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Definition of a cotorsion pair

Notation: R a ring, ModR the category of R-right modules.

Definition (Salce, 1977)
Let X ,Y be two classes of modules. The pair (X ,Y) is a cotorsion pair
if

X = ⊥Y def .
= {X | Ext1R(X ,Y ) = 0 ∀Y ∈ Y}

Y = X⊥ def .
= {Y | Ext1R(X ,Y ) = 0 ∀X ∈ X}

The cotorsion pair is complete if for each M ∈ ModR, there are short
exact sequences

0→ M → Y → X → 0 and 0→ Y ′ → X ′ → M → 0

such that X ,X ′ ∈ X and Y ,Y ′ ∈ Y. beyond
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Jan Št’ovíček (Charles University) Inf. combinatorics & homological algebra September 3, 2011 4 / 29



Definition of a cotorsion pair

Notation: R a ring, ModR the category of R-right modules.

Definition (Salce, 1977)
Let X ,Y be two classes of modules. The pair (X ,Y) is a cotorsion pair
if

X = ⊥Y def .
= {X | Ext1R(X ,Y ) = 0 ∀Y ∈ Y}

Y = X⊥ def .
= {Y | Ext1R(X ,Y ) = 0 ∀X ∈ X}

The cotorsion pair is complete if for each M ∈ ModR, there are short
exact sequences

0→ M → Y → X → 0 and 0→ Y ′ → X ′ → M → 0

such that X ,X ′ ∈ X and Y ,Y ′ ∈ Y. beyond
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Beyond module categories

Cotorsion can be defined in more general additive categories C.
We need a class E of diagrams of the form

0 // Y
i // E

p // X // 0

playing the role of short exact sequences and some suitable
axioms for these.
Such a pair (C, E) is called an exact category [Quillen 1972; Keller
1990].
The condition Ext1(X ,Y ) = 0 means that each designated
sequence above splits. That is, there exist morphisms r and s
such that

ri = 1Y and ps = 1X and ir + sp = 1E .
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Beyond module categories—continued

Once we give a meaning of a short exact sequence and the
vanishing of Ext1 in C, we can define a complete cotorsion pair
there. definition

Various problems about localization of algebraic triangulated
categories formally translate to problems about cotorsion pairs in
exact categories.
Parts of the theory for modules has been generalized [Saorín-Š.
2011].

Motto
If one wants to understand the behavior of triangulated categories, it is
good to understand some aspects of cotorsion pairs in module
categories.
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Jan Št’ovíček (Charles University) Inf. combinatorics & homological algebra September 3, 2011 6 / 29



Outline

1 Cotorsion pairs

2 Small object argument and related

3 Deconstruction

4 Hunter’s cardinal argument
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Are there incomplete cotorsion pairs?

Shortly, I will discuss techniques for proving that a given cotorsion
pair (X ,Y) is complete.
Paradox: It seems much harder to prove that a cotorsion pair is
not complete.
Facts: The cotorsion pair (⊥Z, (⊥Z)⊥) in Ab is not complete in
certain consistent extension of ZFC [Eklof-Shelah 2003]. But it is
complete in another consistent extension of ZFC (e.g. V=L).
No example of a cotorsion pair in a module category which is
provably incomplete in ZFC seems to be known!
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Jan Št’ovíček (Charles University) Inf. combinatorics & homological algebra September 3, 2011 8 / 29



Filtrations
Definition
Let X ∈ ModR. A filtration of X is a well ordered chain

0 = X0 ⊆ X1 ⊆ X2 ⊆ · · · ⊆ Xα ⊆ Xα+1 ⊆ · · · ⊆ Xσ = X

of submodules of X such that for all limit ordinals α ≤ σ:

Xα =
⋃
β<α

Xβ (no gaps!)

Suppose that S ⊆ ModR is a class of modules. We call X an S-filtered
module (or a transfinite extension of modules from S) if there is a
filtration (Xα | α ≤ σ) such that up to isomorphism

Xα+1/Xα ∈ S for each α + 1 ≤ σ.

