An
homomorphism f : C → M is a special C-precover provided that f is an
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epimorphism and its kernel lies in C⊥. C is a special precovering class if every
module has a special C-precover.

Dually, an homomorphism g : M → C is a special C-preenvelope provided
that g is a monomorphism and its cokernel lies in ⊥C. The class C is special
preenveloping if every module has a special C-preenvelope.

The terminology comes from the fact that special precovers and preen-
velopes are special instances of the more general notions defined eg. in [10]:

Let M be a module and C be a class of modules. Then an homomorphism
f : C → M is called a C-precover provided that for each homomorphism
f ′ : C ′ → M with C ′ ∈ C there is an homomorphism g : C ′ → C, such
that f ′ = fg. The C-precover f is a C-cover, if every endomorphism g of C
satisfying fg = f is an automorphism. The class C is said to be precovering
(covering) provided that all modules have C-precover (C-cover).

The notions of C-preenvelope, C-envelope, preenveloping class and envelop-
ing class are defined dually.

The preenvelopes and precovers are generalizations of the notions of reflec-
tions and coreflections of categories, we drop the requirement that factoring
maps g from the definition need to be unique. Although preenvelopes and
precovers actually need not to be unique, it is easily seen that envelopes and
covers are unique up to isomorphism. Moreover, the C-cover (C-envelope) of
M is isomorphic to a direct summand of any C-precover (C-preenvelope).

It is well known that I0 and PI are enveloping classes, and in case R is
perfect P0 is a covering class. More examples will be provided below.

The following lemma connects cotorsion pairs to approximations of mod-
ules and provides a homological tie between the dual notions of special pre-
cover and special preenvelope (cf. [23]):

Lemma 2.24. Let M be a module and C = (A,B) be a cotorsion pair. Then:

1. Assume M has an A-cover f . Then f is a special A-precover. Thus,
if A is covering then A is special precovering.

2. Assume M has a B-envelope f . Then f is a special B-preenvelope.
Thus, if B is enveloping then B is special preenveloping.

3. A is special precovering if, and only if, B is special preenveloping. In
this case C is called a complete cotorsion pair.

The following theorem shows that a cotorsion pair is complete under
rather weak assumptions [9]:
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Theorem 2.25. Let C = (A,B) be a cotorsion pair cogenerated by a set of
modules S. Then C is complete, and A is the class of all direct summands
of all S ∪ {R}-filtered modules.

It can be shown for a lot of the well-known cotorsion pairs that they are
cogenerated by a set of modules, thus they are complete. For example, this
is the case of (see [23]):

1. (Pn, (Pn)⊥),

2. (⊥In, In),

3. (B,B⊥), where (A,B) is a Tor-torsion pair; in particular (Fn, (Fn)
⊥)

are cogenerated by sets of modules,

4. C = (A,B), such that C is generated by a class of pure-injective mod-
ules.

If C = (A,B) is a cotorsion pair, such that A is covering and B is envelop-
ing, then C is called perfect. It has been shown in [10] that if C is complete,
the class A being closed under direct limits is a sufficient condition for C to
be perfect.

Thus, every cotorsion pair induced by a Tor-torsion pair or generated by
a class of pure-injective modules is perfect. In particular, (Fn, (Fn)

⊥) are
perfect cotorsion pairs.

Note that a cotorsion pair generated by a set of modules need not to
provide for special approximations—the result may even be dependent on
the extension of set theory (ZFC) we are working in. For more details,
see [23].

To conclude this section, we remark that the notions of preenveloping and
precovering class could be extended to a more general setting of an arbitrary
category K and its full subcategory C. In particular, if K = R-mod, we
will say that C is covariantly finite (contravariantly finite) provided that C
is preenveloping (precovering) in R-mod.

2.3 Tilting modules and classes

The classical tilting theory generalizes Morita theory of equivalence of mod-
ule categories by providing equivalences of large subcategories of modules.
If we drop the requirement that a representing tilting module needs to be
finitely generated, the category equivalences disappear, but some other prop-
erties remain. For example tilting approximations of modules. Moreover, the
generalized view allows us to connect the tilting theory to the finitistic di-
mension conjectures. The topic is studied eg. in [6], [5] or [23].
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Definition 2.26. A module T is said to be n-tilting if it satisfies the following
conditions

1. pd T ≤ n,

2. Exti
R(T, T (κ)) = 0 for each i ≥ 1 and cardinal κ,

3. there is a coresolution 0 → R → T0 → T1 → · · · → Tm → 0, where
Tj ∈ AddT for 0 ≤ j ≤ m.

Also, if T is n-tilting, we can always find a coresolution with m ≤ pdT .
A class T ⊆ R-Mod is said to be n-tilting, if there is an n-tilting module

T , such that T = {X ∈ R-Mod|Exti
R(T, X) = 0 for all i ≥ 1}.

A cotorsion pair is said to be n-tilting, if it is of the form (⊥T , T ), where
T is an n-tilting class.

Since we will be interested mainly in 1-tilting modules and classes, the
overview of available results below is focused to that case. Note that 1-tilting
class is a torsion class and a right hand side class of a cotorsion pair at the
same time.

The following theorem is crucial for the construction in section 4 (cf. [23]):

Theorem 2.27. Let T be a class of modules. Then the following statements
are equivalent:

1. T is a 1-tilting class,

2. T is a special preenveloping torsion class,

3. T = S⊥ for some subset S of P1, and T is closed under direct sums.

Moreover, in the case T is 1-tilting, one appropriate 1-tilting module T
for T can be costructed in the following way: we take a special preenvelope
0 → R → T0 → T1 → 0 and put T = T0 ⊕ T1.

A 1-tilting class T is said to be of a finite type, if there is a set S ⊆ R-
mod, such that T = S⊥. It holds that T is of a finite type if, and only if,
T is definable [5]; that is, T is closed under direct limits, products and pure
submodules.

So far, there are no known tilting classes which would not be of a finite
type. It is conjectured that all the tilting classes are of finite type at least
over any finite dimensional algebra. But the best result at the moment is
that any 1-tilting class over an arbitrary ring is of countable type [5]; that is,
T = S⊥ for a set S of countably presented modules from P1.
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Corollary 2.28. Let T be a class of modules. Then T is a 1-tilting class of
a finite type if, and only if, there is a subset S of P<∞

1 , such that T = S⊥.

Proof. An immediate consequence of theorem 2.27 and lemma 2.21.

The theorem and the corollary show that an intersection of a family of
1-tilting classes (of a finite type) is again a 1-tilting class (of a finite type).
Thus, both the 1-tilting classes and 1-tilting classes of a finite type form a
lattice.

2.4 Finitistic dimension conjectures

While the global dimension provides an effective “measure of a complexity”
of module categories in many cases, there are also examples where it does
not meet the expectations.

Let R = k[x]/〈x2〉, k being a field. Then R is local, so every projective
R-module is free by [1, 26.7]. Namely, every projective module has an even
dimension over k; and every module M of an odd dimension has pd M = ∞.
For example, pd R/〈x〉 = ∞ and every syzygy of the module R/〈x〉 could be
taken isomorphic to R/〈x〉. Thus, gl. dim R = ∞. On the other hand, the
category of R-modules is very simplistic—every module M is isomorphic to
a direct sum of copies of R and R/〈x〉.

This motivates a definition of so called finitistic dimensions of a ring R.

Definition 2.29. A (left) little finitistic dimension of R is defined as

fdim R = sup{pd M |M is a fin. gen. left R-module with pdM < ∞}

A (left) big finitistic dimension of R is defined as

Fdim R = sup{pd M |M is an arbitrary left R-module with pd M < ∞}

Looking back at the previous example, fdim k[x]/〈x2〉 = Fdim k[x]/〈x2〉 =
0. Also, if R is a ring with gl. dim R < ∞, then fdim R = Fdim R = gl. dim R
by theorem 2.11. So the interesting situation arises, when gl. dim R = ∞.
Moreover, we can construct a ring, such that gl. dim R = ∞ and fdim R = n
for any prescribed n < ω [15].

The questions were, whether the little and big finitistic dimensions coin-
cide, and whether they are finite. The aswers are negative for commutative
noetherian rings. If R is commutative noetherian local, then the fdim R is
shown to be equal to the depth of R by Auslander and Buchsbaum. As to the
Fdim R, it is equal to the Krull dimension of R for commutative noetherian
rings. The inequality ≥ was estabilished by Bass in 1962, the other one was
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completed by Gruson and Raynaud in 1973. So in particular, a commutative
noetherian local ring has a coinciding little and big finitistic dimensions if,
and only if, it is Cohen-Macaulay. And commutative noetherian rings with
an infinite Krull dimension do exist, first examples given by Nagata. So the
finitistic dimensions need not to be finite.

However, no examples settling these questions were available for non-
commutative artinian situation at that time. The following assertions were
considered by Bass in 1960, and they were later promoted to conjectures
after being restricted to the case of finite dimensional algebras:

Finitistic Dimension Conjectures. Let R be a finite dimensional algebra
over a filed k. Then:

I. fdim R = FdimR,

II. fdim R < ∞.

It turns out that the conjecture I. fails, even for so called monomial re-
lation algebras. Examples of these algebras with fdimR = n and Fdim R =
n+1 for any n ≥ 2 were given in [26]. Algebras with an arbitrary large differ-
ence between the finitistic dimensions were constructed in [20]. In the same
paper it has been shown that the finitistic dimensions coincide, whenever
P<∞ is contravariantly finite in R-mod. Note, however, that the condition
of the contravatiant finiteness of P<∞ is not necessary for conjecture I. to be
valid, an example given by Igusa, Smalø and Todorov in [14].

The second conjecture still remains open, although there are many results
taking care of more special cases:

• If R is a monomial relation algebra, then fdim R ≤ Fdim R < ∞.
Moreover, explicit bounds on the finitistic dimensions were given.

• Let r be Jacobson radical of R. Then conjecture II. holds whenever R
is a finite dimensional algebra with r3 = 0. Even a weaker condition
pd r3 < ∞ is sufficient.

• Conjecture II. holds, if P<∞ is contravariantly finite in R-mod. In
this case, fdim R is equal to a supremum of projective dimensions of
P<∞-precovers of simple modules.

There is a following connection between tilting classes and the conjecture
II., which is pursued further in this text [13]:

Theorem 2.30. Let R be a left noetherian ring and C = (A,B) be a cotorsion
pair cogenerated by P<∞. Then the conjecture II. holds if, and only if, C is
tilting. Moreover, if T is a corresponding tilting module, then fdim R = pd T .
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Proof. If fdim R < ∞, then P<∞ ⊆ Pn and B = (P<∞)⊥ is a tilting class
[23, 4.2]. Conversely, if C is n-tilting then P<∞ ⊆ Pn, so the conjecture
II. holds. Since fdim R is the least m, such that A ⊆ Pm, we infer that
fdim R = pdT .

For more complete overview of existing results and a historical account
of finitistic dimension conjectures, we refer to the paper [25]. An overview of
newer results is to be found in [23].
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3 Artin algebras

The aim of this section is to give a characterisation of modules in the class
P<∞

1 by means of Auslander-Reiten translation DTr (proposition 3.3), and
to prove a general version of Auslander-Reiten formulas (theorem 3.9). Then
we will see that for a finitely generated module X of projective dimension at
most 1, we have X⊥ = Ker HomR(−, DTrX). Under this assuption, we can
substitute a kernel of a covariant Ext functor by a kernel of a contravariant
Hom functor, which is often easier to tackle with. The dual statement is also
avialable for a finitely generated module X with id X ≤ 1.

Throughout the whole section we will assume that R is an artin algebra
over a commutative artinian ring S; that is, we have a ring homomorphism
ψ : S → R with an image in the centre of R, and R is finitely generated as
a left S-module.

The notion of an artin algebra is an extension of that of a finite dimen-
sional algebra over a field; and it is thoroughly studied in [3]. The key
properties of artin algebras are:

1. Krull-Schmidt theorem for the category of finitely presented R-modu-
les,

2. existence of contravariant functors D between R-Mod and Mod-R form-
ing a duality between finitely generated left and right modules—these
functors are obtained as HomS(−, J), where J is a minimal injective
cogenerator for S; this is a generalization of the functors Homk(−, k)
for finite dimensional algebras over a field k,

3. Auslander-Reiten formulas binding together the functors Hom and Ext.

A useful construction by which one can get a lot of examples of finite
dimensional algebras is that of path algebras.

A quiver is an oriented graph with the possibility of having more arrows
connecting the same pairs of vertices. We will assume that all quivers are
finite. A path in a quiver is either an ordered sequence of arrows p = αn . . . αi,
or the symbol ei for each vertex i. We call the paths ei trivial paths; they
are formally both starting and ending at corresponding vertices i and are of
length 0. For a path p, denote s(p) the starting vertex of p and e(p) the
ending vertex of p.

