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The finitistic dimension
conjectures



A general aim

Given a ring R (associative, with unit, not necessarily
commutative), we would like to understand the structure of right
R-modules.
Example

e R = k a field—linear algebra,

e R = k[x]—Jordan normal form, still linear algebra (a
k[x]-module is the same as a vector space V with a linear

operator x - —: V — V),
o R=klxi,....,xn), R=(k%), R=(k9), R=kG
(G a group) ...



The projective dimension of a module

e We will try to understand a right R-module M in terms of
generators and relations.

e Formally, we construct a free resolution of M:

oo R 5 RW) 5 Rlb) 4 01— 0
e Here:
e [y indexes generators of M,
e /1 indexes relations between the generators,
e |, indexes relations between the relations, . ..

e Does this procedure stop?
e We define the projective dimension of M as

proj.dim. M =sup{n | 30— P, —--- = P —» Py - M — 0}

with all P, projective (= direct summands of free R-modules).
e If no such finite sequence exists, we put proj. dim. M = cc.



The global dimension of a ring

e This allows us to define a measure of how complicated the
module theory for a given ring R is:

e We define the (right) global dimension of R as
gl.dim. R = sup{proj.dim. M | M € Mod-R}.

e Fact (Baer criterion):
gl.dim. R = sup{proj.dim. R/l | | < R right ideal}.

Theorem (Hilbert, 1890)
If k is a field, then gl.dim. k[x1,...,xn] = n.



An example

e Sometimes, the global dimension is not an adequate measure
of complexity of Mod-R.

e Consider for example the dual numbers R = k[x]/(x?).

e Then each R-module is direct sum of copies of R and
R/(x) = k, so the structure of R-modules is not much more
complicated than those of vector spaces.

e On the other hand, gl.dim. R = oo since proj. dim. k = oc:
.5 RERZR—-k—0

o Need for finer invariants!



The finitistic dimensions of a ring

Definition

1. The (right) big finitistic dimension of a ring R is defined as

Fin.dim. R = sup{proj.dim. M | M € Mod-R & proj.dim. M < oo}.

2. The (right) little finitistic dimension of a ring R is defined as

fin.dim. R = sup{proj.dim. M | M fin. gen. & proj.dim. M < oc}.

Warning: If R is a nice enough ring (e.g. left and right noetherian)
then the left and right global dimensions are equal.

This is not true for finitistic dimensions even for finite dimensional

algebras over a field!



The finitistic dimension conjectures

Conjectures (Bass, ~1960)
(1) fin.dim. R = Fin.dim. R,
(1) fin.dim. R < oc.

In Conjecture Il, we can alternatively ask whether Fin.dim. R < oc.

e | will discuss the conjectures in the situations where
1. R is a (certain) commutative noetherian ring and
2. R is a finite dimensional algebra over a field.

e It turns out that Conjecture | is false.

e Conjecture Il for finite dimensional algebras is, on the other
hand, and important open problem (despite really a lot of
effort to solve it)!

e Reference: B. Huisgen-Zimmermann, The finitistic dimension
conjectures—a tale of 3.5 decades, in Abelian Groups and
Modules, 501-517, Dordrecht (1995) Kluwer, arXiv:1407.2383. 7



Finitistic dimensions in
commutative algebra




Coordinate rings of algebraic varieties

e In this part, let k be for the sake of simplicity an algebraically

closed field.
e An algebraic variety V C k" is the set of zeroes of some
collection of polynomials S C k[xq, ..., xs].
e The real part of V C C? if k = C may look like:
y y
X X
S={y>—x(x—-1)(x+1)} S={y> - x’(x+1)}
(smooth) (singular)



Coordinate rings of algebraic varieties

e Algebraic varieties V' C k" always come with a coordinate ring,
which is the ring of functions ¢: V — k given by a polynomial
in the coordinates of points of V.

e Standard fact: k[V] = k[x1,...,xp]/I(V), where
I(V)={f € k[x1,...,xn] | f vanishes on V}

e One can show that, in our previous examples (with k = C), we
have C[V] = C|x, y]/(y?> — x(x — 1)(x + 1)) and
C[V] = Cx, y]/(y? — x®(x + 1)), respectively.

e These rings are clearly commutative and they are noetherian
by Hilbert's Basis Theorem.



