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COMPACTLY GENERATED TRIANGULATED
CATEGORIES AND THE TELESCOPE CONJECTURE

(SURVEY)

Introduction

The thesis consists of this survey and four papers in various stages
of the publication process:

(1) J. �aroch and J. �´oví£ek, The countable telescope conjecture
for module categories, Adv. Math. 219 (2008) 1002-1036.

(2) J. �´oví£ek, Telescope conjecture, idempotent ideals, and the
trans�nite radical, to appear in Trans. Amer. Math. Soc.

(3) H. Krause and J. �´oví£ek, The telescope conjecture for heredi-
tary rings via Ext-orthogonal pairs, preprint, arXiv:0810.1401.

(4) J. �´oví£ek, Locally well generated homotopy categories of com-
plexes, preprint, arXiv:0810.5684.

In the papers with a coauthor, the contributions of myself and the
coauthor should be considered as equal.
There are two main reasons for introducing the thesis with this sur-

vey. First, the necessary concepts and results on which this thesis relies
are scattered among several papers as one can see from the reference
list. It seemed, therefore, convenient to collect all the necessary terms
and facts and put them into the corresponding context, together with
motivation for the research. Second, there are some results which have
been proved here, in particular Theorem 3.6(3) which seems to be a
new result.

1. Preliminaries

1.1. Triangulated categories. Triangulated categories are ubiqui-
tous in modern homological algebra and homotopy theory. They were
independently introduced by Verdier [51] and Puppe [42] in 1960's. An
additive category T is called triangulated if:

(1) It has a distinguished autoequivalence. The image of an object
X or a morphism f under this equivalence is often denoted by
X[1] or f [1], respectively. By X[n] or f [n], we denote the n-
fold application of the equivalence (or |n|-fold application of its
quasi-inverse if n < 0) on X or f .

(2) It has a distinguished class of diagrams of the form

X
f−→ Y

g−→ Z
h−→ X[1],

called triangles, satisfying certain axioms.
5



6 TRIANGULATED CATEGORIES AND THE TELESCOPE CONJECTURE

The axioms are:
TR0: A diagram isomorphic to a triangle is again a triangle.
Moreover, the diagram X

1X−→ X −→ 0 −→ X[1] is a trian-
gle for each X ∈ T .

TR1: For any morphism f : X → Y in T , there is a triangle of
the form

X
f−→ Y

g−→ Z
h−→ X[1].

TR2: X
f−→ Y

g−→ Z
h−→ X[1] is a triangle if and only if Y

−g−→
Z

−h−→ X[1]
−f [1]−→ Y [1] is a triangle.

TR3: For any commutative diagram of the form

X
f−−−→ Y

g−−−→ Z
h−−−→ X[1]

u

y v

y
X ′ f ′

−−−→ Y ′ g′−−−→ Z ′ h′
−−−→ X ′[1],

where the rows are triangles, there is a (not necessarily unique)
morphism w : Z → Z ′, which makes the diagram

X
f−−−→ Y

g−−−→ Z
h−−−→ X[1]

u

y v

y w

y u[1]

y
X ′ f ′

−−−→ Y ′ g′−−−→ Z ′ h′
−−−→ X ′[1],

commutative.
TR4: Given two composable morphisms f1 : X → Y and g2 :

Y → Z and the composition f3 = g2 ◦ f1, it is possible to form
a commutative diagram

U U

f2

y f4

y
X

f1−−−→ Y
g1−−−→ V

h1−−−→ X[1]∥∥∥ g2

y g4

y ∥∥∥
X

f3−−−→ Z
g3−−−→ W

h3−−−→ X[1]

h2

y h4

y yf1[1]

U [1] U [1] −−−→
f2[1]

Y [1]

such that the two middle rows and the two middle columns are
triangles.

Axiom [TR4] is usually called the octahedral axiom, because it can be
depicted in the form of an octahedron; see [22, pg. 74]. An alternative
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but equivalent form of the axiom, which is used in [38], was introduced
by Neeman in [34].
As the concept of a triangulated category is rather well known and

have been already studied for half a century, we refer for basic prop-
erties of such categories for example to [38, �1], [11, �1] or [29]. The
common intuition is that triangles share certain formal properties with
short exact sequences in abelian categories. There are important dif-
ferences from the abelian setting, though. First, as mentioned in [38]
or [22], the class of triangles in a given triangulated category T is not
intrinsic to the category T , but it is rather an additional datum. Sec-
ond, the morphism w in [TR3] is required to exist, but neither to be
unique nor to be functorial. This may cause considerable problems in
certain situations.
In connection with triangulated categories, it is natural to consider

functors compatible with the triangulated structure. If S and T are
triangulated categories, an additive functor F : S → T is called tri-
angulated (or sometimes also exact) if it comes along with a natural
isomorphism

ϕX : F (X[1]) −→ (FX)[1]

for each object X ∈ T such that for each triangle X
f−→ Y

g−→ Z
h−→

X[1] in S, we get a triangle

FX
Ff−−−→ FY

Fg−−−→ FZ
ϕX◦Fh−−−−→ (FX)[1]

in T . The natural isomorphisms ϕX are usually not explicitly men-
tioned because they are often obvious from the context.

1.2. Compactly generated triangulated categories. For many
practical purposes, a triangulated category is a too abstract and gen-
eral notion to deduce a strong enough theory. Thus, one seeks after
more axioms which are widely satis�ed to build up a richer theory. One
successful direction of this e�ort has lead to compactly and well gener-
ated triangulated categories. In this section we introduce the essential
part of the theory and we refer for further details to [38] and [29]. Later
in Section 2 we will present several examples. A part of the material
in this section is also brie�y reviewed in the article [49] in this volume.
Let us start with compactly generated triangulated categories. The

concept has been implicitly known in algebraic topology since the sta-
ble homotopy category of spectra is compactly generated. The abstract
axioms were given by Neeman in 1990's and used to considerably gen-
eralize and simplify proofs of some classical results; see [36, 37]. Since
then, the concept has found many applications in algebra.
From now on, a triangulated category T is usually assumed to satisfy:
TR5: T has arbitrary in�nite coproducts.

In such a case, a coproduct of triangles is automatically a triangle again;
see [38, Proposition 1.2.1 and Remark 1.2.2]. Moreover, T necessarily
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has splitting idempotents by [38, Proposition 1.6.8]. Now we can give
a formal de�nition.

De�nition 1.1. Let T be a triangulated category satisfying [TR5].
An object C ∈ T is called compact if for any family (Yi | i ∈ I) of
objects of T the natural morphism⨿

i

HomT (C, Yi) −→ HomT (C,
⨿

i

Yi)

is an isomorphism. Equivalently, any morphism C →
⨿

Yi factorizes
through a �nite subcoproduct.
The category T is said to be compactly generated if there is a set C

of compact objects with the following property: If X ∈ T such that
HomT (C, X) = 0 for each C ∈ C, then X = 0.

To state some basic properties of compactly generated triangulated
categories, we need one more de�nition:

De�nition 1.2. Let T be a triangulated category. A full subcategory
L of T is called a triangulated subcategory if it is closed under applying
the distinguished autoequivalence of T and taking triangle completions
in the sense of [TR1]. A triangulated subcategory L is called thick if it
is in addition closed under taking those direct summands which exist
in T .
Assume, moreover, T satis�es [TR5]. Then the subcategory L is

called localizing if it is a triangulated subcategory which is closed under
taking arbitrary coproducts.

Note that by [38, Proposition 1.6.8], any localizing subcategory of
a [TR5] triangulated category T is thick. Now, we have the following
useful properties:

Proposition 1.3. Let T be a compactly generated triangulated cate-
gory and C a set of compact objects which generates T in the sense of
De�nition 1.1. Then the following assertions hold:

(1) The smallest localizing subcategory of T containing C is the
whole of T .

(2) The full subcategory T c of all compact objects of T coincides
with the smallest thick subcategory containing C.

Before stating another crucial property, the so called Brown repre-
sentability theorem, we �rst de�ne the more general concept of well
generated triangulated categories.

1.3. Well generated triangulated categories. It has turned out
both in algebra and topology that many naturally occurring triangu-
lated categories are not compactly generated triangulated categories,
yet sharing many important properties with them. In an e�ort to get
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a better grasp of this phenomenon, Neeman de�ned well generated tri-
angulated categories and motivated them in the introduction of [38] as
well as by the results from [39].
Before giving the de�nition, we have to recall some very basic set

theoretic concepts; we use [16] as the universal reference. An in�nite
cardinal number κ is called regular if κ cannot be obtained as a sum
of a collection of less than κ cardinal numbers all of which are strictly
smaller than κ. For example, the �rst in�nite cardinal ℵ0 is regular. It
is also well known that the immediate successor of any in�nite cardinal
is regular. An in�nite cardinal κ which is not regular is called singular.
Here, the �rst limit cardinal ℵω = supn∈N ℵn may serve as an example.
Now we turn back to triangulated categories:

De�nition 1.4. Let T be a triangulated category satisfying [TR5]
and κ a regular cardinal number. An object C ∈ T is called κ�small
provided that every morphism of the form

C −→
⨿
i∈I

Yi

factorizes through a subcoproduct
⨿

i∈J Yi with |J | < κ.
The category T is called κ-well generated provided there is a set C

of objects of T such that

(1) If X ∈ T such that HomT (C, X) = 0 for each C ∈ C, then
X = 0;

(2) Each C ∈ C is κ-small;
(3) For any morphism in T of the form f : C →

⨿
i∈I Yi with

C ∈ C, there exists a family of morphisms fi : Ci → Yi such
that Ci ∈ C for each i ∈ I and f factorizes as

C −→
⨿
i∈I

Ci

⨿
fi−→

⨿
i∈I

Yi.

Finally, T is called well generated if it is κ�well generated for some
regular cardinal κ.

As mentioned in [49] in this volume, this de�nition di�ers from Nee-
man's original de�nition in [38, 8.1.7], but it is equivalent by [25, Lem-
mas 4 and 5]. Note also that ℵ0-well generated triangulated categories
are precisely compactly generated triangulated categories.
Now, we are in a position to state a crucial result, which has origin

in the work of Brown [5]. For a di�erent proof of the below statement
and more references we also refer to [28, ��4.5 and 4.6]. Recall that a
contravariant additive functor F : T → Ab is called cohomological if
it sends each triangle X

f−→ Y
g−→ Z

h−→ X[1] to an exact sequence

F (X[1])
Fh−→ FZ

Fg−→ FY
Ff−→ FX of abelian groups.
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Proposition 1.5 (Brown representability). [38, 8.3.3] Let T be a well
generated triangulated category. Then any contravariant cohomologi-
cal functor F : T → Ab which takes coproducts to products is, up to
isomorphism, of the form HomT (−, X) for some X ∈ T .

As noticed by Neeman in [36, 37], this statement allows to give for-
mally rather simple proofs for some classical results. One particular
consequence of Brown representability is the existence of certain ad-
joint functors. Using a suitable set theoretic axiomatics (see the last
two paragraphs at the end of [49, �1] in this volume), it is rather easy
to prove the following:

Corollary 1.6. Let S and T be triangulated categories such that S is
well generated. Then a triangulated functor F : S → T has a right
adjoint if and only if F preserves coproducts.

As an application, one has a nice theory for localization of well gen-
erated triangulated categories, part of which we will mention in Sec-
tion 3. It comes from the work of Bous�eld [4] in homotopy theory,
and an algebraic presentation can be found in [38] and [29].
Finally, we will give two more consequences of Proposition 1.5. First,

there is an analogue of Proposition 1.3(1):

Corollary 1.7. Assume that T is a κ-well generated triangulated cate-
gory for some regular cardinal κ, and that C is a set of objects of T as in
De�nition 1.4. The the smallest localizing subcategory of T containing
C is the whole of T .

Now, consider the following condition on a triangulated category,
which is dual to [TR5]:

TR5*: T has arbitrary in�nite products.
Then we have by [38, Propositions 8.4.6 and 1.2.1]:

Corollary 1.8. Any well generated triangulated category T satis�es
[TR5*]. Moreover, a product of a family of triangles is always a trian-
gle.

2. Examples of triangulated categories

Now we are going to give examples of the concepts from the previ-
ous section. Our list is, however, meant to be more illustrative than
exhaustive. We will focus on algebraic triangulated categories, that is,
the stable categories of Frobenius exact categories; see [10] or [11, �1].
There are also other important classes of triangulated categories. One
can consider the homotopy categories of closed model structures [14,
�7] and their full triangulated subcategories. Such categories are called
topological triangulated categories. Although all triangulated cate-
gories used in practice usually belong to one of these two families,
there are as well some �exotic� examples which are neither algebraic
nor topological [32].
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2.1. Derived categories. Probably the most well known algebraic
representative of a compactly generated triangulated category is the
unbounded derived category of a ring. Here we just sketch the con-
struction and refer to [51], [10] or [11, �1] for more details.
We �x a ring R and denote by Mod-R the category of all right R-

modules. Let C(Mod-R) be the (abelian) category of chain complexes
over Mod-R andK(Mod-R) the homotopy category of complexes. That
is, K(Mod-R) is the factor of C(Mod-R) modulo the ideal of all null-
homotopic morphisms. It is well known that if we consider C(Mod-R)
as an exact category in the sense of [19, Appendix A] such that the
con�ations are the componentwise split exact sequences of complexes,
then C(Mod-R) is a Frobenius exact category and K(Mod-R) is its
stable category, hence a triangulated category. However, K(Mod-R)
is usually not well generated�see Section 4 or [49] in this volume. In
order to get a compactly generated triangulated category, we will take
a so-called Verdier quotient of K(Mod-R).

De�nition 2.1. Let T be a triangulated category and S a full tri-
angulated subcategory. Then the Verdier quotient of T by S is a
triangulated category T /S together with a triangulated functor

Q : T −→ T /S,

with the following universal property. Whenever U is a triangulated
category and F : T → U is a triangulated functor such that FX = 0 for
each X ∈ S, then there is a unique triangulated functor G : T /S → U
making the following diagram commutative:

T
Q //

F
''NNNNNNNNNNNNNNN T /S

G

��
U

If T satis�es [TR5], we sometimes require that S not only be a tri-
angulated subcategory but rather a localizing subcategory of T , since
in this case T /S also satis�es [TR5] and the functor Q preserves co-
products.
Note that Verdier quotients do always exist, see [38, Theorem 2.1.8],

and the universal property guarantees their uniqueness. It may, how-
ever, happen in some cases that T /S is strictly speaking not a cate-
gory since some morphism spaces HomT /S(X,Y ) may be proper classes
rather than sets. We refer to [6] for an example.
Looking back at our case, we de�ne the unbounded derived category

of R, denoted by D(Mod-R), as the Verdier quotient

K(Mod-R)/Kac(Mod-R).

Here, Kac(Mod-R) is the full triangulated subcategory of K(Mod-R)
whose objects are acyclic complexes, that is, those with all homologies
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vanishing. It follows from the work of Spaltenstein [48] (see also [3,
Proposition 2.12]) that all morphism spaces in D(Mod-R) are sets, so
no set-theoretic problems occur. Moreover, it is easy to see that R is a
compact object in D(Mod-R) and the set

C = {R[i] | i ∈ Z}

generates D(Mod-R) in the sense of De�nition 1.1. This follows using
the natural isomorphisms HomD(Mod-R)(R[i], X) ∼= H−i(X). Proposi-
tion 1.3 together with [44, Proposition 6.3] and the standard way to
compute direct summands via homotopy colimits as in [38, Proposition
1.6.8] yield the following well-known fact:

Proposition 2.2. For any ring R, the derived category D(Mod-R) is
compactly generated. Moreover, X ∈ D(Mod-R) is compact if and only
if it is isomorphic to a bounded complex of �nitely generated projective
modules.