Denote by FiltS the class of all S-filtered modules.
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Closure properties and the small object argument
Let (X ,Y) be a cotorsion pair in ModR.
Clearly, R ∈ X (since R is projective) and X is closed under
retracts.

Lemma (Auslander; Eklof, 1977)
X is closed under transfinite extensions. That is, an X -filtered module
belongs to X .

Theorem (Eklof-Trlifaj, 2001; the idea is older: Quillen 1967)
Let S be a set of R-modules containing R. Then the cotorsion pair

(X ,Y)
def .
= (⊥(S⊥),S⊥)

is complete. Moreover, for each module X we have:

X ∈ X ⇐⇒ X is a retract of an S-filtered module.
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The Hill lemma and consequences
We can do better.
There is a technical result, called the Hill lemma, roughly saying
that an S-filtered module typically has many particular filtrations
with consecutive factors in S. Such filtrations can be constructed
“on demand”.
Several variants in the literature: [Hill 1981], [Eklof-Fuchs-Shelah
1990], [Fuchs-Lee 2004], [Š.-Trlifaj 2009], [Š. 2011]. details

As a consequence one can prove:

Theorem
Let X ⊆ ModR be a class closed under retracts. The following are
equivalent:

1 There is a (necessarily complete) cotorsion pair (X ,Y) such that
Y = S⊥ for some set S.

2 There is a set S ′ of modules containing R such that X = FiltS ′.
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Jan Št’ovíček (Charles University) Inf. combinatorics & homological algebra September 3, 2011 11 / 29



The Hill lemma and consequences
We can do better.
There is a technical result, called the Hill lemma, roughly saying
that an S-filtered module typically has many particular filtrations
with consecutive factors in S. Such filtrations can be constructed
“on demand”.
Several variants in the literature: [Hill 1981], [Eklof-Fuchs-Shelah
1990], [Fuchs-Lee 2004], [Š.-Trlifaj 2009], [Š. 2011]. details

As a consequence one can prove:

Theorem
Let X ⊆ ModR be a class closed under retracts. The following are
equivalent:

1 There is a (necessarily complete) cotorsion pair (X ,Y) such that
Y = S⊥ for some set S.

2 There is a set S ′ of modules containing R such that X = FiltS ′.
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Outline

1 Cotorsion pairs

2 Small object argument and related

3 Deconstruction

4 Hunter’s cardinal argument

Jan Št’ovíček (Charles University) Inf. combinatorics & homological algebra September 3, 2011 12 / 29



Deconstruction

To prove that we have a complete cotorsion pair, it is often enough
to prove that some class X is of the form FiltS ′, S ′ a set.
This is called deconstruction—we want to “deconstruct” each
X ∈ X to a filtration with “small composition factors”, again in X .
The usual procedure:

1 Choose a cardinal µ, a bound for the size of composition factors.
2 Prove that each module X ∈ X of cardinality κ > µ admits a

filtration

0 = X0 ⊆ X1 ⊆ X2 ⊆ · · · ⊆ Xα ⊆ Xα+1 ⊆ · · · ⊆ Xσ = X

such that each Xα+1/Xα belongs to X and has cardinality < κ.
3 Proceed by induction on the cardinality of X ∈ X .

Methods to achieve Step 2 above are typically very different when
κ is regular compared to when κ is singular.
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Jan Št’ovíček (Charles University) Inf. combinatorics & homological algebra September 3, 2011 13 / 29



Deconstruction

To prove that we have a complete cotorsion pair, it is often enough
to prove that some class X is of the form FiltS ′, S ′ a set.
This is called deconstruction—we want to “deconstruct” each
X ∈ X to a filtration with “small composition factors”, again in X .
The usual procedure:

1 Choose a cardinal µ, a bound for the size of composition factors.
2 Prove that each module X ∈ X of cardinality κ > µ admits a

filtration

0 = X0 ⊆ X1 ⊆ X2 ⊆ · · · ⊆ Xα ⊆ Xα+1 ⊆ · · · ⊆ Xσ = X

such that each Xα+1/Xα belongs to X and has cardinality < κ.
3 Proceed by induction on the cardinality of X ∈ X .