The Krull dimension

In order to explain the relevance of finitistic dimensions in for
coordinated rings, we need a geometric notion of dimension of a
variety which works over any algebraically closed field.

Definition

Let V C k" be an algebraic variety. We say that V is irreducible if
it is non-empty and we cannot write V = Vj U V, with algebraic
varieties V1, Vs ; V.

Definition _

Let V C k" be an irreducible algebraic variety. We define the Krull

dimension of V inductively as follows:
e Irreducible varieties of dimension 0 are precisely points.
e V has dimension n > 0 if all irreducible varieties W ; V have

dimension < n — 1, but V itself does not have dimension

<n-1. 10



The big finitistic dimension for commutative notherian rings

Theorem (Bass, 1962 and Gruson-Raynaud, 1971)
If V is an algebraic variety, then Fin.dim. k[V] equals the Krull

dimension of V.

Theorem (Auslander-Buchsbaum-Serre, 1956)

If V is an algebraic variety, then gl.dim. k[V] < oo iff V is smooth.
In that case, gl.dim. k[V] equals the Krull dimension of V.

Remarks
1. One can define the Krull dimension for any commutative
noetherian ring R in terms of lengths of chains of prime ideals.

2. In that case, one still has that Fin.dim. R equals the Krull
dimension of R.

3. At this level of generality, Conjecture Il fails. Nagata (1962)
constructed commutative noetherian rings of infinite Krull
dimension. 11



The little finitistic dimension

e The little finitistic dimension also has an interpretation:
e If R is commutative local noetherian, then fin.dim. R equals
the depth of R (a certain algebraic invariant of R).

e This, together with the interpretation of Fin.dim. R, shows
that Conjecture | (i.e. fin.dim. R = Fin.dim. R), often fails for
commutative noetherian local rings.

e More in detail, Conjecture | holds for R iff the Krull dimension
of R equals the depth of R, which by definition means that R
is a so-called Cohen-Macaulay ring.

12



Finite dimensional algebras




Homological conjectures

e There exist a collection of homological conjectures in
representation theory of finite dimensional algebras which
postulate certain homological finiteness and symmetries.

e Variants of Conjecture Il are one of the strongest among these
(from now on, R is possibly non-commutative finite
dimensional algebra over a field k):

Fin.dim. R < oo for all R

4

fin.dim. R < oo for all R
\
Nakayama conjecture, Generalized Nakayama Conjecture,
Nunke Condition, Gorenstein Symmetry Conjecture, ...
e On the other hand, Conjecture | fails in general

(Huisgen-Zimmerman, 1992; Smalg, 1998).
13



Known cases where fin.dim. < oo holds

e The finiteness of the little (and sometimes also the big)
finitistic dimension has been verified in various special cases:

e If R has Loewy length < 3,
e If R is a monomial path algebra, i.e.
R = kQ/(a collection of paths), where Q is a finite quiver,

e . ..
e There are also situations where Fin.dim. R < oo for almost
trivial reasons, e.g. if R is a local algebra or an
Iwanaga-Gorenstein algebra.

e A plethora of reduction techniques have been developed, which
roughly say that if fin.dim. R < oo for an algebra R, then also
fin.dim. S < oo for another algebra S related to R.

14



The derived categories, part 1

e Given a short exact sequence 0 > K — L — M — 0 in
Mod-R and X € Mod-R, we only obtain a left exact sequence
of abelian groups

0 — Homg(X, K) — Homg(X, L) — Homg(X, M).
e It is well known that one can complete this naturally to an
infinite long exact sequence
0 — Homg(X, K) = Homg(X, L) = Homg(X, M) —
Exth(X, K) — Exth(X, L) — Exth(X, M) —
Ext%(X, K) — Ext%(X, L) — Ext%(X, M) — - -
e Grothendieck invented in 1958 a category D(Mod-R), which
contains Mod-R and comes equipped with an autoequivalence
Y : D(Mod-R) — D(Mod-R) such that

EXt’;?(X, M) = HomD(Mod_R)(X, ZnM) s



The derived categories, part 2

e An illustration:

e One constructs D(Mod-R) as the category of cochain

D(Mod-R)

complexes of modules

ot XO o Xl ot X2

localized at all the cohomology isomorphisms.

