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The �nitistic dimension

conjectures



A general aim

Given a ring R (associative, with unit, not necessarily

commutative), we would like to understand the structure of right

R-modules.

Example

� R = k a �eld�linear algebra,

� R = k[x ]�Jordan normal form, still linear algebra (a

k[x ]-module is the same as a vector space V with a linear

operator x · − : V → V ),

� R = k[x1, . . . , xn], R =
(
k k
k k

)
, R =

(
k 0
k k

)
, R = kG

(G a group) . . .
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The projective dimension of a module

� We will try to understand a right R-module M in terms of

generators and relations.

� Formally, we construct a free resolution of M:

· · · → R(I2) → R(I1) → R(I0) → M → 0

� Here:

� I0 indexes generators of M,
� I1 indexes relations between the generators,
� I2 indexes relations between the relations, . . .

� Does this procedure stop?

� We de�ne the projective dimension of M as

proj. dim.M = sup{n | ∃ 0→ Pn → · · · → P1 → P0 → M → 0}

with all Pn projective (= direct summands of free R-modules).

� If no such �nite sequence exists, we put proj. dim.M =∞.
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The global dimension of a ring

� This allows us to de�ne a measure of how complicated the

module theory for a given ring R is:

� We de�ne the (right) global dimension of R as

gl. dim.R = sup{proj. dim.M | M ∈ Mod-R}.

� Fact (Baer criterion):

gl. dim.R = sup{proj. dim.R/I | I ≤ R right ideal}.

Theorem (Hilbert, 1890)
If k is a �eld, then gl. dim. k[x1, . . . , xn] = n.

4



An example

� Sometimes, the global dimension is not an adequate measure

of complexity of Mod-R .

� Consider for example the dual numbers R = k[x ]/(x2).

� Then each R-module is direct sum of copies of R and

R/(x) ∼= k , so the structure of R-modules is not much more

complicated than those of vector spaces.

� On the other hand, gl. dim.R =∞ since proj. dim. k =∞:

· · · → R
x→ R

x→ R → k → 0

� Need for �ner invariants!
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The �nitistic dimensions of a ring

De�nition

1. The (right) big �nitistic dimension of a ring R is de�ned as

Fin. dim.R = sup{proj. dim.M | M ∈ Mod-R & proj. dim.M <∞}.

2. The (right) little �nitistic dimension of a ring R is de�ned as

fin. dim.R = sup{proj. dim.M | M �n. gen. & proj. dim.M <∞}.

Warning: If R is a nice enough ring (e.g. left and right noetherian)

then the left and right global dimensions are equal.

This is not true for �nitistic dimensions even for �nite dimensional

algebras over a �eld!
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The �nitistic dimension conjectures

Conjectures (Bass, ∼1960)

(I) fin. dim.R = Fin. dim.R ,

(II) fin. dim.R <∞.

In Conjecture II, we can alternatively ask whether Fin. dim.R <∞.

� I will discuss the conjectures in the situations where

1. R is a (certain) commutative noetherian ring and
2. R is a �nite dimensional algebra over a �eld.

� It turns out that Conjecture I is false.

� Conjecture II for �nite dimensional algebras is, on the other

hand, and important open problem (despite really a lot of

e�ort to solve it)!

� Reference: B. Huisgen-Zimmermann, The �nitistic dimension

conjectures�a tale of 3.5 decades, in Abelian Groups and

Modules, 501�517, Dordrecht (1995) Kluwer, arXiv:1407.2383. 7



Finitistic dimensions in

commutative algebra



Coordinate rings of algebraic varieties

� In this part, let k be for the sake of simplicity an algebraically

closed �eld.

� An algebraic variety V ⊆ kn is the set of zeroes of some

collection of polynomials S ⊆ k[x1, . . . , xn].

� The real part of V ⊆ C2 if k = C may look like:

x

y

S = {y2 − x(x − 1)(x + 1)}

(smooth)

x

y

S = {y2 − x2(x + 1)}

(singular)
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Coordinate rings of algebraic varieties

� Algebraic varieties V ⊆ kn always come with a coordinate ring,

which is the ring of functions ϕ : V → k given by a polynomial

in the coordinates of points of V .

� Standard fact: k[V ] ∼= k[x1, . . . , xn]/I (V ), where

I (V ) = {f ∈ k[x1, . . . , xn] | f vanishes on V }

� One can show that, in our previous examples (with k = C), we
have C[V ] = C[x , y ]/(y2 − x(x − 1)(x + 1)) and

C[V ] = C[x , y ]/(y2 − x2(x + 1)), respectively.