Given a field k and a quiver Γ, we will denote kΓ the k-vector space with
the basis formed by all paths in Γ. We can define a multiplication of paths
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p, q in kΓ:

p · q =




pq if p, q are non-trivial and e(q) = s(p)

p if q = es(p)

q if p = ee(p)

0 otherwise

Extending this multiplication linearly to the whole kΓ, we get a structure
of k-algebra; it is called a path algebra of Γ over k. Obviously, kΓ is finite
dimensional if, and only if, Γ have no oriented cycles.

A relation on a quiver Γ is a k-linear combination of paths
∑n

i=1 aipi with
ai ∈ k, s(p1) = · · · = s(pn), e(p1) = · · · = e(pn), and all the paths being of
length at least 2. Given a set ρ of relations, we will denote k(Γ, ρ) = kΓ/〈ρ〉
and call it a path algebra with relations ρ.

Since R is artinian, it decomposes as a left module into a direct sum
P1 ⊕ · · · ⊕ Pn of indecomposable projectives. We will call R basic, if Pi’s are
mutually non-isomorphic. It could be seen that every artin algebra is Morita
equivalent to a basic one (cf. [3, II.2.6]). The next theorem shows that artin
algebras over an algebraically closed field are nearly only the path algebras:

Theorem 3.1. Let R be a basic finite dimensional algebra over an alge-
braically closed field k. Then R is isomorphic to k(Γ, ρ) for some quiver Γ
with relations ρ.

Proof. See [3, III.1.10].

k(Γ, ρ)-modules could be viewed as k-linear representations of the quiver
Γ with relations ρ. That is, we take a vector space Vi for every vertex i of Γ,
and a linear map fα : Vi → Vj for every arrow from a vertex i to a vertex j,
in such a way that linear combinations of compositions of fα’s corresponding
to the combinations of paths from ρ are vanishing.

Homomorphisms of representations (Vi, fα) and (V ′
i , f

′
α) are n-tuples of

linear maps (hi : Vi → V ′
i ), n being the number of vertices in Γ, such that

he(α)fα = f ′
αhs(α).

For an arbitrary artin algebra R over S and X ∈ R-mod, denote X∗ =

HomR(X, R). Let P1
f→ P0

p→ X → 0 be a minimal projective presentation
of the module X; that is, p is a projective cover of X and f is a projective
cover of Ker p. Then the transpose TrX of X is defined as a cokernel of

P ∗
0

f∗
→ P ∗

1 . The composition DTr is called Auslander-Reiten translation and
TrD is its “inverse”.

In fact, DTr and TrD are not functors of module categories in gen-
eral. We need to move to stable categories modulo projective and injective
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modules. Denote HomR(X, Y ) a factor of the S-module HomR(X, Y ) by a
submodule of homomorphisms from X to Y which factors through an in-
jective module. Similarly, let HomR(X, Y ) be a factor of HomR(X, Y ) by a
submodule of homomorphisms which factor through a projective.

We will denote R-mod a stable category of finitely generated R-modules
modulo injectives; this means, its objects are finitely generated R-modules
and its morphisms are exactly the factors HomR(X, Y ). Similarly, we de-
note R-mod a stable category of R-mod modulo projectives, with morphisms
HomR(X, Y ). Then DTr : R-mod → R-mod is a category equivalence with
inverse equivalence TrD (cf. [3, IV.1.9]).

3.1 Modules of homological dimensions at most 1

It is obvious from the definition that for a finitely generated projective module
P we have TrP = 0. For finitely generated non-projectives we have:

Lemma 3.2. Let X ∈ R-mod be an indecomposable non-projective and let

P1
f→ P0

p→ X → 0 be its minimal projective presentation. Then P ∗
0

f∗
→ P ∗

1

q→
TrX → 0 is a minimal projective presentation of TrX.

Proof. (See also [3], chapter IV) The functor (−)∗ is an equivalence of cate-
gories of finitely generated projective R-modules and finitely generated pro-
jective Rop-modules.

If f ∗ would not be a projective cover of Ker q, there is a non-trivial de-
composition P ∗

0 = P ⊕Q such that f ∗ � Q = 0. But then P0
∼= P ∗ ⊕ Q∗ and

Im f ⊆ P ∗. Thus, X = Coker f ∗ has a non-zero projective direct summand
isomorfic to Q∗, which is impossible.

Let us now assume that q is not a projective cover of TrX. Again, there
is a non-trivial decomposition P ∗

1 = P ′ ⊕ Q′ such that q � Q′ = 0. So the
module Q′ is a direct summand of Ker q. Since f ∗ is a projective cover of
Ker q, P ∗

0 have a direct summand isomorfic to Q′ and a homomorphism f ∗

can be decomposed into fP ′ ⊕ fQ′, where fQ′ is an isomorphism onto Q′.
Thus, both P0 i P1 have a non-zero projective direct summand isomorphic to
(Q′)∗ and the map f can be decomposed into f(P ′)∗ ⊕f(Q′)∗ , where f(Q′)∗ is an
isomorphism between these direct summands. This decomposition yields a
contradiction with the minimality of the projective presentation of X again.

The former lemma implies that for any finitely generated module X,
TrX has no non-zero projective direct summand and Tr(TrX) ∼= X if,
and only if, X has no non-zero projective direct summand. Now we give
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a characterisation of finitely generated modules of projective or injective
dimensions at most 1.

Proposition 3.3. Let R be an artin algebra and X ∈ R-mod. Then:

1. pd X ≤ 1 if and only if HomR(D(R), DTrX) = 0.

2. id X ≤ 1 if and only if HomR(TrDX, R) = 0.

Proof. (See also [3, IV.1.16]) Let X ∈ R-mod. Then X = Y ⊕ P , where
P is projective and Y has no non-zero projective direct summand. Take a
minimal projective presentation P1 → P0 → TrX → 0 of the module TrX.
Then Tr(TrX) ∼= Y , and there is an exact sequence:

0 → (TrX)∗ → P ∗
0 → P ∗

1 → Y → 0

But P ∗
0 → P ∗

1 → Y → 0 is a minimal projective presentation of Y by
lemma 3.2. Thus, HomRop(TrX, R) = (TrX)∗ = 0 if, and only if, pd Y ≤ 1
if, and only if, pd X ≤ 1. The first statement follows just by applying the
duality D.

Moreover, idX ≤ 1 if, and only if, pd DX ≤ 1 if, and only if,
HomR(TrDX, R) = 0 by the former; this yields the second part.

Corollary 3.4. Let R be an artin algebra and X ∈ R-mod. Then:

1. pd X ≤ 1 if, and only if, HomR(I, DTrX) = 0 for every injective
module I.

2. id X ≤ 1 if, and only if, HomR(TrDX, P ) = 0 for every projective
module P .

As an application, we will show the following lemma, which will be of use
later.

Lemma 3.5. A finitely generated module M is in (P<∞
1 )⊥ ∩ R-mod if, and

only if, it is filtered by a factors of an injective cogenerator I.

Proof. See [2]. Or an alternative proof could be given as follows. The if part
is obvious, since (P<∞

1 )⊥ ∩ R-mod is closed under factors and extensions.
For the only if part, it is enough to prove that HomR(I, M) �= 0 for each
M ∈ (P<∞

1 )⊥ ∩ R-mod. Moreover, it is sufficient to prove this only for M
indecomposable non-injective. Assume to the contrary that HomR(I, M) =
0. Then pdTrDM ≤ 1 by proposition 3.3. So Ext1

R(TrDM, M) = 0, a
contradiction to the existence of an almost split sequence [3, V.1.15].
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3.2 The relation between functors Hom and Ext

It is well-known that morphisms ψX,Z : X∗ ⊗R Z → HomR(X, Z) defined by
formulas ψX,Z(f ⊗ b)(a) = f(a)b are functorial in both variables, and ψP,Z

are isomorphisms for finitely generated projectives P .

Lemma 3.6. Let X, Z be R-modules, X finitely generated, and P1 → P0 →
X → 0 a minimal projective presentation of X. Then there is an exact
sequence 0 → HomR(X, Z) → HomR(P0, Z) → HomR(P1, Z) → TrX ⊗Z →
0 which is functorial in Z.

Proof. (See also [3, IV.4.2]) We have an exact sequence P ∗
0 → P ∗

1 → TrX →
0 from the definition of the transpose. The left-exactness of HomR(−, Z)
and the right-exactness of −⊗Z give rise to the commutative diagram with
exact rows:

0 −−→ HomR(X,Z) −−→ HomR(P0, Z) −−→ HomR(P1, Z)

ψP0,Z


 ψP1,Z



P ∗

0 ⊗ Z −−→ P ∗
1 ⊗ Z −−→ TrX ⊗ Z −−→ 0

But ψP0,Z and ψP1,Z are isomorphisms, and all the morphisms in the
diagram are functorial in Z.

Definition 3.7. Let δ : 0 → A → B → C → 0 be an exact sequence and
X any R-module. Then the covariant defect δ∗(X) and the contravariant
defect δ∗(X) of the sequence δ are defined in the sense of [3] as the folowing
cokernels:

0 → HomR(C, X) → HomR(B, X) → HomR(A, X) → δ∗(X) → 0

0 → HomR(X, A) → HomR(X, B) → HomR(X, C) → δ∗(X) → 0

Proposition 3.8. Let δ : 0 → A → B → C → 0 be an exact sequence and
X a finitely generated R-module. Then δ∗(DTrX) ∼= D(δ∗(X)).

Proof. Take a minimal projective presentation P1 → P0 → X → 0 of X.
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The previous lemma gives rise to the following exact commutative diagram:

0 0 0�
�

�
0 −→ HomR(X,A) −→ HomR(X,B) −→ HomR(X,C) −→ δ∗(X) −→ 0�

�
�

0 −→ HomR(P0, A) −→ HomR(P0, B) −→ HomR(P0, C) −→ 0�
�

�
0 −→ HomR(P1, A) −→ HomR(P1, B) −→ HomR(P1, C) −→ 0�

�
�

0 −→ Ker i′ −→ TrX ⊗ A
i′−→ TrX ⊗ B −→ TrX ⊗ C −→ 0�

�
�

0 0 0

Put KA = Ker(HomR(P1, A) → TrX ⊗ A) and similarly KB and KC .
First, take a look at the upper part of the diagram:

0 0 0�
�

�
0 −→ HomR(X,A) iX−→ HomR(X,B)

pX−−→ HomR(X,C)
p−→ δ∗(X) −→ 0

ιA

� ιB

� ιC

�
0 −→ HomR(P0, A)

iP0−−→ HomR(P0, B)
pP0−−→ HomR(P0, C) −→ 0

πA

� πB

� πC

�
0 −→ KA

iK−−→ KB
pK−−→ KC −→ 0�

�
�

0 0 0

It has exact columns and the first two rows. Moreover, iK is a monomor-
phism, since iK is a restriction of the monomorphism HomR(P1, A) →
HomR(P1, B) to the kernel KA. Similarly, pK is an epimorphism since the
modules KB and KC are the cokernels of the homomorphisms ιB a ιC . And
obviously pKiK = 0. Denote H = Ker pK/ Im iK . In general, H �= 0.

Define a map f : δ∗(X) → H by the formula

f(x) = πB(p−1
P0

(ιC(p−1(x)))) + Im iK
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where p−1
P0

and p−1 mean some preimage by the given map. We will prove
that the value f(x) is independent of a choice of preimages above and the
map f is a well-defined isomorphism of Z(R)-modules.