Methods to achieve Step 2 above are typically very different when
κ is regular compared to when κ is singular.
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Jan Št’ovíček (Charles University) Inf. combinatorics & homological algebra September 3, 2011 13 / 29



Deconstruction

To prove that we have a complete cotorsion pair, it is often enough
to prove that some class X is of the form FiltS ′, S ′ a set.
This is called deconstruction—we want to “deconstruct” each
X ∈ X to a filtration with “small composition factors”, again in X .
The usual procedure:

1 Choose a cardinal µ, a bound for the size of composition factors.
2 Prove that each module X ∈ X of cardinality κ > µ admits a

filtration

0 = X0 ⊆ X1 ⊆ X2 ⊆ · · · ⊆ Xα ⊆ Xα+1 ⊆ · · · ⊆ Xσ = X

such that each Xα+1/Xα belongs to X and has cardinality < κ.
3 Proceed by induction on the cardinality of X ∈ X .

Methods to achieve Step 2 above are typically very different when
κ is regular compared to when κ is singular.
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The regular case

Suppose X ∈ X and κ = |X | is a regular cardinal greater than or
equal to µ. We typically proceed in two steps:

1 We find a filtration (Xα | α ≤σ) such that |Xα| < κ and Xα ∈ X for all
α <σ. So far it may well happen that Xα+1/Xα 6∈ X !

2 We hope to find a closed unbounded subset C ⊆ κ such that
(Xα | α ∈ C) has all consecutive factors in X .

Step 1 is specific to the class X . For example if R = Z, the left
hand class of every cotorsion pair X is closed under submodules
and the filtration comes for free.
For Step 2, there is a set-theoretic invariant which determines how
lucky we can be.
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Jan Št’ovíček (Charles University) Inf. combinatorics & homological algebra September 3, 2011 14 / 29



The regular case

Suppose X ∈ X and κ = |X | is a regular cardinal greater than or
equal to µ. We typically proceed in two steps:

1 We find a filtration (Xα | α ≤κ) such that |Xα| < κ and Xα ∈ X for all
α <κ. So far it may well happen that Xα+1/Xα 6∈ X !

2 We hope to find a closed unbounded subset C ⊆ κ such that
(Xα | α ∈ C) has all consecutive factors in X .

Step 1 is specific to the class X . For example if R = Z, the left
hand class of every cotorsion pair X is closed under submodules
and the filtration comes for free.
For Step 2, there is a set-theoretic invariant which determines how
lucky we can be.

Jan Št’ovíček (Charles University) Inf. combinatorics & homological algebra September 3, 2011 14 / 29



The regular case

Suppose X ∈ X and κ = |X | is a regular cardinal greater than or
equal to µ. We typically proceed in two steps:

1 We find a filtration (Xα | α ≤κ) such that |Xα| < κ and Xα ∈ X for all
α <κ. So far it may well happen that Xα+1/Xα 6∈ X !

2 We hope to find a closed unbounded subset C ⊆ κ such that
(Xα | α ∈ C) has all consecutive factors in X .

Step 1 is specific to the class X . For example if R = Z, the left
hand class of every cotorsion pair X is closed under submodules
and the filtration comes for free.
For Step 2, there is a set-theoretic invariant which determines how
lucky we can be.
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Jan Št’ovíček (Charles University) Inf. combinatorics & homological algebra September 3, 2011 14 / 29



The regular case

Suppose X ∈ X and κ = |X | is a regular cardinal greater than or
equal to µ. We typically proceed in two steps:

1 We find a filtration (Xα | α ≤κ) such that |Xα| < κ and Xα ∈ X for all
α <κ. So far it may well happen that Xα+1/Xα 6∈ X !