� These rings are clearly commutative and they are noetherian

by Hilbert's Basis Theorem.
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The Krull dimension

In order to explain the relevance of �nitistic dimensions in for

coordinated rings, we need a geometric notion of dimension of a

variety which works over any algebraically closed �eld.

De�nition
Let V ⊆ kn be an algebraic variety. We say that V is irreducible if

it is non-empty and we cannot write V = V1 ∪ V2 with algebraic

varieties V1,V2 $ V .

De�nition
Let V ⊆ kn be an irreducible algebraic variety. We de�ne the Krull

dimension of V inductively as follows:

� Irreducible varieties of dimension 0 are precisely points.

� V has dimension n > 0 if all irreducible varieties W $ V have

dimension ≤ n − 1, but V itself does not have dimension

≤ n − 1.
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The big �nitistic dimension for commutative notherian rings

Theorem (Bass, 1962 and Gruson-Raynaud, 1971)
If V is an algebraic variety, then Fin. dim. k[V ] equals the Krull

dimension of V .

Theorem (Auslander-Buchsbaum-Serre, 1956)
If V is an algebraic variety, then gl. dim. k[V ] <∞ i� V is smooth.

In that case, gl. dim. k[V ] equals the Krull dimension of V .

Remarks

1. One can de�ne the Krull dimension for any commutative

noetherian ring R in terms of lengths of chains of prime ideals.

2. In that case, one still has that Fin. dim.R equals the Krull

dimension of R .

3. At this level of generality, Conjecture II fails. Nagata (1962)

constructed commutative noetherian rings of in�nite Krull

dimension. 11



The little �nitistic dimension

� The little �nitistic dimension also has an interpretation:

� If R is commutative local noetherian, then fin. dim.R equals

the depth of R (a certain algebraic invariant of R).

� This, together with the interpretation of Fin. dim.R , shows

that Conjecture I (i.e. fin. dim.R = Fin. dim.R), often fails for

commutative noetherian local rings.

� More in detail, Conjecture I holds for R i� the Krull dimension

of R equals the depth of R , which by de�nition means that R

is a so-called Cohen-Macaulay ring.
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Finite dimensional algebras



Homological conjectures

� There exist a collection of homological conjectures in

representation theory of �nite dimensional algebras which

postulate certain homological �niteness and symmetries.

� Variants of Conjecture II are one of the strongest among these

(from now on, R is possibly non-commutative �nite

dimensional algebra over a �eld k):

Fin. dim.R <∞ for all R

⇓
fin. dim.R <∞ for all R

⇓
Nakayama conjecture, Generalized Nakayama Conjecture,

Nunke Condition, Gorenstein Symmetry Conjecture, . . .

� On the other hand, Conjecture I fails in general

(Huisgen-Zimmerman, 1992; Smalø, 1998).
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Known cases where fin. dim. <∞ holds

� The �niteness of the little (and sometimes also the big)

�nitistic dimension has been veri�ed in various special cases:

� If R has Loewy length ≤ 3,
� If R is a monomial path algebra, i.e.

R = kQ/(a collection of paths), where Q is a �nite quiver,
� . . .

� There are also situations where Fin. dim.R <∞ for almost

trivial reasons, e.g. if R is a local algebra or an

Iwanaga-Gorenstein algebra.

� A plethora of reduction techniques have been developed, which

roughly say that if fin. dim.R <∞ for an algebra R , then also

fin. dim. S <∞ for another algebra S related to R .
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The derived categories, part 1

� Given a short exact sequence 0→ K → L→ M → 0 in

Mod-R and X ∈ Mod-R , we only obtain a left exact sequence

of abelian groups

0→ HomR(X ,K )→ HomR(X , L)→ HomR(X ,M).