First, prove that f is a well-defined map. Let b1, b2 ∈ HomR(P0, B), such
that pP0(b1) = pP0(b2). Then b1 − b2 ∈ Ker pP0 = Im iP0 , so πB(b1 − b2) ∈
Im iK . Therefore, the value f(x) is independent of a choice of a preimage
by pP0 . Next, let c1, c2 ∈ HomR(X, C), such that p(c1) = p(c2). Then
c1 − c2 ∈ Ker p = Im pX . So we can take b = p−1

P0
(ιC(c1 − c2)), such that

b ∈ Im ιB. But then πB(b) = 0 and f(x) is independent of a choice of
a preimage by p either. The map f is clearly an homomorphism. Next,
take y = iK(z) ∈ Im iK . Let b = π−1

B (y) and a = π−1
A (z) are arbitrary

preimages. Then πB(b − iP0(a)) = πB(b) − πBiP0(a) = y − iKπA(a) = 0.
So b − iP0(a) ∈ Ker πB = Im ιB. Let w be arbitrary, such that ιB(w) =
b − iP0(a). We have pP0(b) = pP0(ιB(w) + iP0(a)) = pP0ιB(w) = ιCpX(w).
Since ιC is a monomorphism, the only preimage of pP0(b) by ιC is pX(w).
But p(pX(w)) = 0. Thus, f is a monomorphism. Finally, take an arbitrary
y ∈ Ker pK . Then for every c = pP0π

−1
B (y), we have c ∈ Ker πC = Im ιC . We

can put x = pι−1
C (c), and x is a preimage of y + Im iK by f . And so f is an

isomorphism.
Similarly, we can take the lower part of the big diagram on the page 27:

0 0 0�
�

�
0 −→ KA

iK−−→ KB
pK−−→ KC −→ 0

θA

� θB

� θC

�
0 −→ HomR(P1, A)

iP1−−→ HomR(P1, B)
pP1−−→ HomR(P1, C) −→ 0

σA

� σB

� σC

�
0 −→ Ker i′ i−→ TrX ⊗ A

i′−→ TrX ⊗ B
p′−→ TrX ⊗ C −→ 0�

�
�

0 0 0

Again, this gives us a commutative diagram with exact columns and rows
with one exception — a non-exactness of the first row by KB. And as before,
we define a map g : Ker i′ → H by the formula:

g(x) = θ−1
B (iP1(σ

−1
A (i(x)))) + Im iK

We will prove that g is a well-defined isomorphism too. Let x ∈ Ker i′ and
choose arbitrary a = σ−1

A i(x). Then σBiP1(a) = i′σA(a) = i′(i(x)) = 0,
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and therefore iP1(a) ∈ Ker σB = Im θB. So the value of g(x) is always
defined. Let a1, a2 ∈ HomR(P1, A), such that σA(a1) = σA(a2). Then a1 −
a2 ∈ Ker σA = Im θA and θ−1

B iP1(a1 − a2) = iKθ−1
A (a1 − a2) ∈ Im iK . This

implies that g(x) is independent of a choice of a preimage by σA and g is
a well-defined map. Obviously g is an homomorphism. Take y ∈ Im iK
arbitrary. Then θB(y) ∈ Im iP1 and σAi−1

P1
θB(y) = σAθAi−1

K (y) = 0. Because
i is a monomorphism, the only preimage of zero by i is zero again, and g
must be a monomorphism. Finally, take y ∈ Ker pK arbitrary. It follows
from the diagram that θB(y) ∈ Ker pP1 = Im iP1. Put a = i−1

P1
θB(y). Then

i′σA(a) = σBiP1(a) = σBθB(y) = 0, and therefore σA(a) ∈ Ker i′ = Im i.
Thus, x = i−1σA(a) is a preimage of y +Im iK by g and g is an isomorphism.

Putting it together, we have just shown that Ker i′ ∼= H ∼= δ∗(X).
Now, it is enough to use a natural equivalence of functors D(TrX ⊗ −) ∼=
HomR(−, DTrX) and we have the commutative diagram:

D(TrX ⊗ B) −−−→ D(TrX ⊗ A) −−−→ D(Ker i′) −−−→ 0

∼=
� ∼=

�
�

HomR(B, DTrX) −−−→ HomR(A, DTrX) −−−→ δ∗(DTrX) −−−→ 0

This yields the desired isomorphism δ∗(DTrX) ∼= D(Ker i′) ∼= D(δ∗(X))

Theorem 3.9 (Auslander-Reiten formulas). Let R be an artin algebra
and let X, Y ∈ R-Mod, X finitely generated. Then:

1. D Ext1
R(X, Y ) ∼= HomR(Y, DTrX)

2. Ext1
R(Y, X) ∼= DHomR(TrDX, Y )

Proof. Take an injective envelope δ : 0 → Y → I → C → 0 of the module
Y . We have the following exact sequences:

HomR(X, I) → HomR(X, C) → Ext1
R(X, Y ) → 0

HomR(I, DTrX) → HomR(Y, DTrX) → HomR(Y, DTrX) → 0

The previous proposition implies

D Ext1
R(X, Y ) = D(δ∗(X)) ∼= δ∗(DTrX) = HomR(Y, DTrX)

which is exactly the first statement.
Similarly, let ε : 0 → K → P → Y → 0 be a projective cover of the

module Y . Then we have exact sequences:

HomR(X, P ) → HomR(X, Y ) → HomR(X, Y ) → 0

HomR(P, DTrX) → HomR(K, DTrX) → Ext1
R(Y, DTrX) → 0
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And DHomR(X, Y ) = D(ε∗(X)) ∼= ε∗(DTrX) = Ext1
R(Y, DTrX). Substi-

tuting a finitely generated module TrDX instead of X into this formula we
see that:

DHomR(TrDX, Y ) ∼= Ext1
R(Y, DTr(TrDX))

Take a decomposition X = Z⊕I ′ of X, such that I ′ is injective and Z has no
non-zero injective direct summand. Then DX = DZ⊕DI ′, DI ′ is projective
and DZ has no non-zero projective direct summand. But this means that
Tr(TrDX) ∼= DZ, and thus DTr(TrDX) ∼= Z. Since I ′ is injective, it is

Ext1
R(Y, DTr(TrDX)) ∼= Ext1

R(Y, Z) ∼= Ext1
R(Y, X)

and this concludes the proof of the second statement.

Corollary 3.10. Let X, Y ∈ R-Mod, X finitely generated. It holds:

1. If pdX ≤ 1, then D Ext1
R(X, Y ) ∼= HomR(Y, DTrX)

2. If idX ≤ 1, then Ext1
R(Y, X) ∼= D HomR(TrDX, Y )

Proof. We have HomR(Y, DTrX) = HomR(Y, DTrX) for a module X with
pd X ≤ 1 by the corollary 3.4. And similarly, for X with id X ≤ 1 it is
HomR(TrDX, Y ) = HomR(TrDX, Y ).

Corollary 3.11. Let X ∈ R-mod. It holds:

1. If pdX ≤ 1, then X⊥ = Ker HomR(−, DTrX).

2. If idX ≤ 1, then ⊥X = Ker HomR(TrDX,−).

30



4 On an example of Igusa, Smalø and Todorov

Fix an algebraically closed field k and let R be an algebra introduced in [14]
by Igusa, Smalø and Todorov, from now on shortly IST-algebra. It is a path
algebra over k over the quiver

γ−→
1· β←− ·2

α←−

with relations αγ = βγ = γα = 0. We will work only with modules over this
artin algebra below, if not stated otherwise.

The basic properties of R-modules are summarized in [12, section 5].
Denote Λ = R/〈γ〉; then Λ is isomorphic to the Kronecker algebra, ie. the
hereditary algebra kΓ′ with the following quiver Γ′:

1· β←− ·2
α←−

R-modules M with γM = 0 will be called Kronecker modules, since they
are also Λ-modules. Denote Pi, Ii and Si the indecomposable projective,
injective and simple module corresponding to the vertex i (i = 1, 2) respec-
tively. Then dimk P1 = 2, dimk P2 = 4 and dimk I1 = dimk I2 = 3. Let Rλ,i

and Rλ be an indecomposable regular Kronecker module of regular length
i and simple regular Kronecker module respectively, given λ ∈ k ∪ {∞}.
Corresponding Prüfer modules are denoted Rλ,∞.

Let P<∞ be a full subcategory of all finitely generated R-modules of finite
projective dimension and KP<∞ a full subcategory of all Kronecker modules
from P<∞.

4.1 Kronecker modules

We will briefly recall basic facts about Λ-modules. The finite dimensional in-
decomposable Λ-modules are divided into three families, preprojective, prein-
jective and regular modules:

1. The preprojectives Qn, n ≥ 1, are modules with the representation
V1 = kn, V2 = kn−1, fβ = (E, 0) and fα = (0, E), where E is a unit
matrix (n − 1) × (n − 1).

2. The preinjectives Jn, n ≥ 1, are modules with the representation V1 =
kn−1, V2 = kn, fβ = (E, 0)T and fα = (0, E)T .
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3. For the simple regulars Rλ, there is V1 = V2 = k. For λ ∈ k, fβ is a
multiplication by λ and fα is the identity. When λ = ∞ we have fβ

the identity and fα = 0.

4. Every simple regular module Rλ, λ ∈ k ∪ {∞}, defines a tube; that is,
a chain of indecomposable modules

Rλ = Rλ,1 ⊆ Rλ,2 ⊆ Rλ,3 ⊆ . . .

connected by almost split sequences 0 → Rλ,n → Rλ,n−1 ⊕ Rλ,n+1 →
Rλ,n → 0. Any finite length indecomposable regular module occures in
this way.

Note, that there are no non-zero homomorphisms from preinjectives to
preprojectives or regulars, and no non-zero homomorphisms from regulars to
preprojectives. Moreover, dimk Hom(Rλ, Rµ) = δλ,µ for any λ, µ ∈ k ∪ {∞}.

The Prüfer modules Rλ,∞ are defined as direct limits of ascending chains:

Rλ,1 ⊆ Rλ,2 ⊆ Rλ,3 ⊆ . . .

It is Hom(Rλ,∞, Rµ) = 0 and dimk Hom(Rµ, Rλ,∞) = δλ,µ for every λ, µ ∈
k ∪ {∞}.

The description of finite dimensional Λ-modules is done in [3]. For more
detailes about infinite dimensional Λ-modules we refer to the papers [18]
or [17].

4.2 Simple modules and composition series in P<∞

For every finitely generated R-module M , there is an exact sequence

0 → P n
1 → M → M → 0

where n < ω and M is a Kronecker module.
Now, let M ∈ P<∞. Then, clearly, M ∈ P<∞ too. But a finitely gener-

ated Kronecker module of finite projective dimension over R have a projective
dimension at most 1, and this is exactly when M is a direct sum of finitely
many regular Kronecker modules Rλ1,i1, . . . , Rλm,im with λ1, . . . , λm ∈ k [12,
5.1]. Therefore, every module M ∈ P<∞ is finitely filtered by modules P1

and Rλ, λ ∈ k. Conversely, every such module is clearly an object of P<∞.
Moreover, modules P1 and Rλ, λ ∈ k, have no proper submodules from P<∞,
thus they are simple in the category P<∞. So every module M from P<∞

has a composition series

0 = M0 ⊂ M1 ⊂ · · · ⊂ Ml = M

in P<∞ where the factors Mj/Mj−1 are isomorphic either to P1 or to Rλ for
some λ ∈ k.
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4.3 The (non-)uniqueness of the composition series

In general, the analogy of Jordan-Hölder theorem is not true in P<∞. Take
for example short exact sequences 0 → P1

ιλ→ P2 → Rλ → 0. These exist for
all λ ∈ k.

But the number of factors isomorphic to P1 is unique. Consider the
function f : P<∞ → ω set up by a formula:

f(U) = dimk HomR(U, R∞)

Since P1 is projective, it is Ext1
R(P1, R∞) = 0. The module R∞ has no

submodule isomorphic to S2, so Ext1
R(Rλ, R∞) = Ext1

Λ(Rλ, R∞) = 0 for
each λ ∈ k by [12, 5.3]. Thus, Ext1

R(U, R∞) = 0 for every U ∈ P<∞ and
f(V ) = f(U) + f(W ) for each exact sequence 0 → U → V → W → 0 of
modules from P<∞. Further, f(P1) = 1 and f(Rλ) = 0 for each λ ∈ k. The
function f “counts” factors isomorphic to P1 in a composition series of the
module M and its definition is independent of the particular composition
series.

If we are concerned only in modules from KP<∞, then the composition
series is unique in the sense of Jordan-Hölder. It could be seen by a similar
reasoning as for P1, this time using functions:

gµ(U) = dimk HomR(U, Rµ,∞), µ ∈ k

Again, Ext1
R(Rλ, Rµ,∞) = 0 for every λ, µ ∈ k and gµ(Rλ) = δλ,µ. The

function gµ counts factors isomorphic to Rµ and its definition is independent
of the particular composition series.

4.4 Determining modules from KP<∞ by matrices

Let M ∈ KP<∞. Then we can write

M ∼= Rλ1,i1 ⊕ · · · ⊕ Rλm,im

for some Kronecker regular modules Rλ1,i1, . . . , Rλm,im with λ1, . . . , λm ∈ k.
In particular, the linear map x �→ αx is a bijective map e2M → e1M ,
since this is true for every Rλj ,ij . Denote α−1

M the inverse map and for a
given module M , set up a map χM ∈ Endk(e1M) by the formula χM(x) =
β · α−1

M (x).
Let us focus on the matrix AM of the linear map χM in the Jordan

canonical form, with respect to some suitable k-basis of the vector space
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e1M . When M ∼= Rλ,i, then AM is a Jordan cell of the size i × i with an
eigennumber λ, ie.