One may also be interested in derived categories of more general
abelian categories. In connection with geometric examples and cate-
gories of quasi-coherent sheaves, it is natural to consider Grothendieck
categories. Recall that an abelian category is called Grothendieck if it
has exact �ltered colimits (i.e. it is an [AB5] abelian category) and a
set of generators.
Given a Grothendieck category G, we again de�ne the derived cat-

egory as D(G) = K(G)/Kac(G). In this case, D(G) is in general not
compactly generated, but all morphism spaces in D(G) are still sets
by [1, Corollary 5.6] and we have:

Proposition 2.3. [29, �7.7] For any Grothendieck category G, the un-
bounded derived category D(G) is well generated.

In several interesting cases though, D(G) is in fact compactly gen-
erated. Neeman proved this in [37, Proposition 2.5] for G = Qcoh(X),
where X is a quasi-compact separated scheme. We will also point out
another result which will be useful in Section 3. Recall that follow-
ing [7], we can de�ne a special class of Grothendieck categories:

De�nition 2.4. A Grothendieck category G is called locally noetherian
if it has a set C of generators such that each X ∈ C is noetherian. That
is, each X ∈ C satis�es the ascending chain condition on subobjects.

Then we obtain the following statement as a consequence of results
from [27]:

Proposition 2.5. Let G be a locally noetherian Grothendieck category
of �nite global dimension. Then D(G) is compactly generated. More-
over, an object is compact if and only if it is isomorphic to a bounded
complex of noetherian objects of G.
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Proof. Let I denote the class of all injective objects in G. Then the
natural functor F : K(I) → D(G) obtained as the composition

K(I)
inc−→ K(G)

Q−→ D(G)

is an equivalence of triangulated categories. Indeed, [27, Proposition
3.6] states (using a somewhat di�erent terminology) that the induced
functor

F̄ : K(I)/
(
K(I) ∩ Kac(G)

)
−→ D(G)

is an equivalence triangulated categories. Invoking the assumption of
G having �nite global dimension, one immediately sees that K(I) ∩
Kac(G) = 0 and F̄ = F . Having established that F is an equivalence,
the statement of Proposition 2.5 follows directly from [27, Proposition
2.3]. �

We remark here that the derived category of a ring is rather close to
being a universal example of an algebraic compactly generated triangu-
lated category. More precisely, [28, Theorem 7.5(3)], which is a slightly
re�ned version of the important theorem [20, 4.3] due to Keller, says
that any algebraic compactly generated triangulated category is equiv-
alent to the derived category of a small dg-category. Porta recently
showed in [41, Theorem 5.2] that algebraic well generated triangulated
categories are precisely Verdier quotients of such derived categories by
localizing classes generated by a set of objects. We refer to the just
mentioned papers for more details. It is also worth to mention that
analogous statements for topological triangulated categories have been
proved by Schwede and Shipley [47] and Heider [13].

2.2. Other algebraic triangulated categories. Although we know
a general form of an algebraic well generated triangulated category
now, the description as a Verdier quotient of the derived category of
a small dg-category may be far too complicated to do any practical
computations. It may be, therefore, much more convenient to study
the categories of interest directly.
We will give a few examples. For a ring R, let Proj-R be the category

of all projective right R-modules and Inj-R the category of all injective
right R-modules. Recall also that a ring R is called left coherent if
each �nitely generated left ideal is �nitely presented. Equivalently, R
is left coherent if the category mod-Rop of all �nitely presented left
R-modules is abelian. Then we have the following statement:

Proposition 2.6. Let R be a ring. Then:

(1) The homotopy category K(Proj-R) is ℵ1-well generated. If R is
left coherent, then K(Proj-R) is even compactly generated and,
moreover, the full triangulated subcategory of compact objects is
equivalent to Db(mod-Rop)op.
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(2) If R is right noetherian, then the homotopy category K(Inj-R)
is compactly generated. Moreover, the full triangulated subcate-
gory of compact objects is equivalent to Db(mod-R).

Proof. (1) follows from [39, Theorem 1.1 and Proposition 7.14], which
extend previous results from [17], while (2) is a special case of [27,
Theorem 1.1]. �

This statement gives several interesting insights, for example in con-
nection with the Grothendieck duality theorem, totally re�exive mod-
ules or relative homological algebra. We refer to [15, 18, 39] for more
information.
Another natural example is the stable module category of a quasi-

Frobenius ring. Recall that R is quasi-Frobenius if Proj-R = Inj-R. For
instance, any self-injective artin algebra or, as a particular case, any
group algebra of a �nite group is quasi-Frobenius. In this case, the mod-
ule category Mod-R together with the natural abelian exact structure
is Frobenius, and the stable module category Mod-R is triangulated.
Moreover, the following is an easy consequence of Proposition 1.3 (cf.
also [24, �1.5]):

Proposition 2.7. Let R be a quasi-Frobenius ring. Then Mod-R is a
compactly generated triangulated category, and X ∈ Mod-R is compact
if and only if X ∼= Y in Mod-R for some �nitely generated R-module
Y .

This particular example is quite important for this thesis since it con-
nects the telescope conjecture as introduced in Section 3 to homological
algebra in module categories; see [30, Theorem 7.6 and Corollary 7.7].
This motivated the papers [46, 50], which are a part of this volume.

3. The telescope conjecture

When we speak of the telescope conjecture in the context of trian-
gulated categories, we mean the following statement:

Telescope Conjecture. Let T be a compactly generated triangulated
category. Given a smashing localization functor L on T , the kernel of
L is generated by compact objects. That is, there is a set C of com-
pact objects such that Ker L is the smallest localizing subcategory of T
containing C.

Remark. Before explaining the terminology, we point out a few facts.
First, the conjecture as well as a substantial part of the terminology
comes from algebraic topology. The conjecture itself was introduced in
the work of Bous�eld [4] and Ravenel [43]. In this context, the category
T was the stable homotopy category of spectra. In this thesis, however,
the main focus is put on algebraic triangulated categories.
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Second, the telescope conjecture is known to fail in general, see [21]
and also [31, �7] in this volume. One is, therefore, left to prove or
disprove the conjecture for certain classes of compactly generated tri-
angulated categories. As suggested to me by Claus Ringel, it may then
be more precise to say that a given category T has or does not have
the �telescope property�.
Finally, although the conjecture itself is a rather abstract problem,

its analysis for particular cases gives many insights. This is actually the
major topic for this thesis and the included papers [46, 50, 31]. Some
other applications, for example to lifting of complexes of modules over
a morphism of rings, are mentioned in [26].

Now we can give the necessary de�nitions. The key point here is the
concept of a localization functor.

De�nition 3.1. Let T be a triangulated category. A triangulated
endofunctor L : T → T is called a localization functor if there is a
natural transformation η : IdT → L such that

(1) LηX = ηLX for each X ∈ T . That is, if we apply L on the
morphism ηX : X → LX, we get precisely the morphism ηLX :
LX → L2X.

(2) ηLX : LX → L2X is an isomorphism for each X ∈ T .

Localization functors formalize a certain way to localize triangulated
categories, which is often referred to as Bous�eld localization nowadays.
We refer to [29, �4.9] for more facts and examples. What we are going
to make precise here is the connection to Verdier quotients. Let us
adopt the following notation. By the kernel of L, we mean the full
subcategory of T de�ned by

Ker L = {X | LX = 0},
and by Im L, we mean the essential image of L. That is, the closure of
the actual image of L under taking isomorphic objects. Then we have
the following statement.

Proposition 3.2. Let T be a triangulated category.

(1) If L : T → T is a localization functor, then Ker L is a thick
subcategory of T , and there is a unique equivalence of triangu-
lated categories G : T / Ker L −→ Im L making the following
diagram commutative:

T
Q //

L ((PPPPPPPPPPPPPPP T / Ker L

G

��
Im L

Moreover, the inclusion inc : Im L −→ T is a (fully faithful)
right adjoint to L : T −→ Im L.
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(2) Assume that S is a thick subcategory of T such that the Verdier
quotient Q : T → T /S admits a right adjoint R : T /S → T .
Then R is a fully faithful triangulated functor and L = R ◦ Q :
T → T together with the unit of adjunction η : IdT → L is a
localization functor such that Ker L = S.

Proof. (1) follows from [29, Proposition 4.11.1], while (2) is an imme-
diate consequence of [29, Corollary 2.4.2]. Here, one has to take into
account that Verdier quotients are in fact localizations and that ad-
joints of triangulated functors are triangulated; see the proof of [38,
Theorem 2.1.8] and [38, Lemma 5.3.6], respectively. �
Rephrasing Proposition 3.2, we can say that up to equivalence, local-

ization functors parametrize those Verdier quotients which have right
adjoints. This not only has many formal advantages, for example all
the morphism spaces in the Verdier quotient are always sets, but such
adjoints indeed do very often exist. One general way to obtain them
is Proposition 1.5 together with the well-known fact that the quotient
functor T → T /S has a right adjoint if and only if the inclusion S → T
has a right adjoint. Using the existence of an adjoint, we also get the
following easy corollary:

Corollary 3.3. Let T be a triangulated category satisfying [TR5] and
L : T → T a localization functor. Then Ker L is a localizing subcate-
gory of T , that is, it is closed under coproducts.

The tricky part now is that even though the kernel of L is always
closed under coproducts provided T satis�es [TR5], this does not mean
yet that L preserves coproducts. In fact, we make this to a de�nition:

De�nition 3.4. Let T be a triangulated category satisfying [TR5].
Then a localization functor L : T → T is called smashing if L preserves
coproducts.

The reason for the word smashing is explained in Section 3.2. For
compactly generated triangulated categories, we always have the fol-
lowing general way of constructing smashing localization functors:

Proposition 3.5. [4, 43] Let T be a compactly generated triangulated
category and C be a set of compact objects. If S is the smallest localizing
subcategory of T containing C, then the Verdier quotient Q : T → T /S
has a right adjoint R : T → T /S and L = R ◦ Q is a smashing
localization functor.

Proof. The category S is easily seen to be compactly generated, so the
inclusion S → T has a right adjoint by Corollary 1.6. Hence Q has
a right adjoint R and L = R ◦ Q is a localization functor by Proposi-
tion 3.2. Finally, the fact that L is smashing follows from the fact that
taking the functorial triangle in the sense of [29, �4.11] commutes with
taking coproducts. �
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Now, the telescope conjecture can be restated as follows: For a given
compactly generated triangulated category T , all smashing localiza-
tion functors on T can be obtained, up to natural equivalence, as in
Proposition 3.5.
It is very desirable to have this property for the following reason. If T

is compactly generated and L is smashing, then the quotient T / Ker L
is again compactly generated by [29, Remark 5.5.2], so it is natural to
ask how the category of compact objects looks like. If L comes up as
in Proposition 3.5, the answer is rather straightforward. Denoting by
T c the category of all compact objects in T , the category of compact
objects in T / Ker L is equivalent to the idempotent completion of the
Verdier quotient

T c/(T c ∩ Ker L);

see [36, Theorem 2.1]. If the conjecture fails, one needs more involved
theory as developed in [26].

3.1. Known cases when the telescope conjecture holds. As men-
tioned before, the telescope conjecture is not true in general. There are,
however, many natural triangulated categories T for which the conjec-
ture holds. We summarize the positive results known so far, some of
which are original in this thesis, in a theorem:

Theorem 3.6. The telescope conjecture holds for the following alge-
braic compactly generated triangulated categories:

(1) D(Mod-R) where R is commutative noetherian;
(2) D(Mod-R) where R is right hereditary;
(3) D(G) where G is a locally noetherian hereditary Grothendieck

category;
(4) Mod-kG where k is a �eld and G a �nite group;
(5) Mod-R where R is a domestic standard self-injective algebra in

the sense of [23].

Proof. (1) is a result due to Neeman, [35, Theorem 3.3 and Corollary
4.4]. (2) is proved in this thesis in [31, Theorem A]. (4) is a result of
Benson, Iyengar and Krause, [2, Theorem 11.12]. (5) is again proved
in this thesis. It follows from [50, Theorem 19], using the fact that
the in�nite radical of the category of �nitely generated modules over
a domestic standard self-injective algebra is nilpotent, [23]. The proof
relies on techniques developed in [46], also contained in this volume.
Finally, we prove (3) right here. Note that D(G) is compactly gen-

erated by Proposition 2.5. Suppose further that L : D(G) → D(G)
is a smashing localizing functor and let us set X = H0(Ker L) and
Y = H0(Im L). It follows from [31, Proposition 2.6] that (X ,Y) is a so
called complete Ext-orthogonal pair for G. That is, the following hold:

• X =
{
X ∈ G | (∀Y ∈ Y)

(
HomG(X,Y ) = 0 = Ext1

G(X, Y )
)}
,

• Y =
{
Y ∈ G | (∀X ∈ X )

(
HomG(X,Y ) = 0 = Ext1

G(X, Y )
)}
,
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• for each M ∈ G, there is an exact sequence

εM : 0 → YM −→ XM −→ M −→ Y M −→ XM → 0

with XM , XM ∈ X and YM , Y M ∈ Y .
Note that by [31, Lemma 2.9] the sequences εM are unique and natu-
rally functorial. Moreover, Y is by [31, Proposition 2.4] an abelian sub-
category of G closed under taking coproducts. Hence, Y is closed under
taking arbitrary �ltered colimits and we have εM = lim−→ εMi

whenever
M = lim−→Mi.
Now we proceed in a very similar way as in the proof of [31, Theorem

5.1] and claim that

Y = {Y ∈ G | HomG(X, Y ) = 0 = Ext1
G(X,Y ) for each X ∈ C},

where C stands for the class of all noetherian objects of G contained in
X . Since X is closed under taking �ltered colimits, it is su�cient to
show that X ⊆ lim−→C. To this end, �x M ∈ X . Recall that since G is
locally noetherian, M is a directed union of its noetherian subobjects.
More precisely, there is a direct system (Mi | i ∈ I) such that M =
lim−→Mi, each Mi is noetherian, and each morphism Mi → Mj for i < j
is a monomorphism. In particular, all the colimit morphisms Mi → M
are monomorphisms. Since Ext1

G(−, Y ) is right exact for each Y ∈ Y ,
we easily deduce that Ext1

G(Mi,Y) = 0 for each i ∈ I. By the preceding
paragraph, we know that εM = lim−→ εMi

, so

lim−→XMi

∼−→ XM
∼−→ M.

Using the same argument as in [31, Lemma 5.3], we can show that
YMi

= 0 for each i ∈ I. Hence, the morphisms XMi
→ Mi are all

monomorphisms and XMi
are all noetherian. In particular, XMi

∈ C
for each i ∈ I and X ⊆ lim−→C. This proves the claim.
Finally, using the bijective correspondence between the localizing

subcategories of D(G) and the extension closed abelian subcategories
of G that are closed under coproducts, which is given in [31, Proposition
2.6], we deduce that Ker L is the smallest localizing class containing
C. We remind the reader that all objects of C are compact in D(G) by
Proposition 2.5. Thus, the telescope conjecture holds for D(G). �

We add a few remarks regarding the theorem:

(1) As particular examples of G in Theorem 3.6(3), we can take
C = Qcoh(X) where X is either a smooth projective curve or
a weighted projective line in the sense of [8]. In particular,
the telescope conjecture holds also for D(Mod-R), where R is
a quasi-tilted artin algebra; we refer to [12] for details.

(2) Examples for Theorem 3.6(2) can be found in [31, �4] and ex-
amples for Theorem 3.6(5) in [50, �6], both in this thesis.
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(3) The proofs of Theorem 3.6(2) and (5) use strong connections
between the triangulated category in question and Mod-R. In
the �rst case this connection is formulated in [31, Theorem B]
and in the second case in [46, Theorem 6.1]. In both cases, the
study of the telescope conjecture revealed other results which
may be of interest by itself.

(4) In [31, Example 7.7], we re�ne Keller's ideas from [21] to con-
struct a commutative domain such that the telescope conjecture
fails for D(Mod-R). The domain R is of global dimension 2 and
each ideal of R is countably generated. This shows that the con-
ditions in Theorem 3.6(1) and (2) cannot be easily relaxed. We
do not know, however, whether there is a quasi-Frobenius ring
R such that the telescope conjecture fails for Mod-R.