2 We hope to find a closed unbounded subset C ⊆ κ such that
(Xα | α ∈ C) has all consecutive factors in X .

Step 1 is specific to the class X . For example if R = Z, the left
hand class of every cotorsion pair X is closed under submodules
and the filtration comes for free.
For Step 2, there is a set-theoretic invariant which determines how
lucky we can be.
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Stationary sets
Definition
Let κ be an uncountable regular cardinal. We say that two subsets
S,T ⊆ κ are equivalent, S ∼ T , if there exist a closed unbounded
subset C ⊆ κ such that

S ∩ C = T ∩ C.

A subset S ⊆ κ is called stationary if [S]∼ 6= [∅]∼. In other words, S
intersects every closed unbounded subset of κ.

Example
Let λ < κ be another regular cardinal. Then

Sλ = {α < κ | cof(α) = λ}

is stationary.
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Jan Št’ovíček (Charles University) Inf. combinatorics & homological algebra September 3, 2011 15 / 29



Stationary sets
Definition
Let κ be an uncountable regular cardinal. We say that two subsets
S,T ⊆ κ are equivalent, S ∼ T , if there exist a closed unbounded
subset C ⊆ κ such that

S ∩ C = T ∩ C.

A subset S ⊆ κ is called stationary if [S]∼ 6= [∅]∼. In other words, S
intersects every closed unbounded subset of κ.

Example
Let λ < κ be another regular cardinal. Then

Sλ = {α < κ | cof(α) = λ}

is stationary.
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The Γ-invariant
Recall: So far we have a filtration (Xα | α ≤ κ) such that |Xα| < κ
and Xα ∈ X for all α < κ.
Define the set of “bad” places in the filtration:

E =
{
α < κ | {β | α < β < κ and Xβ/Xα 6∈ X} is stationary

}
Lemma
The equivalence class [E ]∼ does not depend on the choice of the
filtration (Xα | α ≤ κ).

Definition
Γ(X ) = [E ]∼ is called the Γ-invariant of X .

Corollary
X admits a filtration (X ′α | α ≤ κ) with |X ′α| < κ and X ′α+1/X

′
α ∈ X for all

α < κ if and only if Γ(X ) = [∅]∼ if and only if E is not stationary.
illustration
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Shelah’s Singular Compactness for groups
What to do for singular cardinals? The methods for regular
cardinals do not work, but we have:

Theorem (Shelah, 1974)
If κ is a singular cardinal and X is an abelian group of cardinality κ, all
of whose subgroups of strictly smaller cardinality are free, then X is
free.

Consequence: Assuming ♦κ for each regular κ (follows from V=L,
consistent with ZFC) then an abelian group belongs to ⊥Z if and
only if it is free.
Some other combinatorial principles may prevent deconstruction
at regular cardinals: It is consistent with ZFC that there are
non-free groups in ⊥Z.
This is Shelah’s solution to the Whitehead problem [Shelah 1974].
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Jan Št’ovíček (Charles University) Inf. combinatorics & homological algebra September 3, 2011 17 / 29



Shelah’s Singular Compactness for groups
What to do for singular cardinals? The methods for regular
cardinals do not work, but we have:

Theorem (Shelah, 1974)
If κ is a singular cardinal and X is an abelian group of cardinality κ, all
of whose subgroups of strictly smaller cardinality are free, then X is
free.

Consequence: Assuming ♦κ for each regular κ (follows from V=L,
consistent with ZFC) then an abelian group belongs to ⊥Z if and
only if it is free.
Some other combinatorial principles may prevent deconstruction
at regular cardinals: It is consistent with ZFC that there are
non-free groups in ⊥Z.
This is Shelah’s solution to the Whitehead problem [Shelah 1974].
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Shelah’s Singular Compactness more generally
Theorem (Eklof-Fuchs-Shelah, 1990)
Let S be a set of modules and µ be a cardinal such that each S ∈ S is
≤ µ-presented. Suppose we are given a singular cardinal κ > µ, a
κ-generated module X, and for each regular cardinal λ such that
µ < λ < κ a set Cλ of λ-generated submodules of X satisfying:

1 every element of Cλ is S-filtered;
2 every subset of X of cardinality < λ is contained in an element of
λ; and

3 Cλ is closed under unions of well-ordered chains of length < λ.

Then X is S-filtered.