D X1

e One can also construct a bounded version, Db(mod—R),
considering only bounded complexes of finitely generated

modules. 16



Invariance under derived equivalence

Definition (Happel, 1987; Rickard, 1989; Keller, 1994)

Algebras R and S are derived equivalent if D(Mod-R) ~ D(Mod-S)
(this happens iff D’(mod-R) ~ D®(mod-S)).

Theorem (Happel, 1993)

Suppose that R and S are finite dimensional algebras which are
derived equivalent. Then fin.dim. R < oo iff fin.dim. S < oc.

17



Recent developments




Rickard’s injective generation, part 1

e A new member in the family of homological conjectures
appeared recently (Rickard, 2019, published in Adv. Math.,
arXiv:1804.09801):

The injective cogenerator E := Hom(R, k) generates
D(Mod-R).
4

Fin.dim. R < oo for all R

4

fin.dim. R < oo for all R

4

Other homological conjectures ...

e This property is actually not so difficult to check in particular
examples of finite dimensional algebras!

18



Rickard’s injective generation, part 2

e Injective generation of D(Mod-R) (Rickard, 2019, published in
Adv. Math., arXiv:1804.09801):

e Put £ := Homy(R, k) € Mod-R. This is an injective
cogenerator.

e We ask whether a complex X € D(Mod-R) such that
Homp(mod-r)(E, Z"(X)) = 0 for all n € Z must be necessarily
isomorphic to a zero complex in D(Mod-R).

e Remark: A complex X € D(Mod-R) such that
Hompmod-r) (R, (X)) = 0 for all n € Z, is isomorphic to a
zero complex in D(Mod-R) (a basic property of D(Mod-R)).

19



The stable module category

e Another approach to finitistic dimension conjectures through
the stable module category and singularity category:

e For each M € mod-R, we can take a syzygy module Q(M)
(the module of relations):

0—QM)—P—M-—0.
e This is not a functor mod-R — mod-R:

0 —— QM) P M —— 0
3>1Q(f)l 3>1l lf
0 —— QM) P’ M —— 0

e But it induces a functor Q: mod-R — mod-R, where mod-R is
the factor of mod-R modulo the maps which factor through a

projective module.

20



The singularity category

There is another inconvenience: the functor
Q: mod-R — mod-R is usually far from being an equivalence.

Analogy: In algebraic topology, the suspension functor

Y : Top, — Top, is not an equivalence, although one often
wants it to be!

Same solution in both cases: the stabilization construction (by
Spanier-Whitehead in algebraic topology, in our situation due
to Keller-Vossieck, 1987 and Beligiannis, 2000).

The stable version of mod-R coincides with the so-called
singularity category

Dsg(R) := DP(mod-R)/(perfect complexes).
The term “singularity category” goes back to Orlov, 2003 as

Dsg(R) = 0 iff gl. dim. R < oo, but it was studied already by
Buchweitz in 1986. 21



Finitistic dimension as a property of D,

Theorem (S.)
Let R be a finite dimensional algebra over a field.

The fact whether Fin.dim. R < oo or not is a property of Dsg(R°P)
(as a triangulated category).

e If Fin.dim. R < 0o and Dgg(R) ~ Dgg(S) (as triangulated
categories), then also Fin.dim. S < oo.

e A derived equivalence implies Dsg(R) ~ Dsg(S), so this
generalizes Happel's result.

e For special equivalences Dsg(R) ~ Dsg(S), the latter was
proved by Wang, 2015.

e More importantly, people started to study Dsg(R)
recently—see Chen-Wang, 2021, arXiv:2109.11278!
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