3.2. Other interpretations of the telescope conjecture. To con-
clude the section, we will very brie�y introduce other points of view
which has helped or may help in the future to tackle the conjecture.
First, we point out a result by Krause [26], which says that the tele-

scope conjecture is a problem about small categories. This is not at all
obvious from the de�nition. Namely, let T be a triangulated compactly
generated category and T c the full subcategory of all compact objects.
We recall that T c is necessarily skeletally small as a consequence of
Proposition 1.3(2).
We further recall that an ideal I of T c is a collection of morphisms of

T c which contains all zero morphisms, and it is closed under addition
and under composition with arbitrary morphisms from left and right,
whenever the operations are de�ned. Following [26], we can further
de�ne:

De�nition 3.7. An ideal I of T c is called exact if
(1) I = I2 (that is, for each f ∈ I, there are g, h ∈ I such that

f = gh),

(2) I is saturated, that is, for any triangle X
f−→ Y

g−→ Z
h−→ X[1]

and any morphism u : Y → V in T c, the implication

u◦f, g ∈ I =⇒ f ∈ I

holds, and
(3) I = I[1].

Then, we have the following criterion, [26, Corollary to Theorem 1]:

Proposition 3.8. The telescope conjecture holds for T if and only if
each exact ideal I of T c is generated by idempotent morphisms. That
is, for each such I there must exist a set C of objects of T c such that
f ∈ I if and only if f factors through some C ∈ C.

Another point of view is connected to the term �smashing� from Def-
inition 3.4. It comes from homotopy theory, since there every smashing
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localization L : T → T of the stable homotopy category of spectra is
of the form L = − ∧ E, where �∧� is the smash product and E is a
suitable spectrum (cf. [29, Example 5.5.3]).
In the case of T = D(Mod-R), the analogue of the smash product

is usually the tensor product. Indeed, if f : R → S is a homological
epimorphism of rings (see [9, �4] and also [31, �3] in this volume), then
L = − ⊗L

R SR : D(Mod-R) −→ D(Mod-R) is a smashing localization
functor. Here, we point out two facts:

(1) If R is right hereditary, all smashing localization functors are
obtained in this way up to natural equivalence, [31, Theorem B].

(2) The counterexample to the telescope conjecture constructed by
Keller [21] is of this form.

If we want to study smashing localizations in terms of derived ten-
sor products more generally, however, we need to pass to homological
epimorphisms of small dg-categories. This has been recently studied
by Nicolás and Saorín in [40].

4. More on homotopy categories of complexes

Finally, we shortly introduce the results from [49] in this volume.
Inspired by results like Proposition 2.6, one may ask which other ho-
motopy categories of complexes are compactly generated or, more gen-
erally, well generated. Motivation for this, except for the telescope
conjecture, can be the possibility to construct adjoint functors, see
Corollary 1.6.
It turns out, however, that there is a crucial obstruction. Namely,

if G is an additive category with coproducts, then K(G) being well-
generated implies by [49, Theorem 2.5] that G has an additive gener-
ator. That is, there is X ∈ G such that G = Add X. Although this
condition may look rather innocent at the �rst glance, it has rather
strong consequences using model theoretic techniques. To point out a
few examples:

• [49, Proposition 2.6] K(Mod-R) is well generated if and only if
K(Mod-R) is compactly generated if and only if R is right pure
semisimple. If R is an artin algebra, this is further equivalent
to R being of �nite representation type.

• [49, Theorem 5.2] K(Flat-R) is well generated if and only if R
is right perfect. In this case Flat-R = Proj-R and K(Flat-R) is
ℵ1-well generated by Proposition 2.6.

If we further analyze why K(G) fails to be well-generated, we learn
that the main reason is often that K(G) is not generated by any set as a
localizing subcategory of itself. Note that this is a necessary condition
by Corollary 1.7. However, if G is �nice enough�, for example G =
Mod-R or G = Qcoh(X) for a quasi-compact quasi-separated scheme X,
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then K(G) is locally well generated in the following sense (we refer
to [49, Theorems 3.5 and 4.3] for precise statements):

De�nition 4.1. A triangulated category T satisfying [TR5] is called
locally well generated if, whenever C is a set of objects of T and S is
the smallest localizing subcategory of T containing C, then S is well
generated.

This fact, together with [49, Proposition 3.9], gives rather convenient
criteria to produce examples of algebraic well generated and locally well
generated triangulated categories.
However, if we look back at the motivation of constructing adjoint

functors, there is a serious glitch. An adaptation of an example by
Casacuberta and Neeman in [49, Example 3.7] shows that the Brown
representability property may fail and some adjoints one would like
to have may not exist for general locally well generated triangulated
categories.
At the very least, this shows that the concept itself is not strong

enough and one has to look for other means to construct adjoints. An
important step in this direction has been recently made by Neeman [33]
and an attempt for a more systematic approach is being developed in
a joint project of myself and Saorín [45]. These results are, however,
beyond the scope of this thesis.
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I.

THE COUNTABLE TELESCOPE CONJECTURE FOR
MODULE CATEGORIES

(JOINT WITH JAN ŠAROCH)

Abstract

By the Telescope Conjecture for Module Categories, we mean the
following claim: “Let R be any ring and (A,B) be a hereditary cotor-
sion pair in Mod-R with A and B closed under direct limits. Then
(A,B) is of finite type.”

We prove a modification of this conjecture with the word ‘finite’ re-
placed by ‘countable’. We show that a hereditary cotorsion pair (A,B)
of modules over an arbitrary ring R is generated by a set of strongly
countably presented modules provided that B is closed under unions
of well-ordered chains. We also characterize the modules in B and
the countably presented modules in A in terms of morphisms between
finitely presented modules, and show that (A,B) is cogenerated by a
single pure-injective module provided that A is closed under direct lim-
its. Then we move our attention to strong analogies between cotorsion
pairs in module categories and localizing pairs in compactly generated
triangulated categories.

This paper has been published in Adv. Math. 219 (2008), 1002–1036.
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THE COUNTABLE TELESCOPE CONJECTURE FOR
MODULE CATEGORIES

JAN ŠAROCH AND JAN ŠŤOVÍČEK

Abstract. By the Telescope Conjecture for Module Categories,
we mean the following claim: “Let R be any ring and (A,B) be
a hereditary cotorsion pair in Mod-R with A and B closed under
direct limits. Then (A,B) is of finite type.”

We prove a modification of this conjecture with the word ‘finite’
replaced by ‘countable’. We show that a hereditary cotorsion pair
(A,B) of modules over an arbitrary ring R is generated by a set of
strongly countably presented modules provided that B is closed un-
der unions of well-ordered chains. We also characterize the modules
in B and the countably presented modules in A in terms of mor-
phisms between finitely presented modules, and show that (A,B)
is cogenerated by a single pure-injective module provided that A is
closed under direct limits. Then we move our attention to strong
analogies between cotorsion pairs in module categories and local-
izing pairs in compactly generated triangulated categories.

Motivated by the paper [30] of Krause and Solberg, the first author
with Lidia Angeleri Hügel and Jan Trlifaj started in [4] an investigation
of the Telescope Conjecture for Module Categories (TCMC) stated as
follows (see Section 1 for unexplained terminology):

Telescope Conjecture for Module Categories. Let R be a ring
and (A,B) be a hereditary cotorsion pair in Mod-R with A and B
closed under direct limits. Then A = lim−→(A ∩mod-R).

The term ‘Telescope Conjecture’ is used here because the particular
case of TCMC when R is a self-injective artin algebra and (A,B) is a
projective cotorsion pair was shown in [30] to be equivalent to the fol-
lowing telescope conjecture for compactly generated triangulated cat-
egories (in this case—for the stable module category over R) which
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originates in works of Bousfield [12] and Ravenel [38] and has been
extensively studied by Krause in [29, 27]:

Telescope Conjecture for Triangulated Categories. Every
smashing localizing subcategory of a compactly generated triangulated
category is generated by compact objects.

Under some restrictions on homological dimensions of modules in
the cotorsion pair (A,B), TCMC is known to hold. The first author
and co-authors showed in [4] that the conclusion of TCMC amounts to
saying that the given cotorsion pair is of finite type. If all modules in A
have finite projective dimension, then the cotorsion pair is tilting [42],
hence of finite type [9]. If R is a right noetherian ring and B consists
of modules of finite injective dimension, then (A,B) is of finite type,
too [4]. Therefore, TCMC holds true for example for any cotorsion pair
over a ring with finite global dimension. Unfortunately, the interesting
connection with triangulated categories introduced in [30] works for
self-injective artin algebras, where the only cotorsion pairs satisfying
the former conditions are the trivial ones.

The aim of this paper is twofold. First, we prove the Countable
Telescope Conjecture in Theorem 3.5: any cotorsion pair satisfying the
hypotheses of TCMC is of countable type—that is, the class B is the
Ext1-orthogonal class to the class of all (strongly) countably presented
modules from A. This is a weaker version of TCMC. We will also show
that this result easily implies a more direct argument for a large part
of the proof that all tilting classes are of finite type [7, 8, 42, 9].

The second goal is to systematically analyze analogies between ap-
proximation theory for cotorsion pairs and results about localizations
in compactly generated triangulated categories. Considerable efforts
have been made on both sides. Cotorsion pairs were introduced by
Salce in [40] where he noticed a homological connection between spe-
cial preenvelopes and precovers—or left and right approximation in the
terminology of [6]. In [16], Eklof and Trlifaj proved that any cotorsion
pair generated by a set of modules provides for these approximations.
This turns out to be quite a usual case and the related theory with
many applications is explained in the recently issued monograph [19].
Localizations of triangulated categories have, on the other hand, mo-
tivation in algebraic topology. The telescope conjecture above was
introduced by Bousfield [12, 3.4] and Ravenel [38, 1.33]. Compactly
generated triangulated categories and their localizations were studied
by Neeman [34, 35] and Krause [29, 27]. Even though the telescope con-
jecture is known to be false for general triangulated categories [26], it is
still open for the important and topologically motivated stable homo-
topy category as well as for stable module categories over self-injective
artin algebras.
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Although it should not be completely unexpected that there are some
analogies between the two settings, as the derived unbounded category
is triangulated compactly generated and provides a suitable language
for homological algebra, the extent to which the analogies work is rather
surprising. Roughly speaking, it is sufficient to replace an Ext1-group
in a module category by a Hom-group in a triangulated category, and
we obtain a valid result. However, there are also substantial differences
here—for instance special precovers and preenvelopes provided by co-
torsion pairs are, unlike adjoint functors coming from localizations, not
functorial.

In Section 4, we prove in Theorem 4.9 that if (A,B) is a cotorsion
pair meeting the assumptions of TCMC, then B is defined by finite
data in the sense that it is the Ext1-orthogonal class to a certain ideal
of maps between finitely presented modules. Moreover, we character-
ize the countably generated modules in A as direct limits of systems
of maps from this ideal (Theorem 4.8). In Section 5, we prove in The-
orem 5.13 that A = Ker Ext1(−, E) for a single pure-injective module
E.

Finally, in Section 6, we give the triangulated category analogues of
all of the main results for module categories. Some of them come from
our analysis, while the others were originally proved by Krause in [29]
and served as a source of inspiration for this paper.

Acknowledgements. The authors would like to thank Jan Trlifaj for
reading parts of this text and giving several valuable comments, and
also to Øyvind Solberg for stimulating discussions and helpful sugges-
tions.

1. Preliminaries

Throughout this paper, R will always stand for an associative ring
with unit, and all modules will be (unital) right R-modules. We call
a module strongly countably presented if it has a projective resolu-
tion consisting of countably generated projective modules. Strongly
finitely presented modules are defined in the same manner with the
word ‘countably’ replaced by ‘finitely’. We denote the class of all mod-
ules by Mod-R and the class of all strongly finitely presented modules
by mod-R.

We note that the notation mod-R is often used in the literature
for the class of finitely presented modules ; that is, the modules M
possessing a presentation P1 → P0 → M → 0 where P0 and P1 are
finitely generated and projective. We have digressed a little from this
de-facto standard for the sake of keeping our notation simple, and we
believe that this should not cause much confusion. We remind that if
R is a right coherent ring, then the class of strongly finitely presented
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modules coincides with the class of finitely presented ones. Moreover,
one typically restricts oneself to coherent rings in various applications.

1.1. Continuous directed sets and associated filters. Let (I,≤)
be a partially ordered set and λ be an infinite regular cardinal. We say
that I is λ-complete if every well-ordered ascending chain (iα | α < τ)
of elements from I of length < λ has a supremum in I. If this is
the case, we call a subset J ⊆ I λ-closed if, whenever such a chain is
contained in J , its supremum is in J as well. For instance for any set
X, the power set P(X) ordered by inclusion is λ-complete and the set
P<λ(X) of all subsets of X of cardinality < λ is λ-closed in P(X).

Recall that a subset J ⊆ I is called cofinal if for every i ∈ I there is
j ∈ J such that i ≤ j. Note that if I is a totally ordered set, then the
cofinal subsets of I are precisely the unbounded ones.

¿From now on, we assume that (I,≤) is a directed set. If (Mi, fji :
Mi → Mj | i, j ∈ I & i ≤ j) is a direct system of modules, we call it
λ-continuous if the index set I is λ-complete and for each well-ordered
ascending chain (iα | α < τ) in I of length < λ we have

Msup iα = lim−→
α<τ

Miα .

It is well-known that every module is the direct limit of a direct sys-
tem of finitely presented modules. But if we want the direct system to
be λ-continuous, we have to pass to < λ-presented modules in general.
The following lemma is a slight modification of [24, Proposition 7.15].

Lemma 1.1. Let M be any module and λ an infinite regular cardinal.
Then M is the direct limit of a λ-continuous direct system of < λ-
presented modules.

Proof. Fix a free presentation

R(X) f→ R(Y ) →M → 0

of M and let I be the following set:{
(X ′, Y ′) ∈ P(X)×P(Y ) | |X ′|+ |Y ′| < λ & f

[
R(X′)

]
⊆ R(Y ′)

}
.

It is straightforward to check that I with the partial ordering by
inclusion in both components is directed and λ-complete. If we now
define Mi as the cokernel of the map

f � R(X′) : R(X′) → R(Y ′)

for every i = (X ′, Y ′) ∈ I, it is easy to check that (Mi | i ∈ I) together
with the natural maps forms a λ-continuous direct system with M as
its direct limit. �

For every directed set I, there is an associated filter FI on (P(I),⊆);
namely the one with a basis consisting of the upper sets ↑ i = {j ∈ I |
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j ≥ i} for all i ∈ I. That is

FI = {X ⊆ I | (∃i ∈ I)(↑ i ⊆ X)}.
Recall that a filter F on a power set is called λ-complete if any inter-
section of less than λ elements from F is again in F.

Lemma 1.2. Let (I,≤) be a λ-complete directed set. Then any subset
J ⊆ I such that |J | < λ has an upper bound in I. In particular, the
associated filter FI is λ-complete, and it is a principal filter if and only
if (I,≤) has a (unique) maximal element.

Proof. We can well-order J ; that is J = {jα | α < τ} for some τ < λ.
Then we construct by induction a chain (kα | α < τ) in I such that
k0 = j0 and kα is a common upper bound for jα and supβ<α kβ. Then
supβ<τ kβ is clearly an upper bound for J . The rest is also easy. �
1.2. Filtrations and cotorsion pairs. Given a module M and an
ordinal number σ, an ascending chain F = (Mα | α ≤ σ) of submod-
ules of M is called a filtration of M if M0 = 0, Mσ = M and F is
continuous—that is,

∪
α<β Mα = Mβ for each limit ordinal β ≤ σ.

Furthermore, let a class C ⊆ Mod-R be given. Then F is said to
be a C-filtration if it has the extra property that each its consecutive
factor Mα+1/Mα, α < σ, is isomorphic to a module from C. A module
M is called C-filtered if it admits (at least one) C-filtration.