1 If R is fixed and κ� 0, then:
X is κ-presented⇐⇒ X is κ-generated⇐⇒ |X | ≤ κ.

2 The proof of the theorem is similar to the one for groups.
3 The Hill lemma is used again.
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Applications of the deconstruction methods

1 The solution to the Whitehead problem: It is independent of ZFC
whether all abelian groups in ⊥Z are free. [Shelah 1974]

2 The solution to the Baer splitting problem: Over a commutative
domain R, a module X is projective if and only if Ext1R(X ,T ) = 0
for any torsion module T . [Eklof-Fuchs-Salce 1990],
[Angeleri-Bazzoni-Herbera 2008]

3 Structure theory for infinitely generated tilting modules.
[Bazzoni-Eklof-Trlifaj 2005], [Š.-Trlifaj 2007], [Bazzoni-Herbera
2008], [Bazzoni-Š. 2007].
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Summary for deconstruction

Deconstruction methods for modules of regular cardinality (or with
a generating set of regular cardinality):

1 the Γ-invariant,
2 infinite combinatorial principles.

Deconstruction methods for singular cardinalities: Shelah’s
Singular Compactness.

Scope of applicability: Not only modules, many results generalize
to Grothendieck categories (e.g. categories of sheaves) and likely
also to some exact categories useful in homological algebra (e.g.
categories of complexes with componentwise split short exact
sequences).

Jan Št’ovíček (Charles University) Inf. combinatorics & homological algebra September 3, 2011 20 / 29



Summary for deconstruction

Deconstruction methods for modules of regular cardinality (or with
a generating set of regular cardinality):

1 the Γ-invariant,
2 infinite combinatorial principles.

Deconstruction methods for singular cardinalities: Shelah’s
Singular Compactness.

Scope of applicability: Not only modules, many results generalize
to Grothendieck categories (e.g. categories of sheaves) and likely
also to some exact categories useful in homological algebra (e.g.
categories of complexes with componentwise split short exact
sequences).
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Outline

1 Cotorsion pairs

2 Small object argument and related

3 Deconstruction

4 Hunter’s cardinal argument
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Hunter’s lemma
There is another way to prove Ext1(X ,Y ) = 0 using set theory:

Lemma (Hunter, 1976)
Let X ,Y be modules and suppose we have an exact sequence

ε : 0 //P //E //X (I) //0 ,

|HomR(P,Y )| < 2|I| and Ext1R(E ,Y ) = 0. Then Ext1R(X ,Y ) = 0.

Proof
Applying HomR(−,Y ) to ε, we get an exact sequence
HomR(P,Y )→ Ext1R(X (I),Y )→ Ext1R(E ,Y ) = 0.
In particular, |Ext1R(X (I),Y )| ≤ |HomR(P,Y )| < 2|I|.
On the other hand, Ext1R(X (I),Y ) ∼= Ext1R(X ,Y )I , so if
Ext1R(X ,Y ) 6= 0, then |Ext1R(X (I),Y )| ≥ 2|I|.
Thus, Ext1R(X ,Y ) = 0.
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Applications of Hunter’s argument

1 Structure theory for infinitely generated cotilting modules [Bazzoni
2003], [Š. 2006].

2 Properties of flat Mittag-Leffler modules over countable rings
[Bazzoni-Š. 2011], based on [Estrada-Guil-Prest-Trlifaj 2009],
[Herbera-Trlifaj 2009], [Šaroch-Trlifaj 2011].