AM =




λ 1

λ
. . .
. . . 1

λ




In the general case, AM is block-diagonal, built of Jordan cells correspond-
ing to the direct summands Rλ1,i1, . . . , Rλm,im of M . Ie. AM = diag(ARλ1,i1

,
. . . , ARλm,im

)
Let N be some other module from KP<∞. It is easy to see that if the

vector spaces e1M and e1N have the same dimension and matrices of the
linear maps χM and χN , with respect to some bases are similar, then the
modules M and N are isomorphic. Thus we can state:

Lemma 4.1. Two modules M , N from KP<∞ are isomorphic if, and only
if, the Jordan canonical forms of the matrices of linear maps χM and χN are
the same up to the order of Jordan cells.

4.5 Special modules of finite projective dimension

Definition 4.2. Let us call a module M from P<∞ special if each of its
composition series in P<∞ has exactly one factor isomorphic to P1, and this
factor is always on the first place (ie. as a submodule of M). Let us denote
SP<∞ the full subcategory of all special modules from P<∞.

For example, the modules P1 and P2 are special. Clearly, if M ∈ SP<∞

and M ′ is a submodule of M belonging to P<∞, then M ′ ∈ SP<∞ too. All
modules from SP<∞ have an even dimension, since the same is true for all
modules from P<∞. In the next few paragraphs we will show that for each
non-zero even n ∈ ω, there is exactly one isomorphism class of modules of
dimension n in SP<∞. We will start by proving the existence.

Lemma 4.3. Let M ∈ P<∞, M �∼= P1. Then the following conditions are
equivalent:

1. M ∈ SP<∞

2. There is an exact sequence 0 → P1
ι→ M

π→ N → 0, such that N is a
Kronecker module and for each non-zero submodule N ′ ⊆ N from P<∞

the sequence 0 → P1
ι→ π−1(N ′) → N ′ → 0 does not split.
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Proof. Let M ∈ SP<∞. By definition, there is some exact sequence 0 →
P1

ι→ M
π→ N → 0 with N Kronecker. Let N ′ ⊆ N is an arbitrary non-

zero submodule from P<∞. If the sequence 0 → P1
ι→ π−1(N ′) → N ′ → 0

would split, we have also 0 → N ′ → π−1(N ′) → P1 → 0, and thus the
composition series of π−1(N ′) in P<∞ with the factor isomorfic to P1 at the
end. Extending this series to the composition series of M , we would have a
contradiction with the definition of SP<∞.

Conversely, let 0 → P1
ι→ M

π→ N → 0 be an exact sequence with the
required properties. Then every composition series of M will have exactly
one factor isomorphic to P1. If there is a series with the P1 factor not on
the first place, there is a submodule M ′ ⊆ M isomorphic to some Rλ. But
then ι(P1) ∩ M ′ = 0, since soc M ′ ∼= S1 and soc P1

∼= S2. Thus, π � M ′ is a
monomorphism and the exact sequence 0 → P1

ι→ ι(P1) + M ′ → π(M ′) → 0
splits. But this contradicts our assumption.

Lemma 4.4. Let δ : 0 → P1 → M → Rλ → 0 be an exact sequence.
Then either δ splits or M ∼= P2. Moreover, δ splits if, and only if, M has a
submodule isomorphic to Rλ.

Proof. There is always an exact sequence 0 → P1
ιλ→ P2 → Rλ → 0, and

because P2 is projective, we have the following commutative diagram:

0 −−−→ P1
ιλ−−−→ P2 −−−→ Rλ −−−→ 0

f

�
�

∥∥∥
δ : 0 −−−→ P1 −−−→ M −−−→ Rλ −−−→ 0

Since dimk EndR(P1) = dimk e1P1 = 1, f is either a zero map or an
isomorphism. In the first case δ splits, in the second case M ∼= P2. The
second assertion holds, because P2 has not a submodule isomorphic to Rλ.

Proposition 4.5. Take n ∈ ω non-zero even. Then there is a module M ∈
SP<∞ of dimension n.

Proof. We have the module P1 for n = 2. So let n > 2. Put m = n
2
− 1 and

choose m different elements λ1, . . . , λm of the field k. For each λj, consider

the exact sequence 0 → P1
ιj→ P2 → Rλj

→ 0. We will construct the desired
module M by following push-out, where σ : P m

1 → P1 is a map adding up
components of the direct sum:

0 −−−→ P m
1

L
j ιj−−−→ P m

2 −−−→
⊕

j Rλj
−−−→ 0

σ

�
�

∥∥∥
0 −−−→ P1

ι−−−→ M
π−−−→

⊕
j Rλj

−−−→ 0
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Suppose that there is a module N ∈ P<∞, N ⊆
⊕

j Rλj
, such that the

sequence 0 → P1
ι→ π−1(N) → N → 0 splits. Without a loss of generality,

we can assume N ∼= Rλ for some λ ∈ k. Because the sequence splits, we
can perceive N as a submodule of π−1(N), and thus also as a submodule of
M . But soc N ∼= S1 and soc ι(P1) ∼= S2, so ι(P1) ∩ N = 0 and π � N is
monic. The module π(N) being a submodule of

⊕
j Rλj

and π(N) ∼= Rλ,
there must be an index j, such that λ = λj and π(N) = Rλj

. Then we have
a commutative diagram

0 −−−→ P1
ιj−−−→ P2 −−−→ Rλj

−−−→ 0

σ�P1

�
�

∥∥∥
0 −−−→ P1

ι−−−→ ι(P1) + N
π�ι(P1)+N−−−−−−→ Rλj

−−−→ 0

The map in the left, and therefore also in the middle, column is an iso-
morphism. But the first row does not split and the second row does. This
situation yields a contradiction.

So M ∈ SP<∞ by lemma 4.3, and certainly dimk M = n.

Next, we would like to prove that every two modules from SP<∞ of the
same dimension are isomorphic. For the dimension 2, this is clear directly
from the definition. First, we will prove a lemma which poses a restriction
to the shape of a cokernel of an inclusion of the module P1 into a chosen
module from SP<∞.

Lemma 4.6. Let M ∈ SP<∞ and 0 → P1
ι→ M

π→
⊕m

j=1 Rλj ,ij → 0 be an
exact sequence. Then the elements λ1, . . . , λm are pairwise different.

Proof. Assume for a contradiction that the converse is true. Without a loss of
generality, put λ = λ1 = λ2. Then the module

⊕m
j=1 Rλj ,ij has a submodule

isomorphic to Rλ ⊕ Rλ, and it gives rise to an exact sequence 0 → P1
ι→

M ′ π�M ′
→ Rλ ⊕ Rλ → 0. Denote M ′

v = π−1(Rλ) for the v-th component of
Rλ ⊕ Rλ, v = 1, 2. Since 0 → P1 → M ′

v → Rλ → 0 does not split, it is
M ′

v
∼= P2 by lemma 4.4. Take h ∈ ι(P1) a generator of ι(P1) and g1, g2

generators of M ′
1, M ′

2 respectively, such that :

βgv − λαgv = h, v = 1, 2

Denote g = g1 − g2. Then a submodule generated by g is isomorphic to Rλ.
But this contradicts the assumption M ∈ SP<∞.

The core of the proof of uniqueness is the following proposition which
says that there is no other restriction to the cokernel of the inclusion ι, apart
from the one in the lemma. Then the uniqueness proof itself follows.

36



Proposition 4.7. Let M ∈ SP<∞, M �∼= P1. Put n = (dimk M)/2 − 1.
Then for arbitrary pairwise different elements µ1, . . . , µq ∈ k and non-zero
numbers i′1, . . . , i′q, such that i′1+· · ·+i′q = n, there is an inclusion ι : P1 → M
with Coker ι ∼=

⊕q
j=1 Rµj ,i′j .

Proof. For the beginning, let ι : P1 → M be any inclusion and put C =
Coker ι ∼=

⊕m
j=1 Rλj ,ij . Then the module C is determined up to isomorphism

by a Jordan canonical form of a matrix of the linear map χC by lemma 4.1.
But there is only one Jordan cell for each eigennumber of χC in the Jordan
canonical form by lemma 4.6. Thus, the cokernel C is in fact determined only
by the multiplicities of the eigennumbers of χC . Using the following construc-
tion, we can increase a multiplicity of a chosen µ ∈ k as an eigennumber by
1, or µ ∈ k will become an eigennumber if it has not been before. And we
can do this at the cost of decreasing a multiplicity of an eigennumber λ1 by
1. After applying this method a finite number of times, we can “change” the
eigennumbers, and thus also the cokernel of an inclusion P1 → M , to any
prescribed situation.

Take an exact sequence 0 → P1
ι→ M

π→
⊕m

j=1 Rλj ,ij → 0. Denote

Mj = π−1(Rλj ,ij). Further, take canonical generators ḡj,v of Rλj ,ij satisfying

βḡj,1 = λjαḡj,1

βḡj,v = λjαḡj,v + αḡj,v−1, 1 < v ≤ ij

Under the suitable choice of generators ḡj,v, we can also choose a generator h
of the module ι(P1) and generators gj,v of modules Mj , such that ḡj,v = π(gj,v)
and h = βgj,1 − λjαgj,1 for each j ≤ m and v ≤ ij .

Take a module L ⊆ M1 generated by g1,1. Then L ∼= P2 by lemma 4.4

and for any µ ∈ k, there is an exact sequence 0 → P1
ϑ→ L → Rµ → 0. In

fact, we also have the following exact sequence for some regular Kronecker
module X:

0 → P1
ϑ→ M

σ→ X → 0

Denote f̄j,v = σ(gj,v) and let h′ be a generator of ϑ(P1), such that h′ =
βg1,1 − µαg1,1. Then

βf̄j,v = σ(βgj,v) = σ(λjαgj,v + αgj,v−1 + cj,vh) = λjαf̄j,v + αf̄j,v−1 + cj,vσ(h)

where cj,v ∈ k is a suitable constant, and for convenience we consider gj,0 = 0
and f̄j,0 = 0. Further:

h = βg1,1 − λ1αg1,1 = h′ + (λ1 − µ)αg1,1
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So we have

cj,vσ(h) = cj,v(λ1 − µ)ασ(g1,1) = cj,v(λ1 − µ)αf̄1,1

and together

βf̄j,v = λjαf̄j,v + αf̄j,v−1 + cj,v(λ1 − µ)αf̄1,1

The matrix of the linear endomorphism χX of the vector space e1X, with
respect to the basis αf̄j,v, j ≤ m, v ≤ ij and the pairs (j, v) being ordered
lexicographically, is of a form




µ ∗ ∗ ∗ ∗ ∗ · · ·
λ1

. . .

. . . 1
λ1

λ2 1
. . .

. . .




where the symbols ∗ in the first row should be substituted by some suitable
elements of k. Concerning the eigennumbers of χX , we have exactly changed
one occurence of λ1 for one occurence of µ against the eigennumbers of χC .

Proposition 4.8. Let n ∈ ω. Then any two modules from SP<∞ of dimen-
sion n are isomorphic.

Proof. It is enough to carry out the proof only for n > 2 even. Choose an
arbitrary M ∈ SP<∞ of dimension n. Put m = n

2
−1 and choose m pairwise

different elements λ1, . . . , λm of the field k. Then, by the former proposition,
there is an exact sequence

0 → P1
ι→ M

π→
m⊕

j=1

Rλj
→ 0

Let N be a factor of the module P
(m)
2 , with generators of the individual com-

ponents g1, . . . , gm, determined by relations βgi − λiαgi = βgi+1 − λiαgi+1.

Then the dimension of N is no more than n = 2m + 2, since dimk e1P
(m)
2 =

dimk e2P
(m)
2 = 2m, and for both these vector spaces we have m − 1 k-

independent relations. Further, there is clearly an epimorphism N → M
which sends elements gi onto suitably chosen generators of π−1(Rλi

) respec-
tively. Thus, dimk M = dimk N = 2m + 2 = n and N ∼= M . And since the
module N is independent of the choice of the module M , we have at most
one isomorphism class of R-modules in SP<∞ for each dimension.
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For every n ≥ 1, denote Pn one representative of objects of SP<∞ of
dimension 2n. This notation is consistent with the former notation of the
indecomposable projectives P1 a P2, because these two are the representatives
of modules from SP<∞ of dimensions 2 a 4 respectively.

4.6 Auslander-Reiten translation of modules from P<∞

In a view of corollary 3.11, it is convenient to compute the Auslander-Reiten
translations of modules from P<∞. In this subsection, we will prove that
the modules Rλ, λ ∈ k, are invariant with respect to the translation, while
the modules from SP<∞ are transformed to the Kronecker preprojective
modules.