Let us turn our attention to cotorsion pairs now. By a cotorsion
pair in Mod-R, we mean a pair (A,B) of classes of right R-modules
such that A = KerExt1

R(−,B) and B = KerExt1
R(A,−). We say that

a cotorsion pair (A,B) is hereditary provided that A is closed under
kernels of epimorphisms or, equivalently, B is closed under cokernels of
monomorphisms.

If (A,B) is a cotorsion pair, then the class A is always closed under
arbitrary direct sums and contains all projective modules. Dually, the
class B is closed under direct products and it contains all injective
modules. Also, every class of modules C determines two distinguished
cotorsion pairs—the cotorsion pair generated by C, that is the one
with the right-hand class B equal to Ker Ext1

R(C,−), and dually the
cotorsion pair cogenerated1 by C—the one with the left-hand class A
equal to KerExt1

R(−, C). We say that (A,B) is of finite or countable
type if it is generated by a set of strongly finitely or strongly countably
presented modules, respectively.

We say that a cotorsion pair (A,B) is complete if for every module
M ∈ Mod-R, there is a short exact sequence 0 → B → A → M → 0
such that A ∈ A and B ∈ B. The map A→M is then called a special
A-precover of M . It is well-known that this condition is equivalent to

1It may cause some confusion that the meaning of the terms generated and
cogenerated is sometimes swapped in the literature. Our terminology follows the
monograph [19].
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the dual one saying that B provides for special B-preenvelopes ; thus,
for every M ∈ Mod-R there is in this case also a short exact sequence
0→M → B′ → A′ → 0 with A′ ∈ A and B′ ∈ B.

Finally, a cotorsion pair is said to be projective in the sense of [10] if it
is hereditary, complete, and A∩B is precisely the class of all projective
modules. It is an easy exercise to prove that (A,B) is projective if and
only if it is complete and B contains all projective modules and has
the “two out of three” property—that is: all three modules in a short
exact sequence are in B provided that two of them are in B. To conclude
the discussion of terminology concerning cotorsion pairs, we recall that
projective cotorsion pairs over self-injective artin algebras are (with a
slightly different but equivalent definition) called thick in [30].

1.3. Definable classes and coherent functors. We will also need
the notion of a definable class of modules. First recall that a covariant
additive functor from Mod-R to the category of abelian groups is called
coherent if it commutes with arbitrary products and direct limits. The
following important characterization was obtained by Crawley-Boevey:

Lemma 1.3. [13, §2.1, Lemma 1] A functor F : Mod-R → Ab is
coherent if and only if it is isomorphic to Coker HomR(f,−) for some
homomorphism f : X → Y between finitely presented modules X and
Y .

A class C ⊆ Mod-R is called definable if it satisfies one of the follow-
ing three equivalent conditions:

(1) C is closed under taking arbitrary products, direct limits, and
pure submodules;

(2) C is defined by vanishing of some set of coherent functors;
(3) C is defined in the first order language of R-modules by satis-

fying some implications φ(x̄)→ ψ(x̄) where φ(x̄) and ψ(x̄) are
primitive positive formulas.

Primitive positive formulas (pp-formulas for short) are first-order lan-
guage formulas of the form (∃ȳ)(x̄A = ȳB) for some matrices A,B over
R. For this paper, the most important consequence of (3) is that de-
finable classes are closed under taking elementarily equivalent modules
since they are definable in the first-order language. This in particu-
lar implies the well-known fact that a definable class is determined by
the pure-injective modules it contains since any module is elementarily
equivalent to its pure-injective hull. For equivalence between the three
definitions and more details, we refer to [37], [13, §2.3], and [45, Section
1].

1.4. Inverse limits and the Mittag-Leffler condition. The com-
putation of Ext groups can sometimes be reduced to the computation
of the derived functors of inverse limit. We will recall this here only for
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countable inverse systems. For more details on the topic see [44, §3.5].
Let

· · · → Hn+1
hn→ Hn → · · · → H2

h1→ H1
h0→ H0

be a countable inverse system of abelian groups—a tower in the ter-
minology of [44]. Then its inverse limit lim←−Hn and the first derived

functor of the inverse limit, lim←−
1Hn, can be computed using the exact

sequence

0→ lim←−Hn →
∏

Hn
∆→

∏
Hn → lim←−

1Hn → 0

where ∆((xn)n<ω) = (xn − hn(xn+1))n<ω. The first derived functor is
closely related to the fact that inverse limit is not exact—it is only
left exact. Using the exact sequence above and the snake lemma, one
easily observes that, given a countable inverse system of short exact
sequences 0 → Hn → Kn → Ln → 0, there is a canonical long exact
sequence

0→ lim←−Hn → lim←−Kn → lim←−Ln → lim←−
1Hn → lim←−

1Kn → lim←−
1Ln → 0

In particular, lim←−
1 is right exact on countable inverse systems.

In practice, one is often interested whether or not lim←−
1Hn = 0. To

decide this can sometimes be tedious, but there is a useful tool—the
notion of Mittag-Leffler inverse systems. Given a countable inverse
system of abelian groups (Hn, hn | n < ω) as above, we say that it is
Mittag-Leffler if for each n the descending chain

Hn ⊇ hn(Hn+1) ⊇ · · · ⊇ hnhn+1 · · ·hk−1(Hk) ⊇ · · ·
is stationary. This occurs, for example, if all the maps hn are onto.
The following important result gives a connection to lim←−

1:

Proposition 1.4. Let (Hn, hn | n < ω) be a countable inverse system
of abelian groups. Then the following hold:

(1) [44, Proposition 3.5.7] If (Hn, hn) is Mittag-Leffler, then
lim←−

1Hn = 0.
(2) [2, Theorem 1.3] (Hn, hn) is Mittag-Leffler if and only if

lim←−
1H

(ω)
n = 0.

We will also use a related notion of T-nilpotency. We say that
(Hn, hn)n<ω is T-nilpotent if for each n there exists k > n such that the
composition Hk → Hn is zero.

2. Filter-closed classes and factorization systems

We start with analyzing properties of modules lying in Ker Ext1
R(−,G)

for a class G closed under arbitrary direct products and unions of well-
ordered chains. We will always assume in this case that G is closed
under isomorphic images and that 0 ∈ G, since the trivial module
could be viewed as a product of an empty system. As an application
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to keep in mind, such classes occur as right-hand classes of cotorsion
pairs satisfying the hypotheses of TCMC.

Definition 2.1. Let F be a filter on the power set P(X) for some set
X, and let {Mx | x ∈ X} be a set of modules. Set M =

∏
x∈X Mx.

Then the F-product ΣFM is the submodule of M such that

ΣFM = {m ∈M | z(m) ∈ F}
where for an element m = (mx | x ∈ X) ∈ M , we denote by z(m) its
zero set {x ∈ X | mx = 0}.

The module M/ΣFM is then called an F-reduced product. Note that
for a, b ∈ M , we have an equality ā = b̄ in the F-reduced product if
and only if a and b agree on a set of indices that is in the filter F.

In the case that Mx = My for every pair of elements x, y ∈ X,
we speak of an F-power and an F-reduced power (of the module Mx)
instead of an F-product and an F-reduced product, respectively.

Finally, a nonempty class of modules G is called filter-closed, if it
is closed under arbitrary F-products (for any set X and an arbitrary
filter F on P(X)).

Lemma 2.2. Let G be a class of modules closed under arbitrary direct
products and unions of well-ordered chains. Then G is filter-closed.

Proof. It is just a matter of straightforward induction to prove that
the closure under unions of well-ordered chains implies closure under
arbitrary directed unions—see for instance [1, Corollary 1.7] which is
easily adapted for unions. Moreover, any F-product is just the directed
union of products of the modules with indices from the complementary
sets to those belonging to F. �

In the next few paragraphs, we will show that filter-closedness of
G forces existence of certain factoring systems inside modules from
Ker Ext1

R(−,G). Let us note that the following lemma presents the
crucial technical step in proving the Countable Telescope Conjecture.

Lemma 2.3. Let G be a filter-closed class of modules. Let λ be an
uncountable regular cardinal and (M, fi | i ∈ I) be a direct limit of
a λ-continuous direct system (Mi, fji | i ≤ j) indexed by a set I and
consisting of < λ-generated modules.

Assume that Ext1
R(M,G) = 0. Then there is a λ-closed cofinal subset

J ⊆ I such that every homomorphism from Mj to B factors through fj

whenever j ∈ J and B ∈ G.
Proof. Suppose that the claim of the lemma is not true. Then the set

S = {i ∈ I | (∃Bi ∈ G)(∃gi ∈ HomR(Mi, Bi))

(gi does not factor through fi)} (∗)
must intersect every λ-closed cofinal subset of I (so S is a generalized
stationary set, in an obvious sense). For each i ∈ S, choose some
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Bi ∈ G and gi : Mi → Bi whose existence is claimed in (∗). For the
indices i ∈ I\S, let Bi be an arbitrary module from G and gi : Mi → Bi

be the zero map. Put B =
∏

i∈I Bi.
Now, define a homomorphism hji : Mi → Bj for each pair i, j ∈ I in

the following way: hji = gj ◦ fji if i ≤ j and hji = 0 otherwise. This
family of maps gives rise to a canonical homomorphism h :

⊕
k∈I Mk →

B. More precisely, if we denote by πj : B → Bj the projection to the j-
th component and by νi : Mi →

⊕
k∈I Mk the canonical inclusion of the

i-th component, h is (unique) such that πj ◦ h ◦ νi = hji. Note that for
every i, j ∈ I such that i ≤ j, the set {k ∈ I | hki = hkj ◦ fji} is in the
associated filter FI since it contains ↑ j. Hence, if we denote by φ the
canonical pure epimorphism

⊕
i∈I Mi → M = lim−→i∈I

Mi (that is such

that φ ◦ νi = fi for all i ∈ I), there is a well-defined homomorphism
u from M to the FI-reduced product B/ΣFI

B making the following
diagram commutative (ρ denotes the canonical projection):

B
ρ−−−→ B/ΣFI

B −−−→ 0

h

x u

x⊕
i∈I Mi

φ−−−→ M −−−→ 0.

We have ΣFI
B ∈ G since G is filter-closed. Hence, using the as-

sumption that Ext1
R(M,ΣFI

B) = 0, we can factorize u through ρ to
get some g ∈ HomR(M,B) such that u = ρ ◦ g. Since the Mi are
all < λ-generated and FI is λ-complete by Lemma 1.2, we obtain (for
every i ∈ I) that “h ◦ νi coincides with g ◦ φ ◦ νi = g ◦ fi on a set from
the filter”, that is:

{k ∈ I | πk ◦ g ◦ fi = πk ◦ h ◦ νi} ∈ FI . (∗∗)

Let us define J as follows:

J = {i ∈ I | (∀k ≥ i)(πk ◦ g ◦ fi = gk ◦ fki)}.

Then clearly, gi factors through fi for every i ∈ J (just by applying the
definition of J for k = i). Hence certainly J ∩ S = ∅.

To obtain a contradiction and finish the proof of the lemma, it is now
enough to show that J is λ-closed cofinal. The fact that J is λ-closed
follows easily by λ-continuity of the direct system (Mi, fji | i ≤ j). So
we are left to prove that J is cofinal in I. But by (∗∗) and the definition
of FI , we can find for every i ∈ I an element s(i) ∈ I such that s(i) ≥ i
and

(∀k ≥ s(i))(πk ◦ g ◦ fi = πk ◦ h ◦ νi). (∆)

Recall that πk ◦ h ◦ νi = hki = gk ◦ fki. Now, if we fix any i′ ∈ I, we
can define j0 = i′, jn+1 = s(jn) for all n ≥ 0, and j = supn<ω jn. Then
clearly j ≥ i′, and it is easy to check that j ∈ J using the ℵ1-continuity
of the direct system (Mi, fji | i ≤ j). �
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An important consequence follows by applying Lemma 2.3 to the
case when the class G cogenerates every module. This is for instance
always the case when G is a right-hand class of a cotorsion pair, since
then all injective modules are inside G.

Proposition 2.4. Let G be a cogenerating filter-closed class of modules.
Then for any uncountable regular cardinal λ and any module M such
that Ext1

R(M,G) = 0, there is a family Cλ of < λ-presented submodules
of M such that

(1) Cλ is closed under unions of well-ordered ascending chains of
length < λ,

(2) every subset X ⊆ M such that |X| < λ is contained in some
N ∈ Cλ, and

(3) Ext1
R(M/N,G) = 0 for every N ∈ Cλ.

Proof. By Lemma 1.1, there is a λ-continuous direct system (Mi, fji |
i ≤ j) of < λ-presented modules indexed by a set I such that M
together with some maps fi : Mi → M forms its direct limit. Now,
the data G, λ, (M, fi | i ∈ I), (Mi, fji | i ≤ j) and I fits exactly
to Lemma 2.3. Hence, there is a λ-closed cofinal subset J ⊆ I such
that for every j ∈ J , every homomorphism from Mj to a module in G
factors through fj. But the fact that G is a cogenerating class implies
that fj is injective. Thus, we can view the modules Mj for j ∈ J as
submodules of M , and the maps fj and fji as inclusions. Let us define

D = {Mj | j ∈ J}
and let D be the closure of D under unions of well-ordered chains of
length < λ. Observe, that (D,⊆) is a directed poset since J is a cofinal
subset of the directed set I. Using Lemma 1.2, we easily deduce that
D is directed, too. Now, we can view the modules in D together with
inclusions between them as a λ-continuous direct system indexed by D
itself. Hence, we can apply Lemma 2.3 for the second time to get a
λ-closed cofinal subset Cλ of D such that every homomorphism from a
module N ∈ Cλ to a module in G extends to M .

The latter property together with the fact that Ext1
R(M,G) = 0

immediately implies (3). The property (1) is just another way to say
that Cλ is λ-closed in D. For (2), first notice that

∪
Cλ = M since Cλ is

cofinal in D. Hence, if X ⊆M is a subset of cardinality < λ, there is a
subset M⊆ Cλ of cardinality < λ such that every x ∈ X is contained
in some N ′ ∈M. Finally, Lemma 1.2 provides us with an upper bound
N ∈ Cλ forM, and clearly X ⊆ N . �

In Lemma 2.3, the assumption of λ being uncountable is essential.
We can, nevertheless, obtain a weaker but important result using the
same technique for λ = ω and (I,≤) = (ω,≤). Lemma 2.5 actually
says that, for B ∈ G, the inverse system of groups (HomR(Mi, B),
HomR(fji, B) | i ≤ j < ω) is Mittag-Leffler, and the stationary indices
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determined by s are common over all B ∈ G. In this terminology, a
proof of the lemma is mostly contained in the proof of [8, Theorems
2.5 and 3.7].

We give a different proof here and we do this for two main reasons:
First, the statement about common stationary indices has an important
interpretation in the first-order theory of modules and is missing in [8].
Second, we show that the Mittag-Leffler property is a part of a common
framework which works for both countable and uncountable systems.

Lemma 2.5. Let G be a class of modules closed under countable direct
sums. Let (M, fi | i < ω) be a direct limit of a countable direct system
(Mi, fji | i ≤ j < ω) consisting of finitely generated modules.

Assume that Ext1
R(M,G) = 0. Then there is a strictly increasing

function s : ω → ω such that for each B ∈ G, i < ω and c : Mi → B
the following holds: If c factors through fs(i)i, then it factors through
fni for all n ≥ s(i).

Proof. We will show that it is possible to construct the values s(i) by
induction on i. Suppose by way of contradiction that there is some
i < ω for which we cannot define s(i). This can only happen if for each
j ≥ i, there is a homomorphism gj : Mj → Bj such that Bj ∈ G, and
gj ◦ fji does not factor through fni for some n > j. For j < i let gj be
zero maps and Bj ∈ G be arbitrary. Put B =

∏
j<ω Bj.

Now, we follow the proof of Lemma 2.3 (with ω in place of I and λ)
starting with the second paragraph and ending just after the definition
of (∗∗). Note that the corresponding notion of ℵ0-completeness is void,
Fω is the Fréchet filter on ω, and the Fω-product ΣFωB is just the direct
sum

⊕
j<ω Bj.