� It is well known that one can complete this naturally to an

in�nite long exact sequence

0→ HomR(X ,K )→ HomR(X , L)→ HomR(X ,M)→
Ext1R(X ,K )→ Ext1R(X , L)→ Ext1R(X ,M)→

Ext2R(X ,K )→ Ext2R(X , L)→ Ext2R(X ,M)→ · · ·
� Grothendieck invented in 1958 a category D(Mod-R), which

contains Mod-R and comes equipped with an autoequivalence

Σ: D(Mod-R)→ D(Mod-R) such that

ExtnR(X ,M) ∼= HomD(Mod-R)(X ,ΣnM).
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The derived categories, part 2

� An illustration:

D(Mod-R)

Σ−1(Mod-R) Mod-R Σ(Mod-R)· · · · · ·

� One constructs D(Mod-R) as the category of cochain

complexes of modules

· · · −−−−→ X−1
∂−1

−−−−→ X 0 ∂0−−−−→ X 1 ∂1−−−−→ X 2 −−−−→ · · ·
localized at all the cohomology isomorphisms.

� One can also construct a bounded version, Db(mod-R),

considering only bounded complexes of �nitely generated

modules. 16



Invariance under derived equivalence

De�nition (Happel, 1987; Rickard, 1989; Keller, 1994)

Algebras R and S are derived equivalent if D(Mod-R) ' D(Mod-S)

(this happens i� Db(mod-R) ' Db(mod-S)).

Theorem (Happel, 1993)

Suppose that R and S are �nite dimensional algebras which are

derived equivalent. Then fin. dim.R <∞ i� fin. dim. S <∞.
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Recent developments



Rickard's injective generation, part 1

� A new member in the family of homological conjectures

appeared recently (Rickard, 2019, published in Adv. Math.,

arXiv:1804.09801):

The injective cogenerator E := Homk(R, k) generates

D(Mod-R).

⇓
Fin. dim.R <∞ for all R

⇓
fin. dim.R <∞ for all R

⇓
Other homological conjectures . . .

� This property is actually not so di�cult to check in particular

examples of �nite dimensional algebras!
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Rickard's injective generation, part 2

� Injective generation of D(Mod-R) (Rickard, 2019, published in

Adv. Math., arXiv:1804.09801):

� Put E := Homk(R, k) ∈ Mod-R . This is an injective

cogenerator.

� We ask whether a complex X ∈ D(Mod-R) such that

HomD(Mod-R)(E ,Σn(X )) = 0 for all n ∈ Z must be necessarily

isomorphic to a zero complex in D(Mod-R).

� Remark: A complex X ∈ D(Mod-R) such that

HomD(Mod-R)(R,Σn(X )) = 0 for all n ∈ Z, is isomorphic to a

zero complex in D(Mod-R) (a basic property of D(Mod-R)).
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The stable module category

� Another approach to �nitistic dimension conjectures through

the stable module category and singularity category:

� For each M ∈ mod-R , we can take a syzygy module Ω(M)

(the module of relations):

0→ Ω(M)→ P → M → 0.

� This is not a functor mod-R → mod-R :

0 −−−−→ Ω(M) −−−−→ P −−−−→ M −−−−→ 0

∃>1Ω(f )

y ∃>1

y yf

0 −−−−→ Ω(M) −−−−→ P ′ −−−−→ M ′ −−−−→ 0

� But it induces a functor Ω: mod-R → mod-R , where mod-R is

the factor of mod-R modulo the maps which factor through a

projective module.
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The singularity category

� There is another inconvenience: the functor

Ω: mod-R → mod-R is usually far from being an equivalence.

� Analogy: In algebraic topology, the suspension functor

Σ: Top∗ → Top∗ is not an equivalence, although one often

wants it to be!

� Same solution in both cases: the stabilization construction (by

Spanier-Whitehead in algebraic topology, in our situation due

to Keller-Vossieck, 1987 and Beligiannis, 2000).

� The stable version of mod-R coincides with the so-called

singularity category

Dsg(R) := Db(mod-R)/(perfect complexes).

� The term �singularity category� goes back to Orlov, 2003 as

Dsg(R) = 0 i� gl. dim.R <∞, but it was studied already by

Buchweitz in 1986. 21



Finitistic dimension as a property of Dsg

Theorem (�.)
Let R be a �nite dimensional algebra over a �eld.

The fact whether Fin. dim.R <∞ or not is a property of Dsg(Rop)

(as a triangulated category).

� If Fin. dim.R <∞ and Dsg(R) ' Dsg(S) (as triangulated

categories), then also Fin. dim.S <∞.

� A derived equivalence implies Dsg(R) ' Dsg(S), so this

generalizes Happel's result.

� For special equivalences Dsg(R) ' Dsg(S), the latter was

proved by Wang, 2015.

� More importantly, people started to study Dsg(R)

recently�see Chen-Wang, 2021, arXiv:2109.11278!
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