It is well-known that the functor (−)∗ = HomR(−, R) transformes an
indecomposable projective R-module Pi = Rei to an indecomposable projec-
tive Rop-module isomorphic to Ropeop

i , i = 1, 2. And the latter isomorphism
assigns to the path pop ∈ Ropeop

i the following homomorphism from Rei to R:

Rei → R

ei �→ p (∈ R)

From now on we will identify the modules Ropeop
i and P ∗

i . In particular, we
will denote the above mentioned homomorphism in P ∗

i as pop.
It is also clear that a homomorphism f ∈ P ∗

i is determined by its value on
ei. Thus, if f(ei) =

∑m
j=1 ajpj for some paths p1, . . . , pm ∈ R and elements

a1, . . . , am ∈ k, then f =
∑m

j=1 ajp
op
j .

Lemma 4.9. Let λ ∈ k. Then DTrRλ
∼= Rλ.

Proof. The minimal projective presentation of the module Rλ is 0 → P1
ιλ→

P2 → Rλ → 0, where ιλ(e1) = β − λα. It holds for a map ι∗λ : P ∗
2 → P ∗

1 :

(
ι∗λ(e

op
2 )

)
(e1) = eop

2 ιλ(e1) = eop
2 (β − λα) = β − λα

Thus, ι∗λ(e
op
2 ) = βop − λαop. The module P ∗

1 has a basis eop
1 , αop, βop as a

vector space. For M = P ∗
1 / Im ι∗λ, we have dimk eop

1 M = dimk eop
2 M = 1

and γopM = 0. Therefore, DM must be a Kronecker simple regular module.
Because (βop − λαop)M = 0, it is also (β − λα)DM = 0, and thus DM =
DTrRλ

∼= Rλ.

Denote Qj the j-th indecomposable Kronecker preprojective module. Ie.
dimk e1Qj = j and dimk e2Qj = j − 1. For P1 a P2, obviously DTrP1 =
DTrP2 = 0. There is a following lemma for the other modules from SP<∞.
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Lemma 4.10. Let n ∈ ω, n ≥ 3. Then DTrPn
∼= Qn−2.

Proof. Examining the proof of the proposition 4.8, if we choose n − 1 pair-
wise different elements λ1, . . . , λn−1 of the field k, we will get a projective
presentation of the module Pn in the shape:

0 → P n−2
1

ι→ P n−1
2 → Pn → 0

Moreover, if we denote fj the residue of the trivial path e1 in the j-th copy
of P1 and gl the residue of the path e2 in the l-th copy of P2, we have

ι(fj) = (βgj − λjαgj) − (βgj+1 − λj+1αgj+1), 1 ≤ j ≤ n − 2

For arbitrary R-modules M , N and non-zero natural numbers m, v, there
is a canonical bijection between the elements of HomR(Mm, Nv) and ma-
trices v × m over HomR(M, N). Let us denote ij : M → Mm the j-th
inclusion and pl : Nv → N the l-th projection. Then this bijection as-
signs to an homomorphism h ∈ HomR(Mm, Nv) the matrix (plh ij)l≤v,j≤m.
Moreover, i∗j : (M∗)m → M∗ is the j-th projection, p∗l : N∗ → (N∗)v is
the l-th inclusion, and by similar canonical bijection in Rop, the element
h∗ ∈ HomR((N∗)v, (M∗)m) corresponds to the matrix (i∗jh

∗p∗l )j≤m,l≤v.
Now put M = P1, N = P2, m = n − 2 and v = n − 1. Then the map ι

corresponds to a matrix (ιlj), where ιlj = plι ij . It holds:

ιlj(e1) = plι(fj) =




β − λlα for l = j

−(β − λlα) for l = j + 1

0 otherwise

This means that:

(
ι∗jj(e

op
2 )

)
(e1) = eop

2 ιjj(e1) = eop
2 (β − λjα) = β − λjα(

ι∗j+1,j(e
op
2 )

)
(e1) = eop

2 ιj+1,j(e1) = eop
2

(
− (β − λj+1α)

)
= −(β − λj+1α)

Thus:

ι∗lj(e
op
2 ) =




βop − λlα
op for l = j

−(βop − λlα
op) for l = j + 1

0 otherwise

For the map ι∗ : (P ∗
2 )n−1 → (P ∗

1 )n−2, let us denote by g′
l the residue of the

path eop
2 in the l-th copy of P ∗

2 , and by f ′
j the residue of the path eop

1 in the

40



j-th copy of P ∗
1 . We attain the following formulas by composing the results

of the former computations:

ι∗(g′
l) =




βopf ′
l − λlα

opf ′
l for l = 1

(βopf ′
l − λlα

opf ′
l ) − (βopf ′

l−1 − λlα
opf ′

l−1) for 1 < l < n − 1

−(βopf ′
l−1 − λlα

opf ′
l−1) for l = n − 1

Since λ1, . . . , λn−1 are pairwise different, we have dimk eop
2 (Im ι∗) = n−1.

Clearly eop
1 (Im ι∗) = 0. And we have dimk eop

1 P ∗
1 = 1, dimk eop

2 P ∗
1 = 2. So for

the module L = (P ∗
1 )n−2/ Im ι∗ we have dimk eop

1 L = n − 2 and dimk eop
2 L =

2(n−2)− (n−1) = n−3. Then dimk e1DL = n−2 and dimk e2DL = n−3.
Moreover, DL = DTrPn must be an indecomposable Kronecker module, and
by a characterisation of such modules it is DL ∼= Qn−2.

4.7 Indecomposable modules in P<∞

Now, we can characterise the indecomposable modules in P<∞.

Proposition 4.11. Let 0 �= M ∈ P<∞ be indecomposable. It arises one of
the following cases then:

1. M ∼= Rλ,i for some λ ∈ k and i ≥ 1,

2. M ∼= Pn for some n ≥ 1.

Before we prove the proposition, we need some auxiliary lemmas.

Lemma 4.12. Let M ∈ P<∞, such that M has no submodule isomorphic to
Rλ for any λ ∈ k. Then M is SP<∞-filtered.

Proof. We will prove the lemma by induction on the number n of the com-
position factors isomorphic to P1 in the composition series of M in P<∞.
There is nothing to prove for n = 1. Let n > 1. Take a composition series

0 = M0 ⊂ M1 ⊂ · · · ⊂ Ml = M

of M , such that the last index j, for which Mj+1/Mj
∼= P1, is the greatest

possible. It is M/Mj ∈ SP<∞ by the definition and Mj is SP<∞-filtered by
an induction hypothesis. Thus, M is SP<∞-filtered too.

Lemma 4.13. Let M be SP<∞-filtered. Then M is a direct sum of modules
from SP<∞.
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Proof. The modules P1 a P2 are projective and every module Pn, n ≥ 3 has
a minimal projective presentation in the shape 0 → P n−2

1 → P n−1
2 → Pn →

0. We can construct a simultaneous minimal projective presentation of the
module M , which must be of the shape:

0 → P m
1 → P u

1 ⊕ P v
2 → M → 0

The module TrM is a factor of (P ∗
1 )m by definition. Therefore, the module

DTrM is a submodule of D(P ∗
1 )m = Im

1 . Since I1 is a Kronecker module, so
is DTrM .

Choose an arbitrary λ ∈ k ∪ {∞}. Then

D Ext1
R(Pn, Rλ) ∼= HomR(Rλ, DTrPn) ∼= HomR(Rλ, Qn−2) = 0

for all n ≥ 3 by corollary 3.10 and lemma 4.10. In particular, Ext1R(M, Rλ) =
0, and so HomR(Rλ, DTrM) = 0, again by corollary 3.10. Thus, module
DTrM is preprojective, ie. DTrM ∼=

⊕m
j=1 Qij for some i1, . . . , im. So it is

M ∼= P ⊕ TrD(DTrM) ∼= P ⊕
m⊕

j=1

Pij+2

for some finitely generated projective P .

Proof of proposition 4.11. Let M ∈ P<∞ be indecomposable. If M is a Kro-
necker module, we are in the case number 1.

Suppose M is not a Kronecker module and L a maximal Kronecker reg-
ular submodule of M . Since Kronecker regular modules are closed under
extensions, M/L has no submodule isomorphic to Rλ, λ ∈ k. Then M/L is
SP<∞-filtered by lemma 4.12. Further, we have

D Ext1
R(Pn, Rλ) ∼= HomR(Rλ, Qn−2) = 0

for all λ ∈ k and n ≥ 3 by corollary 3.10 and lemma 4.10. In particular,
Ext1

R(M/L, L) = 0 and M = L ⊕ M/L. Thus, L = 0 and M ∈ SP<∞ by
lemma 4.13.

4.8 Lattice of tilting classes of finite type

Since Fdim R = 1 by [14], every tilting R-module is 1-tilting. Thus, all
tilting classes of a finite type could be obtained as S⊥, where S is a subset
of representatives of isomorphism classes of P<∞. Moreover, we can limit
ourselves only to indecomposables from P<∞. Denote a representative subset
of such modules as indP<∞. They were characterised in the proposition 4.11.
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Proposition 4.14. The class T ⊆ R-Mod is a tilting class of finite type if,
and only if, there is a subset S ⊆ indP<∞, such that S⊥ = T .

Let S ⊆ indP<∞. Denote S̄ = ⊥(S⊥) ∩ indP<∞. It is easy to see that
S⊥ = S̄⊥. We will call the set S closed, if S = S̄. Clearly, the lattice of
1-tilting classes of a finite type is anti-isomorphic to the lattice of closed
subsets of indP<∞. And the description of closed subsets follows.

Theorem 4.15. A subset S ⊆ indP<∞ is closed if, and only if, it satisfies
the following conditions:

1. P1 ∈ S, P2 ∈ S.

2. If Rλ,i ∈ S for some λ ∈ k and i ≥ 1, then Rλ,j ∈ S for every j ≥ 1.

3. If Rλ,i ∈ S fore some λ ∈ k and i ≥ 1, then Pj ∈ S for every j ≥ 1.

4. If Pn ∈ S for some n ≥ 3, then Pj ∈ S for every j ≤ n.

Proof. First, assume S ⊆ indP<∞ is closed. The necessity of the condition
1 is obvious. For Kronecker regular modules, we have the exact sequences:

0 → Rλ,i → Rλ,i−1 ⊕ Rλ,i+1 → Rλ,i → 0

Thus, if Rλ,i ∈ S, then also Rλ,i−1, Rλ,i+1 ∈ S. The condition 2 follows by
induction. Further, by proposition 4.7 we have

0 → P1 → Pj → Rλ,j−1 → 0,

for each j ≥ 3. This implies the condition 3. Let n ≥ 3 and M ∈ P⊥
n .

Then HomR(M, Qn−2) = 0 by corollary 3.11 and lemma 4.10. Therefore,
HomR(M, Qj−2) = 0 for each 3 ≤ j ≤ n, since Qn−2 has submodules isomor-
phic to Qj−2. This means that M ∈ P⊥

j , and Pj ∈ ⊥(P⊥
n ) for each 3 ≤ j ≤ n.

This results in the condition 4.
Conversely, let S ⊆ indP<∞ satisfy the conditions 1–4. Assume that

there is some M ∈ S̄ \ S. If M = Rλ,i for some λ and i, then Rλ,j �∈ S
for each j ≥ 1 by the condition 2. But this implies Rλ ∈ S⊥, so Rλ ∈ S̄⊥

is a contradiction. Thus, it remains only M = Pn for some n ≥ 3. But
then Rλ,i �∈ S for each λ ∈ k, i ≥ 1 and Pj �∈ S for each j ≥ n by the
conditions 3 and 4. So S consists only from some of the modules P1, . . . ,
Pn−1. But this means Qn−2 ∈ S⊥ = S̄⊥. This is a contradiction again, since
D Ext1

R(Pn, Qn−2) ∼= HomR(Qn−2, Qn−2) �= 0.

Corollary 4.16. (P<∞)⊥ = {Rλ|λ ∈ k}⊥ =
⋂

λ∈k Ker HomR(−, Rλ).

Proof. For the first equality, see [12, 5.4]. Or alternatively, let us take S =
{Rλ|λ ∈ k}. Then S̄ = indP<∞ by the former theorem. Thus S⊥ =
(indP<∞)⊥ = (P<∞)⊥. The second equality follows from corollary 3.11
and lemma 4.9.
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4.9 Impossibility of reconstructing a tilting class from
finitely generated modules by direct limits

This section is inspired by a dual case, where every 1-cotilting class C over
a noetherian ring could by reconstructed from its finitely generated modules
by direct limits. Ie. C = lim−→(C ∩R-mod), C being closed under direct limits,
since every 1-cotilting module is pure-injective by Bazzoni [4]. So there is a
bijective correspondence between 1-cotilting classes and a torision-free classes
of finitely generated modules containing R (cf. [23]).

But an analogous proposition with direct limits is not true for 1-tilting
classes over IST-algebra. Take T = (P<∞)⊥ and T <∞ = T ∩ R-mod. Then
T = lim−→T <∞ implies that lim−→T <∞ is closed under direct products. This
is equivalent to a covariant finiteness of T <∞ in R-mod by [12], and thus
to a contravariant finiteness of P<∞ in R-mod by [19]. But this is not true
for IST-algebra. The aim of this subsection is to exhibit an example of a
concrete module from T \ lim−→T <∞.