By the same argument as for (∆) in the proof of Lemma 2.3 and
with the same notation as there, there is some s′ ≥ i such that

(∀k ≥ s′)(πk ◦ g ◦ fi = πk ◦ h ◦ νi)

holds and πk◦h◦νi = hki = gk◦fki for each k ≥ s′. But this contradicts
the fact implied by the choice of gk that gk ◦fki does not factor through
fi. �

Let us remark that we have actually proved a little more than we
stated in Lemma 2.5—we have constructed s : ω → ω such that if
c : Mi → B factors through fs(i)i, then it factors through fi : Mi →M .
The motivation for the seemingly more complicated statement of the
lemma should become clear in the following paragraphs.

If the modules Mi in the direct system from the lemma above are
finitely presented instead of finitely generated, we have a statement
about factorization through maps between finitely presented modules.
Which in other words means that some coherent functors vanish and
the Mittag-Leffler property is preserved within the smallest definable
class containing G. This is made precise by the following lemma.
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Lemma 2.6. Let G be a class of modules closed under countable direct
sums and D be the smallest definable class containing G. Let (M, fi |
i < ω) be a direct limit of a direct system (Mi, fji | i ≤ j < ω) consisting
of finitely presented modules.

Assume that Ext1
R(M,G) = 0. Then there is a strictly increasing

function s : ω → ω such that for each D ∈ D, i < ω and c : Mi → D
the following holds: If c factors through fs(i)i, then it factors through
fni for all n ≥ s(i).

Proof. By restating the conclusion of Lemma 2.5, we get that
Im HomR(fs(i)i, D) = Im HomR(fni, D) for each D ∈ G and i ≤
s(i) ≤ n < ω. It is also straightforward to check that F =
Im HomR(fs(i)i,−)/ Im HomR(fni,−) is a coherent functor. Hence we
have Im HomR(fs(i)i, D) = Im HomR(fni, D) also for each D ∈ D and
the claim follows.

�
Note also that instead of vanishing of the coherent functors in the

proof above, we can equivalently consider that certain implications be-
tween pp-formulas are satisfied [13, §2.1], thus reformulating the proof
in a more model theoretic way.

Now, we can prove a crucial statement similar to [8, Theorem 2.5]:

Proposition 2.7. Let G be a class of modules closed under count-
able direct sums, and let M be a countably presented module such that
Ext1

R(M,G) = 0. Then Ext1
R(M,D) = 0 for every D isomorphic to a

pure submodule of a product of modules from G.

Proof. Let D be a pure submodule of
∏

k Bk for some Bk ∈ G. Since
M is countably presented, it can be considered as a direct limit of
a countable chain of finitely presented modules Mi, i < ω, as in the
assumptions of Lemma 2.6. Hence (HomR(Mi, D),HomR(fji, D) | i ≤
j < ω) is Mittag-Leffler since any definable class is closed under taking
products and pure submodules.

Then we continue as in the proof of [8, Theorem 2.5]. Since
Ext1

R

(
M,

∏
k Bk

)
= 0 by assumption, we have the exact sequence

HomR

(
M,

∏
k

Bk

) h→ HomR

(
M,

(∏
k

Bk

)
/D

)
→ Ext1

R(M,D)→ 0,

and so it suffices to show that h is an epimorphism. This easily fol-
lows from Proposition 1.4 applied on the inverse system (HomR(Mi, D),
HomR(fji, D) | i ≤ j < ω). Indeed, we see that lim←−

1

i
HomR(Mi, D) = 0

and obtain the exact sequence

lim←−
i

HomR

(
Mi,

∏
k

Bk

)
→ lim←−

i

HomR

(
Mi,

(∏
k

Bk

)
/D

)
→ 0.

It remains to use the basic fact that contravariant Hom-functors take
colimits to limits. �



THE COUNTABLE TELESCOPE CONJECTURE FOR MODULES 39

3. Countable type

In this section, we prove the main result of our paper—the Countable
Telescope Conjecture for Module Categories. But before doing this, we
introduce a fairly simplified version of Shelah’s Singular Compactness
Theorem. It is based on [15, Theorem IV.3.7]. In the terminology
there, systems witnessing strong λ-“freeness” correspond to the λ-dense
systems defined below.

A reader acquainted with the full-fledged compactness theorem for
filtrations of modules proved in [15, XII.1.14 and IV.3.7] or [14] may
well skip Lemma 3.2. We state and prove the lemma for the sake of
completeness, and also because we are using only a fragment of the
full compactness theorem, and it makes the proof of the Countable
Telescope Conjecture more transparent.

Definition 3.1. Let M be a module and λ be a regular uncountable
cardinal. Then a set Cλ of < λ-generated submodules of M is called a
λ-dense system in M if

(1) 0 ∈ Cλ,
(2) Cλ is closed under unions of well-ordered ascending chains of

length < λ, and
(3) every subset X ⊆ M such that |X| < λ is contained in some

N ∈ Cλ.

Lemma 3.2 (Simplified Shelah’s Singular Compactness Theorem). Let
κ be a singular cardinal, M a κ-generated module, and let µ be a car-
dinal such that cf κ ≤ µ < κ. Suppose we are given a λ-dense system,
Cλ, in M for each regular λ such that µ < λ < κ. Then there is a
filtration (Mα | α ≤ cf κ) of M and a continuous strictly increasing
chain of cardinals (κα | α < cf κ) cofinal in κ such that Mα ∈ Cκ+

α
for

each α < cf κ.

Proof. We will start with choosing the chain (κα | α < cf κ). In fact,
we can choose any such chain provided that µ ≤ κ0, just to make sure
that Cκ+

α
is always available. Let us fix one such chain (κα | α < cf κ).

Next, let (Xα | α < cf κ) be an ascending chain of subsets of M
such that

∪
α<cf κXα generates M and |Xα| = κα for each α < cf κ.

Then, we can by induction construct a (not necessarily continuous)
chain (N0

α | α < cf κ) of submodules of M such that N0
α ∈ Cκ+

α
and

Xα ∪
∪

β<αN
0
β ⊆ N0

α for every α < cf κ. Since Nα is κα-generated,

we can fix for each α a generating set Y 0
α of N0

α together with some
enumeration Y 0

α = {y0
α,γ | γ < κα}. Next, we proceed by induction on

n < ω and construct for each n > 0 chain of modules (Nn
α | α < cf κ)

and sets Y n
α = {yn

α,γ | γ < κα} such that

(1) (Nn
α | α < cf κ) is a (not necessarily continuous) chain of sub-

modules of M ,



40 JAN ŠAROCH AND JAN ŠŤOVÍČEK

(2) Nn
α ∈ Cκ+

α
and Nn

α ⊇ {yn−1
ζ,γ | α ≤ ζ < cf κ & γ < κα} ∪∪

β<αN
n
β , and

(3) Y n
α = {yn

α,γ | γ < κα} is a fixed enumeration of some set of
generators of Nn

α , for each α < cf κ.

For each n < ω, we clearly can construct such a chain and sets by
induction on α. Note in particular that we have always Nn−1

α ⊆ Nn
α

since Y n−1
α = {yn−1

α,γ | γ < κα} ⊆ Nn
α by (2). Hence, if we define

Mα =
∪

n<ω N
n
α , we clearly have Mα ∈ Cκ+

α
for each α < cf κ. Also,∪

α<cf κMα = M since Xα ⊆ N0
α ⊆ Mα for each α. We claim that the

chain (Mα | α < cf κ) is continuous. To see this, fix for this moment
a limit ordinal α < cf κ. Then clearly Mα ⊇

∪
β<αMβ. On the other

hand, for a given n > 0 and β < α, we have {yn−1
α,γ | γ < κβ} ⊆ Nn

β

by (2). Therefore, Y n−1
α ⊆

∪
β<αN

n
β and also Nn−1

α ⊆
∪

β<αN
n
β by (3).

Hence Mα ⊆
∪

β<αMβ and the claim is proved. Now, if we change M0

for the zero module and put Mcf κ = M , (Mα | α ≤ cf κ) becomes a
filtration with the desired properties. �

While Lemma 3.2 or Shelah’s Singular Compactness Theorem give us
some information about the structure of a module with enough dense
systems for a singular number of generators, we can prove a rather
straightforward lemma which takes care of regular cardinals.

Lemma 3.3. Let κ be a regular uncountable cardinal, M be a κ-
generated module and Cκ be a κ-dense system in M . Then there is
a filtration (Mα | α ≤ κ) of M such that Mα ∈ Cκ for each α < κ.

Proof. Let us fix an enumeration {mγ | γ < κ} of generators of M .
We will construct the filtration by induction. Put M0 = 0 and Mα =∪

β<αMβ for all limit ordinals α ≤ κ. For α = β + 1, we can find

Mα ∈ Cκ such that Mβ∪{mβ} ⊆Mα, using (3) from Definition 3.1. �
Before stating and proving the main result, we need a technical

lemma about filtrations which has been studied in [17, 41, 43], and
whose origins can be traced back to an ingenious idea of P. Hill [22].

Lemma 3.4. [43, Theorem 6]. Let S be a set of countably presented
modules and M be a module possessing an S-filtration (Mα | α ≤ σ).
Then there is a family F of submodules of M such that:

(1) Mα ∈ F for all α ≤ σ.
(2) F is closed under arbitrary sums and intersections.
(3) For each N,P ∈ F such that N ⊆ P , the module P/N is S-

filtered.
(4) For each N ∈ F and a countable subset X ⊆M , there is P ∈ F

such that N ∪X ⊆ P and P/N is countably presented.

Now, we are in a position to prove the Countable Telescope Conjec-
ture.
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Theorem 3.5 (Countable Telescope Conjecture). Let R be a ring and
C = (A,B) be a hereditary cotorsion pair of R-modules such that B is
closed under unions of well-ordered chains. Then

(1) C is generated by a set of strongly countably presented modules,
(2) C is complete, and
(3) B is a definable class.

Proof. (1). First, we claim that C is generated by a representative
set S of the class of all countably presented modules from A. To do
this, in view of Eklof’s Lemma ([19, Lemma 3.1.2] or [16, Lemma 1]),
it is enough to prove that every module M ∈ A has an S-filtration
(Mα | α ≤ σ).

We will prove this by induction on the minimal cardinal κ such that
M is κ-presented. If κ is finite or countable, then we are done since M
itself is isomorphic to a module from S. Assume that κ is uncountable.
By our assumption and Lemma 2.2, the class B is filter-closed and
cogenerating. Hence, we can fix for each regular uncountable λ ≤ κ a
family Cλ of < λ-presented modules given by Proposition 2.4 used with
G = B. Note that we can without loss of generality assume that Cλ is a
λ-dense system, since we always can add the zero module to Cλ without
changing its properties. Then, we can use Lemma 3.3 if κ is regular,
and Lemma 3.2 if κ is singular to obtain a filtration (Lβ | β ≤ τ) of M
such that for each β < τ

(i) Lβ is < κ-presented, and
(ii) M/Lβ ∈ A.

We also have Lβ+1/Lβ ∈ A since it is a kernel of the projection
M/Lβ → M/Lβ+1 and C is hereditary. Thus, each of the modules
Lβ+1/Lβ has an S-filtration by the inductive hypothesis, so we can re-
fine the filtration (Lβ | β ≤ τ) to an S-filtration (Mα | α ≤ σ) of M
and the claim is proved.

Let us note that for the induction step at singular cardinals κ, we
can alternatively use the full version of Shelah’s Singular Compactness
Theorem, considering S-filtered modules as “free” (cf. [15, XII.1.14 and
IV.3.7] or [14]).

It is still left to show that all modules in S are actually strongly
countably presented. Note that it is enough to prove that every count-
ably generated module M ∈ A is countably presented. If we prove this,
we can take for every module N ∈ S a presentation 0→ K → R(ω) →
N → 0 with K a countably generated module. Since C is hereditary,
we have K ∈ A. Now, if K is countably presented, it must be isomor-
phic to a module from S again, and we can proceed by induction to
construct a free resolution of N consisting of countably generated free
modules.

So fixM ∈ A countably generated. ThenM is S-filtered by the argu-
ments above. Hence, we can consider the family F given by Lemma 3.4
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for M . To finish our proof, we use (4) from this lemma with N = 0
and X a countable set of generators of M as parameters.

(2). This follows from (1) by [19, Theorem 3.2.1].

(3). Note that B is always closed under arbitrary direct products.
It is closed under infinite direct sums too since these are precisely F-
products corresponding to Fréchet filters F. Then B is closed under
pure submodules by (1) and Proposition 2.7. Further, B is closed un-
der pure epimorphic images and, therefore, also under arbitrary direct
limits since C is hereditary. Hence B is definable. �
Remark. We can actually prove a little more than we state in The-
orem 3.5. Notice that the proof of (1) and (2) works also for any
hereditary cotorsion pair cogenerated (as a cotorsion pair) by some
cogenerating (in the module category) filter-closed class G.

To conclude this section, we will discuss the relation of Theorem 3.5
to tilting theory. In fact, it turns out that the countable type and de-
finability of tilting classes is a rather easy consequence of Theorem 3.5.
This allows us to give a more direct argumentation for most of the
proof of the fact that all tilting classes are of finite type [8, 9].

Recall that T = (A,B) is called a tilting cotorsion pair if T is hered-
itary, A consists of modules of finite projective dimension, and B is
closed under direct sums. In this case, B is said to be a tilting class.

Theorem 3.6. Let R be a ring and T = (A,B) be a tilting cotorsion
pair. Then T is generated by a set of strongly countably presented
modules and B is definable.

Proof. Notice that since A is closed under direct sums, there is n < ω
such that projective dimension of any module from A is at most n. We
will prove the theorem by induction on this n.

If the n = 0, then B = Mod-R and the statement follows trivially.
Let n > 0. Then it is easy to see that the class D = Ker Ext2

R(A,−) is
tilting and in the corresponding tilting cotorsion pair (C,D), all mod-
ules in C have projective dimension < n (cf. [4, Lemma 4.8]). Thus
D is definable by the inductive hypothesis. In particular, it is closed
under pure submodules. By a simple dimension shifting argument, one
observes that B is closed under pure-epimorphic images. Since, by our
assumption, B is closed under direct sums, it follows that B is closed
under arbitrary direct limits. Thus we may apply Theorem 3.5 to T to
finish the proof. �

4. Definability

In this section, we will give a description of which coherent functors
define the class B of a cotorsion pair (A,B) satisfying the hypotheses of
TCMC. Our aim is twofold: First, vanishing of a coherent functor on
a module M translates to the fact that a certain implication between
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pp-formulas is satisfied in M , [13, §2.1]. So there is a clear model-
theoretic motivation. Second, proving that the cotorsion pair is of
finite type amounts to showing that B is defined by a family of coherent
functors of the form Coker HomR(f,−) where f : X → Y is an inclusion
of X ∈ mod-R into a finitely generated projective module Y . The
projectivity of Y is essential here: it implies that Y ∈ A which in turn
means that the functor Coker HomR(f,−) vanishes on all modules from
B if and only if Y/X ∈ A. Compare this with Remark (ii) at the end
of the section.

Even though the finite type question still remains open, we will de-
scribe a family of coherent functors defining B in Theorem 4.9—this
can be viewed as a counterpart of [29, Theorem A (3)] for module cate-
gories. We will also characterize the countably presented modules from
the class A in Theorem 4.8. In both tasks, the key role is played by
the ideal I of the category mod-R consisting of the morphisms which,
when considered in Mod-R, factor through some module from A.

For the whole section, let R be a right coherent ring; that is, finitely
(and also countably) presented modules are precisely the strongly finite-
ly (countably) presented ones, respectively. We will deal with countable
direct systems of finitely generated modules of the form:

C0
f0→ C1

f1→ C2 → · · · → Cn
fn→ Cn+1 → · · · .