3 Remark: Compared to deconstruction techniques, this method not
very systematic, but it gives “miraculous” proofs that some Ext
groups vanish.
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Jan Št’ovíček (Charles University) Inf. combinatorics & homological algebra September 3, 2011 23 / 29



The role of deconstructibility revisited

Recall: Let X ⊆ ModR be a class containing R, closed under
retracts, transfinite extensions and X = FiltS for a set S. Then
there exist a complete cotorsion pair (X ,Y).
Consider the class D of flat Mittag-Leffler abelian groups. An
abelian group is flat Mittag-Leffler if and only if each countable
subgroup is free [Azumaya-Facchini, 1989]. For instance, Zω is
flat Mittag-Leffler, but Q is not.
Then D contains R and it is closed under retracts and transfinite
extensions [Angeleri-Herbera 2008].
However, there is no cotorsion pair of the form (D,Y)! In fact,
⊥(D⊥) is the category of all torsion-free abelian groups, so
⊥(D⊥) % D. This extends to flat Mittag-Leffler modules over any
countable ring.
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Jan Št’ovíček (Charles University) Inf. combinatorics & homological algebra September 3, 2011 24 / 29



The role of deconstructibility revisited

Recall: Let X ⊆ ModR be a class containing R, closed under
retracts, transfinite extensions and X = FiltS for a set S. Then
there exist a complete cotorsion pair (X ,Y).
Consider the class D of flat Mittag-Leffler abelian groups. An
abelian group is flat Mittag-Leffler if and only if each countable
subgroup is free [Azumaya-Facchini, 1989]. For instance, Zω is
flat Mittag-Leffler, but Q is not.
Then D contains R and it is closed under retracts and transfinite
extensions [Angeleri-Herbera 2008].
However, there is no cotorsion pair of the form (D,Y)! In fact,
⊥(D⊥) is the category of all torsion-free abelian groups, so
⊥(D⊥) % D. This extends to flat Mittag-Leffler modules over any
countable ring.

Jan Št’ovíček (Charles University) Inf. combinatorics & homological algebra September 3, 2011 24 / 29



The role of deconstructibility revisited

Recall: Let X ⊆ ModR be a class containing R, closed under
retracts, transfinite extensions and X = FiltS for a set S. Then
there exist a complete cotorsion pair (X ,Y).
Consider the class D of flat Mittag-Leffler abelian groups. An
abelian group is flat Mittag-Leffler if and only if each countable
subgroup is free [Azumaya-Facchini, 1989]. For instance, Zω is
flat Mittag-Leffler, but Q is not.
Then D contains R and it is closed under retracts and transfinite
extensions [Angeleri-Herbera 2008].
However, there is no cotorsion pair of the form (D,Y)! In fact,
⊥(D⊥) is the category of all torsion-free abelian groups, so
⊥(D⊥) % D. This extends to flat Mittag-Leffler modules over any
countable ring.
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Rich systems of submodules from sums

Let µ be a regular cardinal and S be a set of < µ-presented
modules not containing 0.
Suppose we have a module of the form M =

⊕
α<σ Sα.

Then we can find a distributive complete sublattice L of
submodules of M such that :

1 0 ∈ L and M ∈ L,
2 given N,P ∈ L, N ⊆ P, we have P/N ∼=

⊕
α∈I Sα for some I ⊆ σ,

3 every subset X ⊆ M of cardinality < µ is contained in a
< µ-presented module from L.

Obvious choice: L =
{⊕

α∈I Sα | I ∈ P(σ)
}

.
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Rich systems of submodules from filtrations

Again let µ be a regular cardinal and S be a set of < µ-presented
modules not containing 0.
Suppose now M has an S-filtration (Mα | α ≤ σ).
Then again we can find a distributive complete sublattice L of
submodules of M such that :

1 0 ∈ L and M ∈ L,
2 given N,P ∈ L, N ⊆ P, we have P/N is S-filtered,
3 every subset X ⊆ M of cardinality < µ is contained in a
< µ-presented module from L.