Proposition 4.17. Let T = (P<∞)⊥ and T <∞ = T ∩R-mod. Then a Prüfer
module Rλ,∞ is a member of T for each λ ∈ k, but HomR(M, Rλ,∞) = 0 for
all M ∈ T <∞.

Proof. It is well-known that HomR(Rλ,∞, Rµ) = 0 for each µ ∈ k. Therefore,
Rλ,∞ ∈ T by corollary 4.16.

We have HomR(I, Rλ) = 0 for an injective cogenerator I = I1⊕I2 by corol-
lary 3.4 and lemma 4.9. Then also HomR(I, Rλ,∞) = 0 and HomR(M, Rλ,∞) =
0 for every factor M of I. Thus, HomR(M, Rλ,∞) = 0 for each M ∈ T <∞ by
lemma 3.5.

Corollary 4.18. Rλ,∞ ∈ T \ lim−→T <∞ for each λ ∈ k.

4.10 Constructing more complex preenvelopes

Now we are on the way to show an explicit structure of a tilting module for
the class (P<∞)⊥. First, we need a following general proposion which is valid
for any ring. Let us remind that if X is an FP2 module over an arbitrary
ring, then X⊥ is then closed under direct limits, thus also under filtrations
and arbitrary direct sums.

Proposition 4.19. Let R be an arbitrary ring and S be a set of FP2 mod-
ules such that Ext1

R(X, Y ) = 0 for any pair of different modules X, Y ∈ S.
Further, let M ∈ R-Mod be any module and

0 → M → JX → CX → 0
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be special X⊥-preenvelopes with X-filtered cokernels CX for each X ∈ S.
Then the second row of the following push-out diagram (the map σ just adding
up components of the direct sum) is a special S⊥-preenvelope of M :

0 −−−→ M (S) −−−→
⊕

X∈S JX −−−→
⊕

X∈S CX −−−→ 0

σ

�
�

∥∥∥
0 −−−→ M −−−→ J −−−→

⊕
X∈S CX −−−→ 0

Proof. It is sufficient to prove that J ∈ S⊥ and C =
⊕

X∈S CX ∈ ⊥(S⊥). But
the latter is clear, since the module C is a direct sum of S-filtered modules.

Choose an arbitrary Y ∈ S. If we take only a component corresponding
to the module Y in the first row of the commutative diagram above, and if
we denote σ′ a restriction of the map σ to that component, we will get an
induced diagram:

0 0�
�

0 −−−→ M −−−→ JY −−−→ CY −−−→ 0

σ′
�

�
�

0 −−−→ M −−−→ J −−−→
⊕

X∈S CX −−−→ 0�
�

⊕
X∈S\{Y } CX

⊕
X∈S\{Y } CX�

�
0 0

By assumption, X ∈ Y ⊥ for each X ∈ S \ {Y } and Y ⊥ is closed under
filtrations and direct sums, thus

⊕
X∈S\{Y } CX ∈ Y ⊥. But also JY ∈ Y ⊥,

therefore J ∈ Y ⊥. And this is true for any Y ∈ S, so J ∈ S⊥.

4.11 Structure of tilting modules for R⊥
λ

Construction 4.20 (R⊥
λ -preenvelopes of P1 and P2). Let λ ∈ k. By proposi-

tion 4.7, there is an exact sequence 0 → P1 → Pn+1
σ→ Rλ,n → 0 for each

n ≥ 1. If we take an inclusion j : Rλ,n−1 → Rλ,n for any n ≥ 2, then the
module M = σ−1(Im j) is clearly an object of SP<∞ (cf. def. 4.2), thus
M ∼= Pn by proposition 4.8. Moreover, Pn+1/M ∼= Rλ,n/ Im j ∼= Rλ. So we
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have a following exact sequence for any n ≥ 1:

0 −−−→ Pn
ιn+1,n−−−→ Pn+1 −−−→ Rλ −−−→ 0

Denote ιm,n = ιm,m−1 . . . ιn+2,n+1ιn+1,n and ιn,n = 1Pn for every m > n ≥
1. There are obviously commutative squares for n ≥ 2:

P1
ιn,1−−−→ Pn∥∥∥ ιn+1,n

�
P1

ιn+1,1−−−→ Pn+1

Further, Coker ιn,1 is Rλ-filtered, thus Coker ιn,1
∼= Rλ,n−1 by lemma 4.6.

Therefore, we have exact commutative diagrams with monomorphisms in
columns:

0 −−−→ P1
ιn,1−−−→ Pn

πn−−−→ Rλ,n−1 −−−→ 0∥∥∥ ιn+1,n

� jn

�
0 −−−→ P1

ιn+1,1−−−→ Pn+1
πn+1−−−→ Rλ,n −−−→ 0

Denote Tλ the direct limit of modules Pn, n ≥ 1 with inclusions ιm,n,
m ≥ n ≥ 1. Then we obtain an exact sequence:

δ1 : 0 −−−→ P1
ι−−−→ Tλ

π−−−→ Rλ,∞ −−−→ 0

Next, take a commutative diagram with canonical inclusions in columns:

0 −−−→ P1
ι2,1−−−→ P2

π2−−−→ Rλ −−−→ 0∥∥∥ ι′
� j′

�
0 −−−→ P1

ι−−−→ Tλ
π−−−→ Rλ,∞ −−−→ 0

Then Coker ι′ ∼= Coker j′ ∼= Rλ,∞, so we have an exact sequence

δ2 : 0 −−−→ P2
ι′−−−→ Tλ

π′
−−−→ Rλ,∞ −−−→ 0

Proposition 4.21. Let us adopt the notation from the preceding construc-
tion. Then the short exact sequence δi is a special R⊥

λ -preenvelope of the
indecomposable projective Pi, i = 1, 2.

Proof. It is sufficient to prove that Tλ ∈ R⊥
λ and Rλ,∞ ∈ ⊥(R⊥

λ ). The latter
is clear, since the Prüfer module Rλ,∞ is Rλ-filtered.
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It is enough to show that HomR(Tλ, Rλ) = 0 by corollary 3.11 and
lemma 4.9. Take an arbitrary f ∈ HomR(Tλ, Rλ). If we apply the func-

tor HomR(−, Rλ) to the exact sequence 0 → P1
ι2,1−−→ P2 → Rλ → 0, we

obtain

0 −−−→ HomR(Rλ, Rλ) −−−→ HomR(P2, Rλ)
HomR(ι2,1,Rλ)−−−−−−−−→ HomR(P1, Rλ)

But dimk HomR(Rλ, Rλ) = 1, and also dimk HomR(Pi, Rλ) = dimk eiRλ = 1
for i = 1, 2. This implies HomR(ι2,1, Rλ) = 0. So fι = fι′ι2,1 = 0. Therefore,
there is a map f̄ , such that f = f̄π. But now f̄ ∈ HomR(Rλ,∞, Rλ) = 0, and
thus f = 0.

Theorem 4.22. Let λ ∈ k and Tλ be a module as in the contruction 4.20.
Then Tλ ⊕ Rλ,∞ is a tilting module corresponding to the tilting class R⊥

λ .

Proof. We have R ∼= P1⊕P2, and by the former proposition, there is a special
preenvelope of R in the shape

0 → R → Tλ ⊕ Tλ → Rλ,∞ ⊕ Rλ,∞ → 0

So the module T = Tλ ⊕ Tλ ⊕Rλ,∞ ⊕Rλ,∞ is a tilting module corresponding
to the class R⊥

λ by theorem 2.27. If T ′ is a module, such that T ′ ∈ AddT and
T ∈ AddT ′, then T ′ is tilting too, and T⊥ = (T ′)⊥. Putting T ′ = Tλ ⊕ Rλ,∞
gives us the desired result.

Remark 4.23. Let us write down a linear representation corresponding to the
module Tλ. Since we are over IST-algebra, the representations are of the
shape

fγ−→
V1

fβ←− V2
fα←−

with linear maps satisfying equations fαfγ = fβfγ = fγfα = 0.
In this case the vector spaces are of countable dimensions, ie. V1 = V2 =

k(ω), and the linear maps could by given by following matrices (the blank
spaces are zeroes):

fα =




0 0 0 . . .
0 1
0 1
...

. . .


 , fβ =




0 1
0 λ 1

0 λ
. . .

...
. . .


 , fγ =




1 0 0 . . .
0 0
0 0
...

. . .



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Just for comparison, a representation of the Prüfer module Rλ,∞:

fα =




1 0 0 . . .
0 1
0 1
...

. . .


 , fβ =




λ 1
0 λ 1

0 λ
. . .

...
. . .


 , fγ =




0 0 0 . . .
0 0
0 0
...

. . .




Another thing we can notice is that in contrast to proposition 4.8, modules
Tλ and Tµ are non-isomorphic for λ �= µ. Otherwise, there would be an
inclusion i : P1 → Tµ with a cokernel isomorphic to Rλ,∞. But this is
not possible, since cokernel of any inclusion i : P1 → Tµ is isomorphic to
Rµ,∞⊕M , where M is a suitable finitely generated Kronecker regular module.

4.12 Structure of tilting module for (P<∞)⊥

Theorem 4.24. Let A ⊆ k be non-empty and put S = {Rλ|λ ∈ A}. For

each λ ∈ A, take a special preenvelope 0 → P1
ιλ→ Tλ → Rλ,∞ → 0 from

construction 4.20. And take the following push-out diagram with an adding
map σ:

0 −−−→ P
(A)
1 −−−→

⊕
λ∈A Tλ −−−→

⊕
λ∈A Rλ,∞ −−−→ 0

σ

�
�

∥∥∥
0 −−−→ P1 −−−→ TA −−−→

⊕
λ∈A Rλ,∞ −−−→ 0

Then T = TA ⊕
⊕

λ∈A Rλ,∞ is a tilting module corresponding to the tilting
class S⊥.

Proof. The set S fit the assumptions of proposition 4.19. Thus, an exact
sequence 0 → P1 → TA →

⊕
λ∈A Rλ,∞ → 0 is a special S⊥-preenvelope of

the projective P1.
Take an arbitrary µ ∈ A. Then we have a following commutative diagram

with isomorphisms in the first and monomorphisms in the other columns:

0 −−−→ P1 −−−→ P2 −−−→ Rµ −−−→ 0∥∥∥ ι′
� j′

�
0 −−−→ P1

ιµ−−−→ Tµ −−−→ Rµ,∞ −−−→ 0

σ′
� ι′′

� j′′
�

0 −−−→ P1 −−−→ TA −−−→
⊕

λ∈A Rλ,∞ −−−→ 0
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Then TA/ Im ι′′ι′ ∼=
⊕

λ∈A Rλ,∞/ Im j′′j′ ∼=
⊕

λ∈A Rλ,∞. So we have a
short exact sequence, which is necesarilly a special S⊥-preenvelope of the
module P2:

0 −−−→ P2
ι′′ι′−−−→ TA −−−→

⊕
λ∈A Rλ,∞ −−−→ 0

Since R ∼= P1 ⊕ P2, the module T ⊕ T is tilting, corresponding to the
tilting class S⊥, and so is T itself.

Corollary 4.25. Adapting the notation from the theorem, Tk ⊕
⊕

λ∈k Rλ,∞
is a tilting module corresponding to (P<∞)⊥.

Proof. Cf. corollary 4.16.

Remark 4.26. The linear representation of a module Tk could not be writ-
ten in terms of matrices, since its dimension is equal to a cardinality of k,
uncountable in general. But the push-out construction from the theorem is
actually “glueing” the modules Tλ, λ ∈ k together alongside a “common copy
of P1” included in them. Thus, its only a matter of a straightforward com-
putation to give an explicit behavior of the linear maps on suitably chosen
bases of the vector spaces.
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5 Bundles of 1-tilting classes

This section points out to a possible approach of an investigation of the
conjecture that every 1-tilting class over a finite dimensional algebra is of a
finite type.

Most of the section is devoted to analysing torsion and cotorsion pairs
over artin algebras, since 1-tilting classes are special instances of a torsion and
cotorsion classes at the same time. But the main idea of the section, which
is more general, is expressed in lemma 5.14, definition 5.20, proposition 5.22,
and their corollaries.

Throughout this section, R will be an arbitrary ring if not stated oth-
erwise. Let C be a class od R-modules. Then denote lim−→C the class of all
direct limits of modules of C, ∪−→C the class of all directed unions of modules
of C and filt C the class of all C-filtered modules. Let us remind the notation
C<∞ = C ∩ R-mod for a class of modules C.