Here, we write for simplicity fn instead of fn+1,n. We start with re-
calling some important preliminary results whose proofs are essentially
in [8] and [2]:

Lemma 4.1. Let (Cn, fn)n<ω be a countable direct system of R-
modules. Let M be a module such that Ext1

R(lim−→Cn,M) = 0. Then

lim←−
1 HomR(Cn,M) = 0.

Proof. The proof here is in fact a part of the proof of [8, Theorem 5.1].
If we apply the functor HomR(−,M) to the canonical presentation

0→
⊕

Cn
ϕ→

⊕
Cn → lim−→Cn → 0

of the countable direct limit lim−→Cn, we get exactly the first three terms
of the exact sequence defining the first derived functor of inverse limit
of the system (Hn | n < ω), where Hn = HomR(Cn,M):

0→ lim←−Hn →
∏

Hn
∆→

∏
Hn → lim←−

1Hn → 0

Since Ext1
R(lim−→Cn,M) = 0, the map ∆ = HomR(ϕ,M) is surjective.

Hence lim←−
1Hn = 0. �

Corollary 4.2. Let (Cn, fn)n<ω be a countable direct system of finitely
generated modules. Let M be a module such that Ext1

R(lim−→Cn,M
(ω)) =

0. Then the inverse system (HomR(Cn,M),HomR(fn,M))n<ω is Mittag-
Leffler.
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Proof. This follows either immediately from Lemma 2.5 for G = {N |
N ∼= M (ω)}, or from Proposition 1.4. Note that in both cases we use
the fact that all modules Cn are finitely generated. �

The following lemma gives us information about a syzygy of a count-
able direct limit of finitely presented modules and it will be useful for
computation.

Lemma 4.3. Let (Cn, fn)n<ω be a countable direct system of finitely
presented modules. Then there exists a countable direct system

...
...

...x x x
0 −−−→ D2

i2−−−→ P2
p2−−−→ C2 −−−→ 0

g1

x s1

x f1

x
0 −−−→ D1

i1−−−→ P1
p1−−−→ C1 −−−→ 0

g0

x s0

x f0

x
0 −−−→ D0

i0−−−→ P0
p0−−−→ C0 −−−→ 0

of short exact sequences of finitely presented modules such that Pn is
projective and sn is split mono for each n < ω. In particular, lim−→Pn is
projective.

Proof. We will construct the short exact sequences by induction on n.

For n = 0, let 0 → D0
i0→ P0

p0→ C0 → 0 be a short exact sequence
with P0 projective finitely generated. Then D0 is finitely generated,
hence finitely presented since we are working over a right coherent

ring. If 0 → Dn
in→ Pn

pn→ Cn → 0 has already been constructed, let
q : Q → Cn+1 be an epimorphism such that Q is a finitely generated
projective module. Now define Pn+1 = Pn ⊕Q, sn : Pn → Pn+1 as the
canonical inclusion, and pn+1 = (fnpn, q). Then Dn+1 = Ker pn+1 is
finitely presented and gn is determined by the commutative diagram
above. The last assertion is clear. �

Next, we will need a generalized version of Auslander’s well-known
lemma. It says that Ext1

R(lim−→Ci,M) ∼= lim←−Ext1
R(Ci,M) whenever

M is a pure-injective module. Note that for a countable direct
system (Cn, fn)n<ω, the fact that M is pure-injective implies that
lim←−

1 HomR(Cn,M) = 0. To see this, we will again use the fact that
after applying HomR(−,M) on the canonical pure-exact sequence

0→
⊕

Ci
ϕ→

⊕
Ci → lim−→Ci → 0, (†)
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we get first three terms of the exact sequence

0→ lim←−Hn →
∏

Hn
∆→

∏
Hn → lim←−

1Hn → 0

where Hn = HomR(Cn,M). But if M is pure-injective, then apply-
ing HomR(−,M) on (†) yields an exact sequence and consequently
lim←−

1 HomR(Ci,M) = 0. It turns out that the latter condition is suffi-

cient for Ext1
R(−,M) to turn a direct limit into an inverse limit over a

right coherent ring:

Lemma 4.4. Let (Cn, fn)n<ω be a countable direct system and let M be
a module such that lim←−

1 HomR(Ci,M) = 0. Then Ext1
R(lim−→Ci,M) ∼=

lim←−Ext1
R(Ci,M).

Proof. Consider the direct system of short exact sequences 0→ Dn
in→

Pn
pn→ Cn → 0 given by Lemma 4.3. After applying HomR(−,M), we

get an inverse system of exact sequences

0→ HomR(Cn,M)
p∗n→ HomR(Pn,M)

i∗n→
i∗n→ HomR(Dn,M)

δn→ Ext1
R(Cn,M)→ 0.

By assumption, the following short sequence is exact:

0→ lim←−HomR(Cn,M)→ lim←−HomR(Pn,M)→ lim←− Im i∗n → 0.

On the other hand, it follows from Proposition 1.4 that
lim←−

1 HomR(Pn,M) = 0 since (HomR(Pn,M),HomR(sn,M))n<ω is a
countable inverse system with all the maps (split) epic. Moreover,
lim←−

1 Im i∗n = 0 since lim←−
1 is right exact on countable inverse systems.

Hence, the following sequence is also exact:

0→ lim←− Im i∗n → lim←−HomR(Dn,M)→ lim←−Ext1
R(Cn,M)→ 0.

Putting everything together, we have obtained the following diagram
with canonical maps and exact rows:

lim←−HomR(Pn,M) −−→ lim←−HomR(Dn,M) −−→ lim←−Ext1R(Cn,M) −−→ 0

∼=
x ∼=

x
Hom(lim−→Pn,M) −−→ Hom(lim−→Dn,M) −−→ Ext1R(lim−→Cn,M) −−→ 0

It follows that Ext1
R(lim−→Cn,M) ∼= lim←−Ext1

R(Cn,M). �
Now, we will focus on T-nilpotent inverse systems. It is clear that

every T-nilpotent countable inverse system is Mittag-Leffler. It turns
out that the converse is true precisely when the inverse limit of the
system vanishes. This is made precise by the following lemma:

Lemma 4.5. Let (Hn, hn)n<ω be a countable inverse system of abelian
groups. Then the following are equivalent:

(1) (Hn, hn)n<ω is T-nilpotent,
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(2) (Hn, hn)n<ω is Mittag-Leffler and lim←−Hn = 0.

Proof. (1) =⇒ (2) follows easily from the definitions. Let us prove
(2) =⇒ (1). For each m < ω, let s(m) > m be minimal such that the
chain

Hm ⊇ hm(Hm+1) ⊇ · · · ⊇ hmhm+1 · · ·hn−1(Hn) ⊇ · · ·
is constant for n ≥ s(m) and let ρm : lim←−Hn → Hm be the limit map
for each m. It follows easily that s(m) ≤ s(m′) for m < m′. We
will prove by induction that Im ρm = Imhmhm+1 · · ·hs(m)−1. Together
with the assumption that lim←−Hn = 0, this will imply the T-nilpotency.
Let us fix xm ∈ Imhmhm+1 · · ·hs(m)−1. All we need to do is to con-
struct by induction a sequence of elements (xn)m<n<ω such that xn ∈
Imhnhn+1 · · ·hs(n)−1 ⊆ Hn and xn−1 = hn−1(xn) for each n > m. Sup-
pose we have already constructed xn−1 for some n. Then, by the chain
condition, there is y ∈ Hs(n) such that hn−1hn · · ·hs(n)−1(y) = xn−1.
We can put xn = hn · · ·hs(n)−1(y). �

We are in a position now to give a connection between vanishing
of Exti

R and the chain conditions mentioned above (the Mittag-Leffler
condition and T-nilpotency). We state the connection in the following
key lemma:

Lemma 4.6. Let (Cn, fn)n<ω be a countable direct system of finitely
presented modules and let M be an arbitrary module. Consider the
following conditions:

(1) Ext1
R(lim−→Cn,M

(ω)) = Ext2
R(lim−→Cn,M

(ω)) = 0.
(2) The inverse system (HomR(Cn,M),HomR(fn,M))n<ω is Mittag-

Leffler and (Ext1
R(Cn,M),Ext1

R(fn,M))n<ω is T-nilpotent.
(3) Ext1

R(lim−→Cn,M
(ω)) = 0.

Then (1) implies (2) and (2) implies (3).

Proof. (1) =⇒ (2). Assume Ext1
R(lim−→Cn,M

(ω)) = Ext2
R(lim−→Cn,M

(ω)) =
0. Then the inverse system (HomR(Cn,M),HomR(fn,M))n<ω is Mittag-
Leffler by Corollary 4.2. By Proposition 1.4 we have lim←−

1 HomR(Cn,M) =
0, and subsequently it follows by Lemma 4.4 that

lim←−Ext1
R(Cn,M) ∼= Ext1

R(lim−→Cn,M) = 0

Next, let 0 → Dn → Pn → Cn → 0 be the countable direct system
given by Lemma 4.3. Since

Ext1
R(lim−→Dn,M

(ω)) = Ext2
R(lim−→Cn,M

(ω)) = 0

by dimension shifting, the inverse system (HomR(Dn,M))n<ω is also
Mittag-Leffler by Corollary 4.2. Then (Ext1

R(Cn,M))n<ω is Mittag-
Leffler as well, since an epimorfic image of a Mittag-Leffler in-
verse system is Mittag-Leffler again, [20, Proposition 13.2.1]. Thus,
(Ext1

R(Cn,M))n<ω is T-nilpotent by Lemma 4.5.
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(2) =⇒ (3). Clearly, condition (2) implies that (HomR(Cn,M
(ω)))n<ω

is Mittag-Leffler and (Ext1
R(Cn,M

(ω)))n<ω is T-nilpotent. Hence

Ext1
R(lim−→Cn,M

(ω)) = lim←−Ext1
R(Cn,M

(ω)) = 0

by Lemmas 4.4 and 4.5. �
With the previous lemma in mind, a natural question arises when

Ext1
R(f,M) is a zero map for a homomorphism f : X → Y between

finitely presented modules. It is possible to characterize such maps
f when Ext1

R(f,M) = 0 as M runs over all modules in the right-
hand class of a complete cotorsion pair. We state this precisely in
Lemma 4.7. In view of [30], the lemma can be viewed as a module-
theoretic counterpart of [29, Lemmas 3.4 (3) and 3.8].

Lemma 4.7. Let (A,B) be a complete cotorsion pair in Mod-R and
let f : X → Y be a homomorphism between R-modules. Then the
following are equivalent:

(1) Ext1
R(f,B) = 0 for every B ∈ B,

(2) f factors through some module in A.

Proof. (1) =⇒ (2). Let 0→ B → A→ Y → 0 be a special A-precover
of Y and consider the following pull-back diagram:

0 −−−→ B −−−→ Q −−−→ X −−−→ 0∥∥∥ y f

y
0 −−−→ B −−−→ A −−−→ Y −−−→ 0

Then the upper row splits by assumption and f factors through A.
(2) =⇒ (1). This is easy, since the assumption that f factors through

some A ∈ A implies that Ext1
R(f,B) factors through Ext1

R(A,B) = 0
for each B ∈ B. �

Now, we can characterize countably presented modules in the left-
hand class of a cotorsion pair satisfying the hypotheses of TCMC. Ac-
tually, we state the theorem more generally, for cotorsion pairs satis-
fying somewhat weaker conditions. Recall that by Theorem 3.5, every
cotorsion pair satisfying the hypotheses of TCMC is complete.

Theorem 4.8. Let R be a right coherent ring and (A,B) be a complete
hereditary cotorsion pair with B closed under (countable) direct sums.
Denote by I the ideal of all morphisms in mod-R which factor through
some module from A. Then the following are equivalent for a countably
presented module M :

(1) M ∈ A,
(2) M is a direct limit of a countable system (Cn, fn)n<ω of

finitely presented modules such that fn ∈ I for every n and
(HomR(Cn, B),HomR(fn, B))n<ω is Mittag-Leffler for each B ∈
B.
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If, in addition, A is closed under (countable) direct limits, then these
conditions are further equivalent to:

(3) M is a direct limit of a countable system (Cn, fn)n<ω of finitely
presented modules such that fn ∈ I for every n.

Proof. (1) =⇒ (2). Let us fix (any) countable system (Dn, gn)n<ω of
finitely presented modules such that M = lim−→Dn. Assume M ∈ A and

B ∈ B. Then B(ω) ∈ B and Ext1
R(lim−→Dn, B

(ω)) = Ext2
R(lim−→Dn, B

(ω)) =
0 by assumption. So the inverse system (HomR(Dn, B),HomR(gn, B))n<ω

is Mittag-Leffler and the system (Ext1
R(Dn, B),Ext1

R(gn, B))n<ω is T-
nilpotent for each B ∈ B by Lemma 4.6.

Now, we will by induction construct a strictly increasing sequence
n0 < n1 < · · · of natural numbers such that the compositions

fi = gni+1−1 . . . gni+1gni
: Dni

→ Dni+1

satisfy Ext1
R(fi, B) = 0 for each i < ω and B ∈ B. Let us start with

n0 = 0. For the inductive step, assume that ni has already been con-
structed. If there is some l > ni such that Ext1

R(gl−1 . . . gni+1gni
, B) = 0

for each B ∈ B, we are done since we can put ni+1 = l. If this
was not the case, there would be some Bl ∈ B for each l > ni

such that Ext1
R(gl−1 . . . gni+1gni

, Bl) ̸= 0. But this would imply that
(Ext1

R(Dn,
⊕

l>ni
Bl))n<ω is not T-nilpotent, a contradiction.

Finally, we can just put Ci = Dni
and observe using Lemma 4.7 that

fi ∈ I for each i < ω.
(2) =⇒ (1). This follows directly from Lemma 4.6, since the inverse

system (Ext1
R(Cn, B),Ext1

R(fn, B))n<ω is clearly T-nilpotent for each
B ∈ B (see Lemma 4.7).

(2) =⇒ (3) is obvious.
(3) =⇒ (1). For each n, write fn as a composition of the form

Cn
un→ An

vn→ Cn+1 with An ∈ A. In this way, we get a direct system

C0
u0→ A0

v0→ C1
u1→ A1

v1→ C2
u2→ · · · .

Now, lim−→n<ω
Cn = lim−→n<ω

An. Hence M ∈ A since A is closed under

countable direct limits. �
The preceding theorem allows us to characterize modules in the right-

hand class of a cotorsion pair satisfying the assumptions of TCMC.
Again, we state the following theorem for more general cotorsion pairs
than those in question for TCMC. Note that for projective cotorsion
pairs over self-injective artin algebras, the following statement is a con-
sequence of [30, Corollary 7.7] and [29, Theorem A].

Theorem 4.9. Let R be a right coherent ring and (A,B) be a hereditary
cotorsion pair in Mod-R with B closed under unions of well-ordered
chains. Denote by I the ideal of all morphisms in mod-R which factor
through some module from A. Then the following are equivalent:
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(1) B ∈ B,
(2) Ext1

R(f,B) = 0 for each f ∈ I.

Proof. (1) =⇒ (2). This is clear, since in this case, for each f ∈ I,
the map Ext1

R(f,B) factors through Ext1
R(A,B) = 0 for some A ∈ A.

(2) =⇒ (1). Recall that the cotorsion pair is of countable type
and complete by Theorem 3.5. Moreover, every countably presented
module in A can be expressed as a direct limit of a direct system
(Cn, fn)n<ω with all the morphisms fn in I by Theorem 4.8.

Let us define a class of modules C as

C = {M ∈ Mod-R | Ext1
R(f,M) = 0 for each f ∈ I}

By definition B ⊆ C.
Note that since every f ∈ I is a morphism between strongly finitely

presented modules, say f : X → Y , and it is not difficult to see that
the functors Ext1

R(X,−) and Ext1
R(Y,−) are coherent in this case, so

is the functor Ff = Im Ext1
R(f,−). Hence C is a definable class as

it is defined by vanishing of the functors Ff where f runs through
a representative set of morphisms from I. In particular, this means
that showing C ⊆ B reduces just to showing that every pure-injective
module M ∈ C is already in B, since definable classes are determined
by the pure-injective modules they contain.