Idea behind:
1 for each α fix a < µ-generated submodule Aα ⊆ M such that

Mα+1 = Mα + Aα,
2 L =

{∑
α∈I Aα | I ∈ P ′} for a suitable complete sublattice

P ′ ⊆ P(σ). back
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The regular case—an illustration
Methods for proving that Γ(X ) = [∅]∼: either specific to the
situation or with the aid of combinatorial principles.
Fix a module Y and put X = ⊥Y .
Suppose we have X ∈ X of cardinality κ for κ ≥ |Y | regular and
we have succeeded in finding a filtration (Xα | α ≤ κ) such that
|Xα| < κ and Xα ∈ X for all α < κ.
We can be lucky and have Jensen’s Diamond Principle ♦κ at our
disposal (a combinatorial principle which is independent of ZFC):

Definition (♦κ)
For every stationary set E , there is a set of functions fα : Xα → Y × Xα
(α ∈ E) such that for any function f : X → Y × X , the set

{α ∈ E | fα = f |Xα}

remains stationary (in particular it is non-empty).
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Jan Št’ovíček (Charles University) Inf. combinatorics & homological algebra September 3, 2011 28 / 29



The regular case—an illustration
Methods for proving that Γ(X ) = [∅]∼: either specific to the
situation or with the aid of combinatorial principles.
Fix a module Y and put X = ⊥Y .
Suppose we have X ∈ X of cardinality κ for κ ≥ |Y | regular and
we have succeeded in finding a filtration (Xα | α ≤ κ) such that
|Xα| < κ and Xα ∈ X for all α < κ.
We can be lucky and have Jensen’s Diamond Principle ♦κ at our
disposal (a combinatorial principle which is independent of ZFC):

Definition (♦κ)
For every stationary set E , there is a set of functions fα : Xα → Y × Xα
(α ∈ E) such that for any function f : X → Y × X , the set

{α ∈ E | fα = f |Xα}

remains stationary (in particular it is non-empty).
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Jan Št’ovíček (Charles University) Inf. combinatorics & homological algebra September 3, 2011 28 / 29



The regular case—an illustration
Methods for proving that Γ(X ) = [∅]∼: either specific to the
situation or with the aid of combinatorial principles.
Fix a module Y and put X = ⊥Y .
Suppose we have X ∈ X of cardinality κ for κ ≥ |Y | regular and
we have succeeded in finding a filtration (Xα | α ≤ κ) such that
|Xα| < κ and Xα ∈ X for all α < κ.
We can be lucky and have Jensen’s Diamond Principle ♦κ at our
disposal (a combinatorial principle which is independent of ZFC):

Definition (♦κ)
For every stationary set E , there is a set of functions fα : Xα → Y × Xα
(α ∈ E) such that for any function f : X → Y × X , the set

{α ∈ E | fα = f |Xα}
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The regular case—an illustration continued
The set of bad points simplifies to

E =
{
α < κ | (∃β)(α < β < κ and Xβ/Xα 6∈ X )

}
Suppose that Γ(X ) 6= [∅]∼, so E is stationary.
This allows us to take E ′ ∼ E and construct a filtration

0 ⊆ Y = F0 ⊆ F1 ⊆ F2 ⊆ · · · ⊆ Fα ⊆ Fβ ⊆ · · · ⊆ Fκ = F

such that for each α < κ we have a split exact sequence

εα : 0 //Y
⊆ //Fα //Xα //0 ,

but if fα : Xα → Fα(= Y × Xα) with α ∈ E ′ is a splitting of εα, we
cannot extend fα to a splitting of 0→ Y → F → X → 0.
But then no f : X → F can be a splitting, since f |Xα = fα for some
α ∈ E and fα does not extend—contradicting Ext1

R(X ,Y ) = 0!
Hence Γ(X ) = [∅]∼. back
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