5.1 The dual

First, we notice that the following functors have very much in common:

1. the functor (−)c = HomZ(−, Q/Z),

2. the functor D(−) = HomS(−, J) if R is an artin algebra over S.

For the sake of summarizing basic properties of functors like these, we
now introduce a slightly more general setting which encompasses both the
examples. Let S be a commutative ring and ψ : S → R be a ring homo-
morphism into the centre of R. Further, let J be an injective cogenerator
of S-Mod. Then every left or right R-module is also an R-S-bimodule in a
natural way. Moreover, the groups of moprhisms in R-Mod or Mod-R are
S-modules too. Put D(−) = HomS(−, J) and let us call this functor S-Mod
→ S-Mod a dual. It is easy to see that D is also a functor from left to right
R-modules and vice versa. As to the notation, put DC = {DM |M ∈ C} for
any class of modules C.

Lemma 5.1 (the dual and exactness). Let K, L, M ∈ S-Mod (or R-Mod
or Mod-R). Then

1. K = 0 if, and only if, DK = 0,

2. K → L → M is exact if, and only if, DM → DL → DK is exact.

Proof. [1, par. 18].
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Lemma 5.2 (the dual and homology). Let K, L, M ∈ R-Mod and N ∈
Mod-R (or K, L, M ∈ Mod-R and N ∈ R-Mod). Then

1. HomR(K, DN) ∼= HomR(N, DK) and the isomorphism is functorial
in both variables (thus, D : R-Mod ↔ Mod-R is a duality also in a
categorical sense—as a contravariant adjoint functor),

2. for any homomorphism f : K → L, it is Im Df ∼= D(Im f),

3. for f : K → L and g : L → M , such that gf = 0, it is Ker Df/ ImDg ∼=
D(Ker g/ Im f),

4. Exti
R(K, DN) ∼= Exti

R(N, DK) and the isomorphisms are functorial in
both variables for any i ≥ 1.

Proof.

1. Using the adjunction formula, we have:

HomR(K, DN) ∼= D(N ⊗R K) ∼= HomR(N, DK)

2. From the exactness lemma, it follows that the unique epi-mono factori-
sation of f is transformed to epi-mono factorisation of Df by D.

3. We have Ker g/ Im f = Im(p � Ker g), where p is a cokernel of f .
Similarly for Ker Df/ ImDg, so we can use 2.

4. Either by 1. and 3. or by proposition 2.16, we have:

Exti
R(K, DN) ∼= D TorR

i (N, K) ∼= Exti
R(N, DK)

Lemma 5.3 (the dual and purity). Let K, L, M ∈ R-Mod (or Mod-R).
Then

1. DK is pure-injective,

2. 0 → K → L → M → 0 is pure exact if, and only if, 0 → DM →
DL → DK → 0 splits,

3. the map ηK : K → D2K defined as η(x)(f) = f(x) (a unit of adjunc-
tion) is a pure monomorphism.

Proof.
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1. DK is pure-injective if, and only if, HomR(−, DK) is exact on pure
exact sequences if, and only if, −⊗R K (or K ⊗R −) is exact on pure
exact sequences. But this is one of equivalent definitions of pure exact
sequences.

2. By the adjunction formula, 0 → K → L → M → 0 is pure if, and
only if, HomR(N,−) is exact on 0 → DM → DL → DK → 0 for each
R-module N . But this is equivalent to 0 → DM → DL → DK → 0
being split.

3. It is a straightforward computation that DηK ◦ ηDK = 1DK . Then use
2.

Lemma 5.4 (homology and the double dual). Let K, N ∈ R-Mod (or
Mod-R) and let K be finitely presented. Then

1. HomR(K, D2N) ∼= D2 HomR(K, N) and the isomorphism is functorial
in both variables,

2. for R left (or right) coherent, Exti
R(K, D2N) ∼= D2 Exti

R(K, N) and
the isomorphisms are functorial in both variables for any i ≥ 1.

Proof.

1. Let us assume the case of left modules. Then there is a functorial
isomorphism D HomR(K, N) ∼= DN ⊗R K (cf. [10, th. 3.2.11]). Thus,

D2 HomR(K, N) ∼= D(DN ⊗R K) ∼= HomR(K, D2N)

2. It follows either by 1. and lemma 5.2 or by proposition 2.16.

Lemma 5.5 (dualizing dimensions). Let M be left (or right) R-module.
Then

1. wd M = id DM ,

2. for R left (or right) noetherian, also id M = wd DM .

Proof.
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1. Using lemma 5.2, we obtain wd M ≤ n if, and only if, TorR
n+1(X, M) =

0 for each X if, and only if, Extn+1
R (X, DM) = 0 for each X if, and

only if, id DM ≤ n for any left R-module M .

2. R being noetherian, all cyclic modules are finitely presented. Applying
lemma 5.4, we obtain Exti

R(C, M) = 0 if, and only if, Exti
R(C, D2M) =

0 for any cyclic module C and i ≥ 1. Using Baer lemma, this implies
id M = id D2M , and id D2M = wd DM by the first assertion.

If R is an artin algebra, we will often need the crucial property of the
classical D functor—that the unity of adjunction is an R-isomorphism for
all finitely presented left and right R-modules (cf. [3]). So, if state anything
namely for artin algebras below, we silently assume that D is this particular
dual.

5.2 Coherent functors and artin algebras

An additive functor F : R-Mod → Ab is said to be coherent if it commutes
with direct limits and products. The following description of coherent func-
tors is given in [7, 2.1]. In fact, the proof there is only for artin algebras, but
it can be generalised in a straightforward manner.

Proposition 5.6. Let R be a ring. Then F : R-Mod → Ab is a coherent
functor if, and only if, there is an homomorphism ϑ : X → Y , X, Y ∈ R-mod
such that F is naturally equivalent to Coker(HomR(Y,−) → HomR(X,−)).

Lemma 5.4 implies the following relation between coherent functors and
a dual:

Corollary 5.7. Let R be a ring, M ∈ R-Mod and F a coherent functor.
Then F (M) = 0 if, and only if, F (D2M) = 0.

Proof. We can assume F = Coker HomR(ϑ,−) for some ϑ : X → Y , X, Y ∈
R-mod. Then F (D2M) = 0 if, and only if, HomR(ϑ, D2M) is epic if, and
only if, D2 HomR(ϑ, M) is epic if, and only if, F (M) = 0.

In case R is an artin algebra, coherent functors are closely related to a
model theory and definable classes.

Proposition 5.8. Let R be an artin algebra over an algebraically closed field.
Then
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1. for every M ∈ R-Mod, M and D2M are elementarily equivalent,

2. every definable class is closed under an application of D2.

Proof. It has been shown in [7, 2.1] that M and M ′ are elementarily equiva-
lent if, and only if, they are in the kernel of the same set of coherent functors.
And definable classes are always closed under elementarily equivalence.

5.3 Extensions of torsion pairs in R-mod

Let (R,F) be a torsion pair in R-mod, R being the torsion and F being the
torsion-free class. We will call a torsion pair (R′,F ′) in R-Mod an extension
of (R,F) to R-Mod if R = R′ ∩ R-mod and F = F ′ ∩ R-mod.

It is easy to see that for R noetherian and any torsion pair (R′,F ′) in
R-Mod, (R′∩R-mod,F ′∩R-mod) is a torsion pair in R-mod and (R′,F ′) is
its extension. On the other hand, there can be many extensions of a torsion
pair (R,F) in R-mod in general. Two of them are extremal:

1. (R∞,F∞), where F∞ = Ker HomR(R,−) (thus the torsion-free class is
the largest possible),

2. (R̂, F̂), where R̂ = Ker HomR(−,F) (thus the torsion class is the
largest possible).

Lemma 5.9. Let R be a left noetherian ring, (R,F) a torsion pair in R-
mod, and (R∞,F∞) its extension with the largest possible torsion-free class.
Then

1. R∞ = lim−→R = ∪−→R = genR = filtR,

2. F∞ = lim−→F = ∪−→F .

Proof. (lim−→R, lim−→F) is a torsion pair by [8]. Then obviously R∞ ⊇ genR ⊇
lim−→R ⊇ R∞. Let M ∈ R∞ and N ⊆ M finitely generated. Since M ∈
genR, there is N ′ ∈ R and an homomorphism f : N ′ → M , such that
N ⊆ Im f . This implies R∞ = ∪−→R. In particular, every module from R∞
has a non-trivial submodule from R. The factor is again from R∞, since it is
a torsion class. Thus, we can always construct an R-filtration by induction.
So R∞ = filtR.

Every module L ∈ F∞ is a directed union of its submodules, therefore of
submodules from F . Thus lim−→F ⊇ ∪−→F ⊇ F∞.

Now we will try to give at least a partial description of the other extremal
extension over an artin algebra.
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Lemma 5.10. Let R be an artin algebra, (R,F) a torsion pair in R-mod and
(R̂, F̂) its extension to R-Mod with the largest possible torsion class. Then
(DF , DR) is a torsion pair in mod-R and for any M ∈ Mod-R:

1. DM ∈ R̂ if, and only if, M ∈ (DR)∞,

2. DM ∈ F̂ if, and only if, M ∈ (DF)∞.

Proof. It is clear from the properties of D that (DF , DR) is a torsion pair
in mod-R. Further, HomR(DM,F) ∼= HomR(DM, D2F) = 0 if, and only
if, HomR(DF , D2M) = 0 if, and only if, HomR(DF , M) = 0 by lemmas 5.2
and 5.4. This proves the first assertion.

Now let M ∈ (DF)∞. Then M = lim−→Mν for some system of finitely
presented modules Mν from DF . Then DM = lim←−DMν with DMν ∈ F ,

hence DM ∈ F̂ . Conversely, let DM ∈ F̂ . There is a unique exact sequence
0 → MF → M → MR → 0 with MF ∈ (DF)∞ and MR ∈ (DR)∞. Dualizing
this sequence, we obtain 0 → DMR → DM → DMF → 0 with DMR ∈ R̂
and DMF ∈ F̂ . But DM ∈ F̂ , hence DMR = 0, MR = 0 and M = MF ∈
(DF)∞.

Lemma 5.11. Let R be an artin algebra and M ∈ R-Mod (or Mod-R). Then
M purely embeds into a product of its finitely presented factors.

Proof. Let {pν : M → Mν} be a representative set of all epimorphisms from
M to finitely presented modules. Denote p : M →

∏
Mν the corresponding

product map. Take any 0 �= x ∈ M . Then the injective envelope Rx →
E(Rx) factors through the inclusion Rx ⊆ M , and since E(Rx) is finitely
presented, we have p(x) �= 0. Hence p is monic.

R being an artin algebra, it is enough to show that Hom(p, X) is epic for
any X ∈ R-mod (or mod-R). But if f ∈ HomR(M, X), then Im f is finitely
presented, so f clearly factors through p.

Proposition 5.12. Let R be an artin algebra, (R,F) a torsion pair in R-
mod and (R̂, F̂) its extension to R-Mod with the largest possible torsion class.
Then M ∈ R̂ if, and only if, M purely embeds into a product of modules from
R. In particular, R̂ ∩ PI = ProdR.

Proof. First, we prove that ProdR ⊆ R̂. Let (Xν) by a family of modules
from R. Then

∏
Xν

∼= D(
⊕

DXν) ∈ R̂ if, and only if,
⊕

DXν ∈ (DR)∞ by
lemma 5.10. But the latter holds, since (DR)∞ is closed under direct sums.

Now the only if part is proven, taking lemma 5.11 into account. The if
part follows from a closure of R̂ under pure submodules. This is because
R̂ = KerHomR(−,F) and and the fact that all finitely presented modules
over an artin algebra are pureinjective. The last assertion is clear.
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Remark 5.13. The last proposition, stating that modules in R̂ are pre-
cisely the “purely R-cogenerated” ones, is in some sense a dualization of
the lemma 5.9. There, modules from F∞ are precisely the pure epimorphic
images of direct sums of modules from F by Lenzing’s characterisation of
direct limits of finitely presented modules [16]. But, unlike lemma 5.9, this
does not work in case of F̂ , since this class contains at least all F -cogenerated
modules.

5.4 Extensions of cotorsion pairs in R-mod

Let (A,B) be a cotorsion pair in R-mod. Similarly as in the last section, we
will call a cotorsion pair (A′,B′) in R-Mod an extension of (A,B) to R-Mod
if A = A′ ∩ R-mod and B = B′ ∩ R-mod.

The situation is slightly more complicated here, since over general rings we
need pure-injective modules rather than finitely presented ones when dealing
with the class B; these modules are the right ones for ⊥B to be closed under
direct limits. This can be illustrated by the following example:

Lemma 5.14. Let R be a ring and (C,D) be a cotorsion pair in R-Mod, such
that C ⊆ P1. Then C⊥ ∩ PI = (C<∞)⊥ ∩ PI.