To this end, assume that M ∈ C is pure-injective and A ∈ A is
countably presented. Then A = lim−→Cn where (Cn, fn)n<ω is a direct

system such that fn ∈ I for each n. In particular, Ext1
R(fn,M) = 0 by

assumption and

Ext1
R(A,M) = Ext1

R(lim−→Cn,M) ∼= lim←−Ext1
R(Cn,M) = 0

by Auslander’s lemma. Finally, since (A,B) is of countable type and
A was arbitrary, it follows that M ∈ B. �
Remark. (i) Countable type of the cotorsion pair considered in Theo-
rem 4.9 together with Lemma 3.4 imply that when defining I, we may
assume that the modules from A through which the maps f ∈ I are
required to factorize are all countably presented.

(ii) To determine which implication of pp-formulas corresponds to the
coherent functor Ff from the proof of Theorem 4.9, we build the fol-
lowing commutative diagram

0 −−−→ K
iX−−−→ FX

pX−−−→ X −−−→ 0yi

ys

yf

0 −−−→ L
iY−−−→ FY

pY−−−→ Y −−−→ 0

with FX , FY finitely generated free, K,L finitely presented, s a split
embedding and i, iX , iY inclusions. Now, an equivalent statement to
Ff (M) = 0 is that every homomorphism from K into M which extends
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to L must extend to FX as well, and this can be routinely translated
to an implication between two pp-formulas to be satisfied in M . If we
denote by H the pushout of i and iX , and by h the pushout map L→
H, then the latter actually means that Coker HomR(h,M) = 0. Thus,
Coker HomR(h,−) is a coherent functor which may be equivalently used
instead of Ff when defining B.

5. Direct limits and pure-epimorphic images

In the cases when TCMC holds true, the class A of any cotorsion pair
(A,B) meeting its assumptions must be closed under pure-epimorphic
images. Indeed, in this setting, we have A = lim−→(A ∩mod-R) and the
latter class is closed under pure-epimorphic images by the well-known
result of Lenzing (cf. [32] or [19, Lemma 1.2.9]). In this section, we
prove that the hypotheses of TCMC do always imply that A is closed
under pure-epimorphic images. As a consequence, we prove that every
complete cotorsion pair with both classes closed under arbitrary direct
limits is cogenerated by a single pure-injective module—this can be
viewed as a module-theoretic counterpart of [29, Theorem C].

Note that the first part—to make sure that A is closed under pure-
epimorphic images—is the crucial one. For projective cotorsion pairs
over self-injective algebras which satisfy the hypotheses of TCMC, this
property follows by analysis of the proofs in [29] and [30]. But when
proving this in a more general setting, one obstacle appears. Namely,
complete cotorsion pairs provide us with approximations (special pre-
covers and preenvelopes) which are not functorial in general. Therefore,
implementing the rather simple underlying idea—expressing each mod-
ule in A in terms of direct limits of A-precovers of finitely presented
modules and proving that this transfers to pure-epimorphic images—
requires several technical steps. In particular, we need special indexing
sets for our direct systems which we call inverse trees.

We start with a preparatory lemma. Recall that for an ordinal num-
ber α, we denote by |α| the cardinality of α when viewed as the set of
all smaller ordinals.

Definition 5.1. A direct system (Mi, fji | i, j ∈ I & i ≤ j) of R-
modules is said to be continuous if (Mk, fkj | j ∈ J) is the direct limit
of the system (Mi, fji | i, j ∈ J & i ≤ j) whenever J is a directed
subposet of I and k is a supremum of J in I.

Lemma 5.2. Let κ be an infinite cardinal and M be a κ-presented
module. Then M is a direct limit of a continuous well-ordered system
(Mα, fβα | α ≤ β < κ) such that for all α < κ, Mα is |α|-presented.

Proof. We can start as in Lemma 1.1. Let⊕
β<κ

xβR
g→

⊕
γ<κ

yγR→M → 0
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be a free presentation of M . For each α < κ, let Xα be the subset of
all ordinals β < α such that f(xβ) ∈

⊕
γ<α yγR. If we define Mα as

the cokernel of the restriction
⊕

β∈Xα
xβR→

⊕
γ<α yγR of g, it is easy

to see that the direct system (Mα | α < κ) together with the natural
maps has the properties we require. �

For a set X, we will denote by X∗ the set of all finite strings over X,
that is, all functions u : n → X for n < ω. We will denote strings by
letters u, v, w, . . . and write them as sequences of elements of X, which
we will denote by Greek letters for a reason which will be clear soon.
For example, we write u = α0α1 . . . αn−1. When u, v are strings, we
denote by uv their concatenation, we define the length of a string u in
the usual way and denote it by ℓ(u), and we identify strings of length 1
with elements in X. The empty string is denoted by ∅. Note that the
set X∗ together with the concatenation operation is nothing else than
the free monoid over X.

Definition 5.3. Let κ be an infinite cardinal and κ∗ be the free monoid
over κ. Let us equip κ∗ \{∅} with a partial order in the following way:
If u = α0α1 . . . αn−1 and v = β0β1 . . . βm−1, we put u ≤ v if

(1) n ≥ m,
(2) α0α1 . . . αm−2 = β0β1 . . . βm−2, and
(3) αm−1 ≤ βm−1 as ordinal numbers.

Then an inverse tree over κ is the subposet of (κ∗ \ {∅},≤) defined as

Iκ =
{
α0α1 . . . αn−1

∣∣(
∀i ≤ n− 2

)(
αi is infinite, non-limit & αi+1 < |αi|

)}
.

For convenience, given a non-empty string u = α0α1 . . . αn−1 ∈ κ∗,
we define the tail of u, denoted by t(u), to be the last symbol αn−1 of
u, and the rank of u, rk(u), to be the cardinal number |αn−1|. Notice
that in this terminology, the tail of a string u ∈ Iκ is allowed to be a
limit or finite ordinal.

Having defined inverse trees, we can start collecting basic properties
of the partial ordering:

Lemma 5.4. Let (Iκ,≤) be an inverse tree, and let v and u =
β0 . . . βm−2βm−1 be two elements of Iκ such that v < u. Then there
is w ∈ Iκ such that v ≤ w < u and one of the following cases holds
true:

(1) There is an ordinal γ < βm−1 such that w = β0β1 . . . βm−2γ.
(2) There is an ordinal γ < |βm−1| such that w = β0β1 . . . βm−2βm−1γ.

Proof. This follows easily from the definition. Notice that (2) can only
hold if βm−1 = t(u) is infinite and non-limit. �
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As an immediate corollary, we will see that the properties of u ∈ Iκ
with respect to the ordering depend very much on the tail (and rank)
of u:

Corollary 5.5. Let u = α0 . . . αn−2αn−1 ∈ Iκ. Then the following hold
in (Iκ,≤):

(1) If t(u) = 0, then u is a minimal element.
(2) If t(u) is non-zero finite, then u has a unique immediate prede-

cessor.
(3) If t(u) is an infinite non-limit ordinal, then u = sup{uγ | γ <

rk(u)}.
(4) If t(u) is a limit ordinal, then u = sup{α0 . . . αn−2γ | γ < t(u)}.

We have seen that an element u ∈ Iκ can be expressed as a supremum
of a chain of strictly smaller elements if and only if rk(u) is infinite. If
so, this chain depends on whether t(u) is a limit ordinal or not. We
will prove in the next lemma that as far as we are concerned with
continuous direct systems indexed with Iκ, this expression of u as a
supremum is essentially unique.

Lemma 5.6. Let u ∈ Iκ be of infinite rank and C be the chain as in
Corollary 5.5 (3) or (4) such that u = supC in Iκ. Let J ⊆ Iκ be a
directed subposet of Iκ such that u = sup J in Iκ and u ̸∈ J . Then
C ∩ J is cofinal in J .

Proof. Choose some j ∈ J of the least possible length. Since J is
directed, u is the supremum of the upper set ↑j = {i ∈ J | i ≥ j}, too.
By the definition of the ordering and the fact that j has been taken
of the least possible length, we see that each i ∈ (↑ j) is of the form
β0β1 . . . βm−2γi where β0, β1, . . . , βm−2 are fixed and γi < |βm−2|. Thus
u = β0β1 . . . βm−2 provided that sup{γi | i ∈ (↑j)} = |βm−2| (case (3)),
and u = β0β1 . . . βm−2βm−1 if βm−1 = sup{γi | i ∈ (↑j)} < |βm−2| (case
(4)). Hence, ↑j ⊆ C ∩J by assumption, and C ∩J is cofinal in J since
↑j is. �

So far, we have studied elements strictly smaller than a given u ∈ Iκ.
But, we will also need to look “upwards”:

Lemma 5.7. Let (Iκ,≤) be an inverse tree. Then

(1) For each u ∈ Iκ, the upper set ↑ u = {w ∈ Iκ | w ≥ u} is
well-ordered.

(2) (Iκ,≤) is directed.
(3) Every non-empty bounded subset X ⊆ Iκ has a supremum in

Iκ.

Proof. (1). It follows from the definition that ↑ u is a totally ordered
subset of Iκ. If X ⊆ (↑u) is nonempty, then the longest string u ∈ X
with the minimum tail t(u) is the least element in X. Hence, ↑ u is
well-ordered.
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(2). Let u = α1 . . . αn−1, v = β1 . . . βm−1 be elements in Iκ. Then
max{α1, β1}, viewed as a string of length 1, is greater than both u and
v.

(3). Suppose X ⊆ Iκ is non-empty and has an upper bound u ∈ Iκ.
In other words, u ∈ Y for Y =

∩
w∈X(↑w). But since for any v ∈ X

clearly Y ⊆ (↑ v), there must be the least element in Y , which is by
definition the supremum of X. �

In view of the preceding lemma, we can introduce the following def-
inition:

Definition 5.8. Let (Iκ,≤) be an inverse tree and u = α0 . . . αn−2αn−1 ∈
Iκ. Then the successor of u in Iκ is defined as s(u) = α0 . . . αn−2β where
β = α+1 is the ordinal successor of α. Similarly, if t(u) = αn−1 is non-
limit and non-zero, we define the predecessor of u as p(u) = α0 . . . αn−2γ
where γ = α− 1 is the ordinal predecessor of α.

Note that by Lemma 5.7, s(u) is the unique immediate successor of u
in (Iκ,≤). On the other hand, even if p(u) is defined, there still may be
other elements in Iκ less than u that are incomparable with p(u)—see
Lemma 5.4. We can summarize our observations in a figure showing
“neighbourhoods” of elements u ∈ Iκ depending on t(u), where w ∈ κ∗
is the string obtained from u by removing its last symbol:

t(u) infinite and non-limit t(u) limit

p(u) // u // s(u)

uγ // u(γ + 1)

II wγ // w(γ + 1) // u // s(u)

This picture also shows the motivation for calling (Iκ,≤) an inverse
tree. From each u ∈ Iκ, there is exactly one possible way towards
greater elements, while when traveling in Iκ down the ordering, there
are many branches. The rank zero elements of Iκ can be viewed as
leaves. Just the root is missing—it is easy to see that Iκ has no maximal
element.

Next, we will turn our attention back to modules. We shall see that
each infinitely presented module is the direct limit of a special direct
system indexed by an inverse tree.

Lemma 5.9. Let κ be an infinite cardinal and M be a κ-presented
module. Then M is the direct limit of a continuous direct system
(Mu, fvu | u, v ∈ Iκ & u ≤ v) indexed by the inverse tree Iκ and
such that Mu is rk(u)-presented for each u ∈ Iκ.

Proof. We will construct the direct system by induction on ℓ(u) using
Lemma 5.2. If ℓ(u) = 1, then u can be viewed as an ordinal number
< κ and we just use the modules Mu and morphisms fvu obtained for
M by Lemma 5.2.
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Suppose we have definedMu and fvu for all u, v ∈ Iκ with ℓ(u), ℓ(v) ≤
n. Let v ∈ Iκ be arbitrary with ℓ(v) = n and such that t(v) is infinite
and non-limit. Then by using Lemma 5.2 for Mv, we obtain a well-
ordered continuous system (M v

α, f
v
βα | α ≤ β < rk(v)), and we set

Mvα = M v
α and fvβ,vα = f v

βα for all α ≤ β < rk(v). Finally, the
morphisms fv,vα, α < rk(v), will be defined as the colimit maps M v

α →
Mv, and the rest of the morphisms fu,vα just by taking the appropriate
compositions.

The correctness of this construction is ensured by the properties of
Iκ proved above, and the fact that (Mu | u ∈ Iκ) is continuous is taken
care of by Lemma 5.6. �

The crucial fact about inverse trees is that, under the assumptions of
TCMC, they allow us to construct for each module a continuous direct
system of special precovers:

Lemma 5.10. Let (A,B) be a complete cotorsion pair with both classes
closed under direct limits, κ be an infinite cardinal, and M be a κ-
presented module. Then there is a continuous direct system of short
exact sequences 0 → Bu

ιu→ Au
πu→ Mu → 0 indexed by Iκ such that

Bu ∈ B, Au ∈ A, Mu is rk(u)-presented for each u ∈ Iκ, and M is the
direct limit of the modules Mu.

Proof. We start with the continuous direct system (Mu, fvu | u, v ∈
Iκ & u ≤ v) given by Lemma 5.9 and construct the exact sequences for
each u ∈ Iκ by transfinite induction on t(u).

For each u ∈ Iκ of finite rank, we choose a special A-precover,

0→ Bu
ιu→ Au

πu→Mu → 0,

of Mu, and if t(u) > 0, we find appropriate morphisms gup(u) : Ap(u) →
Au and hup(u) : Bp(u) → Bu using the precover property for the map
fup(u) ◦ πp(u).

Suppose that α is a limit ordinal and the sequences 0 → Bu
ιu→

Au
πu→ Mu → 0 and the maps between them have been constructed

for all u ∈ Iκ with t(u) < α. Then for each v ∈ Iκ with t(v) = α,

we define the exact sequence 0 → Bv
ιv→ Av

πv→ Mv → 0 as the direct
limit of the direct system of already constructed short exact sequences
0 → Bw

ιw→ Aw
πw→ Mw → 0 where w runs over the chain given by

Corollary 5.5 (4) used for v. By assumption, we get Av ∈ A and
Bv ∈ B.

Finally, suppose that α = δ+ 1 for some infinite δ and we have con-
structed the exact sequences for all u ∈ Iκ such that t(u) ≤ δ. Similarly
as above, we define for each v ∈ Iκ with t(v) = α the exact sequence

0 → Bv
ιv→ Av

πv→ Mv → 0 as the direct limit of the direct system of

short exact sequences 0→ Bvβ

ιvβ→ Avβ

πvβ→ Mvβ → 0 where β runs over
all ordinal numbers < rk(v). The morphisms gvp(v) : Ap(v) → Av and
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hvp(v) : Bp(v) → Bv can be defined again by the precover property and
the rest of the morphisms by obvious compositions. This concludes the
construction.

The fact that the direct system of the exact sequences just con-
structed is well-defined and continuous follows from the lemmas above,
in particular from Lemmas 5.4 and 5.6. �

Before stating one of the main results in this section, let us recall
that a cotorsion pair satisfying the assumptions of TCMC is complete
by Theorem 3.5 (2), thus it fits the setting of the following theorem.

Theorem 5.11. Let (A,B) be a complete cotorsion pair with both
classes closed under direct limits. Then A is closed under pure epi-
morphic images.

Proof. Let M be a pure epimorphic image of a module from A. We can
assume that M is not finitely presented since otherwise M is trivially
in A. Hence, Lemma 5.10 gives us a continuous direct system 0 →
Bu

ιu→ Au
πu→ Mu → 0 indexed by Iκ for some κ, and the direct limit

0→ B
ι→ A

π→M → 0 of this system is a special A-precover of M . It
follows from our assumption on M that π is a pure epimorphism.