Proof. Clearly, C⊥∩PI ⊆ (C<∞)⊥∩PI. On the other hand, if M ∈ (C<∞)⊥

is pure-injective, then M ∈ (lim−→C<∞)⊥ ⊆ C⊥, the last inclusion by [23,
4.4].

Corollary 5.15. Let R be a left coherent ring and (C1,D1), (C2,D2) be co-
torsion pairs in R-Mod, such that C1, C2 ⊆ P1. Then the following conditions
are equivalent:

1. C1 ∩ R-mod = C2 ∩ R-mod,

2. D1 ∩ PI = D2 ∩ PI.

Proof. The former lemma yields that 1. implies 2. Conversely, let 2. hold.
Then Di ∩ PI = (C<∞

i )⊥ ∩ PI by the preceding lemma, and ⊥(Di ∩ PI) =
lim−→C<∞

i by [12, 2.1] and [12, 2.3] for i = 1, 2. But this means that:

C<∞
1 = (lim−→C<∞

1 ) ∩ R-mod = (lim−→C<∞
2 ) ∩ R-mod = C<∞

2

But when dealing with modules over artin algebras, pure-injectives are
precisely direct summands of products of finitely presented modules. We will
focus on this case in the rest of this subsection.

There is a following analogy of lemma 5.10 for cotorsion pairs:
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Lemma 5.16. Let R be an artin algebra and A ⊆ R-mod, such that A is
closed under extensions and contains D(R). Denote (C,D) the cotorsion pair
in R-Mod generated by A. Then:

1. DM ∈ C if, and only if, M ∈ (DA)⊥,

2. DM ∈ D if, and only if, M ∈ lim−→DA.

Proof. We have Ext1
R(DM,A) ∼= Ext1

R(DM, D2A) = 0 if, and only if,
Ext1

R(DA, D2M) = 0 if, and only if, Ext1
R(DA, M) = 0 by lemmas 5.2

and 5.4. This proves the first assertion.
If M ∈ lim−→DA, then M is a pure epimorphic image of a direct sum⊕
Mν of modules from DA. So DM is a direct summand of

∏
DMν , hence

DM ∈ D. Conversely, let DM ∈ D and take a ⊥((DA)⊥)-precover 0 → C →
E → M → 0 of M . Then DC ∈ C, hence 0 → DM → DE → DC → 0
splits, hence 0 → C → E → M → 0 is pure. Thus M ∈ lim−→DA by [12, sec.
2].

Let us now concentrate only on cotorsion pairs with the first cotorsion
class of the pair contained in P1.

Lemma 5.17. Let R be an artin algebra and A ⊆ P<∞
1 . Then A is a left

cotorsion class of a cotorsion pair in R-mod if, and only if, R ∈ A and A is
closed under extensions and direct summands.

In particular, if (C,D) is a cotorsion pair in R-Mod, such that C ⊆ P1,
then (C<∞,D<∞) is a cotorsion pair in R-mod.

Proof. Every module from B′ = A⊥ purely embeds into a product of modules
from B = B′ ∩ R-mod by lemma 5.11. Hence, B′ ∩ PI = ProdB, and
⊥B = ⊥(B′ ∩ PI) = lim−→A by [12, sec. 2]. So, ⊥B ∩ R-mod= A. This proves
the if part of the first statement, while the only if part is clear.

The second statement is a direct consequence of lemma 5.14, since we
have (C<∞)⊥ ∩ R-mod = D<∞.

So similarly as for torsion pairs, for any cotorsion pair (A,B) in R-mod,
such that A ⊆ P1, there are two extremal extensions:

1. (A∞,B∞), where B∞ = A⊥,

2. (Â, B̂), where Â = ⊥B.

Proposition 5.18. Let R be an artin algebra and (A,B) a cotorsion pair in
R-mod, such that A ⊆ P1.
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1. Let (A∞,B∞) = (⊥(A⊥),A⊥) be a cotorsion pair in R-Mod cogenerated
by A. Then

(a) A∞ are precisely direct summands of A-filtered modules,

(b) B∞ are precisely pure submodules of products of modules from B,

(c) B is definable.

2. Let (Â, B̂) = (⊥B, (⊥B)⊥) be a cotorsion pair in R-Mod generated by
B. Then

(a) Â = lim−→A,

(b) Â is definable.

3. Let (C,D) be any extension of (A,B) to R-Mod. Then D∩PI = ProdB.

Proof.

1. The part (a) is just a part of theorem 2.25, while (c) is a straightforward
consequence of lemma2.21. For (b), one inclusion follows by lemma 5.11
and the other by (c).

2. We have Â ⊆ lim−→A by [23, 4.4]. On the other hand, lim−→A is a left

cotorsion class by [12, sec. 2]. Thus (a) holds. Â is closed under direct
limits, since B ⊆ R-mod ⊆ PI. Next, for any B ∈ B and M ∈ R-
Mod, we have Ext1

R(M, B) ∼= D(HomR(TrDB, M)/P(TrDB, M)) by
theorem 3.9, where P(TrDB, M) is a subgroup of those homorphisms
from TrDB to M that factor through a projective module. But for
any family of homomorphisms fν : TrDB → Mν and the corresponding
product homomorphism f : TrDB →

∏
Mν , it is f ∈ P(TrDB,

∏
Mν)

if, and only if, fν ∈ P(TrDB, Mν) for each ν, since projectives are
closed under arbitrary products, R being artinian. Thus, Â is closed
under direct products. Finally, let 0 → K → L → M → 0 be a pure
exact sequence with L ∈ Â. Choosing some B ∈ B and applying a
functor HomR(−, B) to this sequence, we obtain

0 → Ext1
R(M, B) → Ext1

R(L, B) → Ext1
R(K, B) → Ext2

R(M, B)

Hence M ∈ Â and Ext2
R(M, B) = 0, B being closed under (finitely

presented) cosyzygies. Thus, K ∈ Â, and this concludes the proof of
(b).

3. On the one hand, D ∩ PI ⊆ B∞ ∩ PI = ProdB, using the description
of B∞. The other inclusion is clear.
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Corollary 5.19. If R is an artin algebra, the third equivalent condition could
be added to corollary 5.15:

3. D1 ∩ R-mod = D2 ∩ R-mod.

5.5 Tilting classes

It is an open question in general, whether any 1-tilting module T is of a
finite type, ie. if there is S ⊆ R-mod, such that T⊥ = S⊥. This is proven for
Prürer domains, but only conjectured for finite dimensional algebras, or more
generally for artin algebras. We will show, however, that any 1-tilting class
is not far away from one of a finite type for any coherent ring. Moreover,
we will see that a finite type of the particular 1-tilting class could not be
determined by looking only at its pure-injective modules, or at its finitely
presented modules when R is an artin algebra.

Definition 5.20. We will define an equivalence for 1-tilting classes, such
that T ∼f U whenever T ∩ PI = U ∩ PI. We will call equivalence classes
of ∼f bundles of 1-tilting classes.

Similarly, there is an equivalence on 1-tilting cotorsion pairs, such that
(⊥T , T ) ∼f (⊥U ,U) whenever T ∼f U . A bundle of 1-tilting cotorsion pairs
is then again an equivalence class of ∼f .

Let us remind that there is actually only a set of 1-tilting classes for a
given ring R, since every 1-tilting class is of a countable type.

Clearly, there is the least element with respect to an inclusion in any
bundle B of 1-tilting classes. This follows from the fact that an intersection
of any family of 1-tilting classes is again a 1-tilting class (see theorem 2.27).
We will now show that there is also the greatest element in B when R is a
coherent ring. But first, we need the following lemma:

Lemma 5.21. Let R be a ring and (S, T ) be a 1-tilting cotorsion pair. Then
T is closed under pure-injective hulls. Moreover, T is closed under taking
D2 if R is an artin algebra over an algebraically closed field.

Proof. The class T is closed under products and direct limits, hence under
ultraproducts. It is well-known that a module M is elementarily equiva-
lent to its pure-injective hull PE(M), thus PE(M) elementarily embeds
into an ultrapower of M by a theorem of Frayne. Moreover, PE(M) being
pure-injective, PE(M) is a direct summand of an ultrapower of M . Hence
PE(M) ∈ T if M ∈ T . The same proof applies for D2 by lemma 5.8.
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Proposition 5.22. Let R be a coherent ring and (S, T ) be a 1-tilting co-
torsion pair. Denote U the class of all pure submodules of modules from
T . Then U = (S<∞)⊥, thus U is the least 1-tilting class of a finite type
containing T . Moreover, T ∩ PI = U ∩ PI.

Proof. The class (S<∞)⊥ is 1-tilting of a finite type by corollary 2.28, and
T ∩ PI = (S<∞)⊥ ∩ PI by lemma 5.14.

It remains to prove that U = (S<∞)⊥. Clearly, U ⊆ (S<∞)⊥. On the
other hand, if M ∈ (S<∞)⊥, then PE(M) ∈ (S<∞)⊥ ∩ PI = T ∩ PI. In
particular PE(M) ∈ U , thus M ∈ U .

Corollary 5.23. If R is a coherent ring, then every bundle B of 1-tilting
classes contains exactly one 1-tilting class U of a finite type, and U is the
greatest element in B.

Proof. Cf. corollary 5.15.

Thus, the conjecture of any 1-tilting class being of a finite type for a
subclass of coherent rings translates to the condition that every bundle has
exactly one element. Or equivalently that the least and the greatest elements
of any bundle are the same. The problem now is, how to determine that
a tilting class is the least element of a bundle. There is a simple lemma
taking care of the case when a tilting module with a decomposition into
pure-injectives exists:

Lemma 5.24. Let R be a coherent ring, B be a bundle of 1-tilting classes
and T be an element of B. Then T is the least element of B, whenever
there is a tilting module T , such that T = T⊥ and T is a direct sum of
pure-injective modules.

Proof. Suppose that we have such a T , and there is a 1-tilting class U in the
same bundle B, such that U ⊆ T . This implies that T ∈ Add(T ∩ PI) =
Add(U ∩ PI). Thus, T ∈ U , and also T ∈ ⊥T ⊆ ⊥U . But then U = T⊥

by [6, 2.10].

The rest of this section is devoted to 1-tilting classes over artin alge-
bras. In the dual case of cotilting classes, there is a bijective corespondence
between 1-cotilting classes and torsion-free classes of finitely presented mod-
ules containing R for any left noetherian ring R [23, 3.10]. We will show that
there is a similar statement for tilting classes over artin algebras, but only
on the level of 1-tilting classes of a finite type, or equivalently on the level of
bundles.
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Proposition 5.25. Let R be an artin algebra. There is a bijective corre-
spondence between 1-tilting classes T of a finite type, and torsion classes R
in R-mod containing D(R). The correspondence is given by the mutually
inverse assignments T �→ T ∩ R-mod and R �→ cog∗R, where cog∗R is a
class of pure submodules of products of modules from R.

Proof. If T is a 1-tilting class of a finite type, then clearly T ∩ R-mod is a
torsion class containing D(R).

On the other hand, let R ⊆ R-mod be such a torsion class. Notice that
⊥R ⊆ P1, since R contains all finitely generated injectives, thus all cosyzygies
of simple modules. If we denote A = (⊥R)∩R-mod, then (A, (⊥R)⊥∩R-mod)
is a cotorsion pair in R-mod by lemma 5.17. But, for M finitely presented,
M ∈ (⊥R)⊥ if, and only if, DM ∈ lim−→DR if, and only if, DM ∈ DR if, and
only if, M ∈ R by lemma 5.16 and Lenzing’s characterisation of direct limits
of finitely presented modules [16]. So, (A,R) is a cotorsion pair in R-mod,
and A⊥ = cog∗R by proposition 5.18. Thus, cog∗R is a 1-tilting class of a
finite type.

The equalities R = cog∗R∩R-mod and T = cog∗(T ∩R-mod) follow by
lemma 5.17 and proposition 5.18 again.

The last proposition yields that in a special case the duality works diretly
on 1-tilting modules too.

Proposition 5.26. Let R be an artin algebra over an algebraically closed
field, and T a 1-tilting module. Then DT is a 1-cotilting module (of a cofinite
type).

Proof. We have id DT ≤ 1 by lemma 5.5, and a ProdDT -coresolution of
D(R) could be obtained just by dualizing an AddT -resolution of R. It
only remains to show that Ext1

R(DT κ, DT ) = 0 for any cardinal κ. But
Ext1

R(DT κ, DT ) ∼= Ext1
R(D(T (κ)), DT ) = 0 if, and only if, Ext1

R(T, D2(T (κ))) =
0 by lemma 5.2. But the last condition is satisfied by lemma 5.21. Finally,
every 1-cotilting module over any artinian ring is of a cofinite type, [23,
4.11].
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