Now, M is also the direct limit of some direct system (Ki, kji | i ≼ j)
consisting of finitely presented modules and indexed by some poset
(J,≼). We claim that although there is no obvious relation between
the direct systems (Mu | u ∈ Iκ) and (Ki | i ∈ J), the following holds:
For each i ∈ J , there is s(i) ∈ J such that i ≺ s(i) and ks(i)i factors
through Au for some u ∈ Iκ of finite rank.

To this end, denote for all i ∈ J by ki : Ki → M the colimit maps
and fix an arbitrary i ∈ J . Then ki can be factorized through π since
Ki is finitely presented and π is pure. Moreover, since A = lim−→Iκ

Au,

there is u1 ∈ Iκ such that ki factors through Au1 . If rk(u1) is finite, we
put u = u1. If not, Au1 is by Corollary 5.5 the direct limit of a direct
system consisting of some modules Av with t(v) < t(u1). Hence, ki

further factors through Au2 for some u2 ∈ Iκ such that t(u2) < t(u1).
If the rank of u2 is finite, we put u = u2. Otherwise, we construct in
a similar way u3 such that t(u3) < t(u2), and so forth. Since there are
no infinite descending sequences of ordinals, we must arrive at some
u = un of finite rank after finitely many steps.

Hence, there must be ui ∈ Iκ of finite rank such that ki factors
through π ◦ gui

= fui
◦ πui

where gui
: Aui

→ A and fui
: Mui

→M are
the colimit maps. That is, ki = fui

◦ πui
◦ ei for some ei : Ki → Aui

and, since Mui
is finitely presented by Lemma 5.10, fui

further factors
as kji

◦ dui
for some dui

: Mui
→ Kji

and ji ∈ J such that ji ≻ i.
Together, we have ki = kji

◦ dui
◦ πui

◦ ei. Thus, using the fact that Ki

is finitely presented and well-known properties of direct limits, there
must exist some s(i) ≽ ji such that ks(i)i = ks(i)ji

◦ dui
◦ πui

◦ ei, and
the claim is proved.
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Now set J̃ = J × {0, 1} and define (J̃ ,≼) as the poset generated
by the relations (i, 0) ≼ (j, 0) and (i, 0) ≼ (i, 1) ≼ (s(i), 0) where
i, j ∈ J, i ≼ j. Further, for such i, j, put K(i,0) = Ki, K(i,1) = Aui

,
k(j,0),(i,0) = kji, k(i,1),(i,0) = ei, and k(s(i),0),(i,1) = ks(i)ji

◦dui
◦πui

, using the
same notation as above. In this way, defining the remaining morphisms
as the appropriate compositions, we obtain the system (Kx, kyx | x, y ∈
J̃ & x ≼ y) which is easily seen to be direct, it has M as its direct
limit, and (K(i,1) | i ∈ J) forms a cofinal subsystem. Therefore, M is a
direct limit of this cofinal subsystem, which clearly consists of modules
from A.

�
Now, we can prove the crucial statement regarding cogeneration of

cotorsion pairs by a single pure-injective module. To this end, we need
the following notion from [37, Section 9.4]: A pure-injective module N
is said to be an elementary cogenerator if every pure-injective direct
summand of a module elementarily equivalent to Nℵ0 is a direct sum-
mand of some power of N . Further recall that the dual module Md of a
module M is defined as Md = HomZ(M,Q/Z). It is a well-known fact
that any module M is an elementary submodel in its double dual Mdd

as well as in any reduced F-power M I/ΣFM
I provided that F is an

ultrafilter on P(I) (cf. Definition 2.1, these reduced powers are called
ultrapowers).

Proposition 5.12. Let (A,B) be a complete cotorsion pair with B
closed under direct limits. Then there exists a pure-injective module E
such that the class Ker Ext1

R(−, E) coincides with the class of all pure-
epimorphic images of modules from A. Moreover, E can be taken of
the form

∏
k∈K Ek, with Ek indecomposable for each k ∈ K.

Proof. First of all, since B is closed under direct products and direct
limits, it is closed under ultrapowers as well. Thence M ∈ B implies by
Frayne’s Theorem thatN ∈ B provided thatN is a pure-injective direct
summand of a module elementarily equivalent to M . In particular, B
is closed under taking double dual modules.

If we denote by (D, E) the cotorsion pair cogenenerated by the class
of all pure-injective modules from B, then D is exactly the class of all
pure-epimorphic images of modules from A (cf. [5, Lemmas 2.1 and
2.2]; here, the completeness of (A,B) and B being closed under double
duals are actually needed).

By [37, Corollary 9.36], for every module M there exists an ele-
mentary cogenerator elementarily equivalent to M . Thus, by the first
paragraph, we may consider a representative set S consisting of ele-
mentary cogenerators in B such that any module in B is elementarily
equivalent to a module from S. Now define E to be the direct product
of all modules from S. To finish the main part of our proof, it is enough
to show that any pure-injective module from B is in Prod(E), the class
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of all direct summands of powers of E. This is sufficient since then the
left-hand class of the cotorsion pair cogenerated by {E} will coincide
with D.

Let, therefore, M ∈ B be a pure-injective module and N ∈ S be a
module elementarily equivalent to M . By [37, Proposition 2.30], M is
a pure submodule (hence a direct summand) in a module elementarily
equivalent to Nℵ0 . Thus M is a direct summand of some power of N
by the definition of elementary cogenerator.

To prove the moreover statement, first recall that, by a well-known
result of Fischer, E = PE(

⊕
j∈J Ej) ⊕ F where PE stands for pure-

injective hull, Ej is indecomposable pure-injective for each j ∈ J , and
F has no indecomposable direct summands; it may happen that J is
empty or F = 0. By [37, Corollary 4.38], F is a direct summand
of a direct product, say

∏
l∈LEl, of indecomposable pure-injective di-

rect summands of modules elementarily equivalent to E. According
to the first paragraph, El ∈ B for every l ∈ L. It follows that
PE(

⊕
j∈J Ej)⊕

∏
l∈LEl cogenerates the same cotorsion pair as E does.

Further, PE(
⊕

j∈J Ej) is a direct summand in
∏

j∈J Ej and the latter

module is in B since it is elementarily equivalent to PE(
⊕

j∈J Ej) ∈ B.

(Here, we use the fact that the direct sum is an elementary submodel
in its pure-injective hull as well as in the direct product.) Thus, again,∏

k∈J∪LEk cogenerates the same cotorsion pair as E did. �
We are in a position to state the main result of this section. It is in

fact an immediate consequence of the previous statements.

Theorem 5.13. Let C = (A,B) be a complete cotorsion pair with both
classes closed under direct limits. Then C is cogenerated by a direct
product of indecomposable pure-injective modules.

Proof. This follows easily by Theorem 5.11 and Proposition 5.12. �
Remark. (1). Note that if R is an artin algebra or, more generally, a
semi-primary ring and (A,B) is a projective cotorsion pair satisfying
the hypotheses of TCMC, it follows from [31, Corollary 4.5] that the
class B is also of the form Ker Ext1

R(−, N) for a pure-injective module
N .

(2). The distinction between closure under direct limits and closure
under pure-epimorphic images is rather subtle. The two notions often
coincide, but no example of a (hereditary) cotorsion pair (A,B) with A
closed under direct limits and not closed under pure-epimorphic images
is known to the authors as yet.

6. Compactly generated triangulated categories

In this section, we compare the results we have obtained above with
the work of Krause on smashing localizations of triangulated categories
in [29, 27]. As mentioned before, there is a bijective correspondence
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between smashing localizing pairs in the stable module category and
certain cotorsion pairs in the usual module category which works for
self-injective artin algebras [30]. However, as we want to indicate now,
there are strong analogues of both settings well beyond where the cor-
respondence from [30] works. First, we will recall some necessary ter-
minology.

Let T be a triangulated category which admits arbitrary (set indexed)
coproducts. We will not define this concept here since it is well-known
and the definition is rather complicated, but we refer for example to [18,
IV], [21] or [25, §3]. We say that an object C ∈ T is compact if the
canonical map

⊕
i HomT (C,Xi)→ HomT (C,

⨿
iXi) is an isomorphism

for any family (Xi)i∈I of objects of T . Here, we will denote coproducts
in T by the symbol

⨿
to distinguish them from direct sums of abelian

groups. Let us denote by T0 the full subcategory of T formed by the
compact objects. The category T is then called compactly generated if

(1) T0 is equivalent to a small category.
(2) Whenever X ∈ T such that HomT (C,X) = 0 for all C ∈ T0,

then X = 0.

As an important example here, let R be a quasi-Frobenius ring, that
is a ring for which projective and injective modules coincide, and let
Mod-R be the stable category, that is the quotient of Mod-Rmodulo the
projective modules. Then Mod-R is triangulated [21] and compactly
generated [29, §1.5]. Moreover, compact objects are precisely those
isomorphic in Mod-R to finitely generated R-modules. Other examples
of compactly generated triangulated categories are unbounded derived
categories of module categories and the stable homotopy category.

Let X be a full triangulated subcategory of T . Then X is called
localizing if X is closed under forming coproducts with respect to T .
We call X strictly localizing if the inclusion X → T has a right adjoint.
Finally, X is said to be smashing if the right adjoint preserves coprod-
ucts. Note that being a smashing subcategory is stronger than being
strictly localizing, which in turn is stronger than being a localizing
subcategory.

A localizing subcategory X ⊆ T is generated by a class C of objects in
T if it is the smallest localizing subcategory of T containing C. Notice
that T itself is generated by T0 as a localizing subcategory (cf. [39, §5]
or [35, Theorem 2.1]).

As in [30], we define (X ,Y) to be a localizing pair if X is a strictly
localizing subcategory of T and Y = Ker HomT (X ,−). The objects in
Y are then called X -local. Note that this definition makes sense also
for non-compactly generated triangulated categories and with this in
mind, (X ,Y) is a localizing pair in T if and only if (Y ,X ) is a localizing
pair in T op. Moreover, the class X is smashing if and only if the class
Y of all X -local objects is closed under coproducts.
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There is a useful analogue of countable direct limits in a triangulated
category, called a homotopy colimit. Let

X0
φ0→ X1

φ1→ X2
φ2→ · · ·

be a sequence of maps in T . A homotopy colimit of the sequence,
denoted by hocolim−−−−−→Xi, is by definition an object X which occurs in

the triangle ⨿
i<ω

Xi
Φ→

⨿
i<ω

Xi → X →
⨿
i<ω

Xi[1] (‡)

where the i-th component of the map Φ is the composite

Xi

( id
−φi

)

→ Xi ⨿Xi+1
j→

⨿
i<ω

Xi

and j is the split monomorphism to the coproduct. Note that a ho-
motopy colimit is unique up to a (non-unique) isomorphism. As an
easy but important fact, we point up that when applying the functor
HomT (−, Z) on (‡) for any Z ∈ T , we get an exact sequence

0← lim←−
1 HomT (Xi, Z)←

←
∏

HomT (Xi, Z)
Φ∗
←

∏
HomT (Xi, Z)←
← lim←−HomT (Xi, Z)← 0

where Φ∗ = HomT (Φ, Z) and lim←−
1 is the first derived functor of inverse

limit.
Having recalled the terminology, we also recall the crucial correspon-

dence between cotorsion pairs and localizing pairs shown in [30]:

Theorem 6.1. Let R be a self-injective artin algebra, Mod-R the cat-
egory of all right R-modules and Mod-R the stable category. Then the
assignment

(A,B)→ (A,B)

gives a bijective correspondence between projective cotorsion pairs in
Mod-R and localizing pairs in Mod-R. Moreover, the following hold:

(1) A is smashing in Mod-R if and only if both A and B are closed
under direct limits in Mod-R.

(2) A is generated, as a localizing subcategory in Mod-R, by a set
of compact objects if and only if (A,B) is a cotorsion pair of
finite type in Mod-R.

Proof. This is an immediate consequence of [30, Theorem 7.6 and
Corollary 7.7] and [4, Corollary 4.6]. �

We have proved in Theorem 3.5 that any cotorsion pair (A,B) com-
ing from a smashing localizing pair is of countable type. We show that
it is possible to state a similar countable type result for Mod-R purely
in the language of triangulated categories.
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Definition 6.2. Let T be a compactly generated triangulated category.
We call an object X ∈ T countable if it is isomorphic to the homotopy

colimit of a sequence of maps X0
φ0→ X1

φ1→ X2
φ2→ · · · between compact

objects. Furthermore, let Tω stand for the full subcategory of T formed
by all countable objects.

Note that Tω is skeletally small. Now we can state the following
theorem:

Theorem 6.3. Let R be a self-injective artin algebra and T = Mod-R
the stable category of right R-modules. Then every smashing subcat-
egory of T is generated, as a localizing subcategory of T , by a set of
countable objects.

We postpone the proof until after a few preparatory observations and
lemmas. First note that countable objects in Mod-R for a self-injective
algebra R are precisely those isomorphic in Mod-R to countably gen-
erated modules from Mod-R, see [39, Lemma 4.3].

Next, we recall a technical statement concerning vanishing of de-
rived functors of inverse limits. We recall that lim←−

k stands for the k-th
derived functor of inverse limit and, for convenience, we let ℵ−1 = 1.

Lemma 6.4. [33] Let R be a ring and I be a directed set whose smallest
cofinal subset has cardinality ℵα, where α is an ordinal number or −1.
Put

d = sup{k < ω | lim←−
kNi ̸= 0 for some (Ni)i∈Iop}

where (Ni)i∈Iop stands for an inverse system of right R-modules indexed
by Iop. Then d = α+1 if α is finite and d = ω if α is an infinite ordinal
number.

The latter lemma has important consequences for direct limits that
are “small enough”. Recall that given a class C of modules, we denote
by Add C the class of all direct summands of arbitrary direct sums of
modules in C.
Lemma 6.5. Let R be a ring and (Mi)i∈I be a direct system of R-
modules such that |I| < ℵω. Then there is an exact sequence:

0→ Xn → · · · → X1 → X0 → lim−→Mi → 0,

where n is a non-negative integer and Xj ∈ Add {Mi | i ∈ I} for all
j = 0, . . . , n.

Proof. Consider the canonical presentation of lim−→Mi:

· · · δ2→
⊕

i0<i1<i2

Mi0i1i2
δ1→

⊕
i0<i1

Mi0i1
δ0→

⊕
i0∈I

Mi0 → lim−→Mi → 0,

where Mi0i1...ik = Mi0 for all k-tuples i0 < i1 < · · · < ik of elements of
I. This is an exact sequence and it follows from [23] that

lim←−
k HomR(Mi, Y ) = Ker HomR(δk, Y )/ Im HomR(δk−1, Y )
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for any R-module Y and any k ≥ 0 (we let δ−1 = 0 here). If we take
the smallest n such that |I| ≤ ℵn and Y = Ker δn, it follows from
Lemma 6.4 that the inclusion

0→ Ker δn →
⊕

i0<i1<···<in+1

Mi0i1...in+1

splits since lim←−
n+2 HomR(Mi, Y ) = 0 in this case. The claim of the

lemma follows immediately. �
Corollary 6.6. Let R be a quasi-Frobenius ring and let A be a local-
izing subcategory of Mod-R. Assume that (Mi)i∈I is a direct system in
Mod-R such that |I| < ℵω and Mi is an object of A for each i ∈ I.
Then also lim−→Mi is an object of A.

Proof. Note that any localizing subcategory is closed under direct sum-
mands [11]. Then the claim follows immediately from the preceding
lemma when taking into account that triangles in Mod-R correspond
to short exact sequences in Mod-R and that the canonical functor
Mod-R→ Mod-R preserves coproducts. �

Now we are in a position to prove the theorem.

Proof of Theorem 6.3. LetA be a smashing subcategory of T = Mod-R
and let (A,B) be the corresponding projective cotorsion pair in Mod-R
with B closed under direct limits given by Theorem 6.1. Then by
Theorem 3.5, there is a set S of countably generated R-modules that
generates the cotorsion pair.

Let us denote by L the localizing subcategory of T generated by S,
viewed as set of (countable) objects of T . We claim that then for each

X ∈ T , there is a triangle X
wX→ BX → LX → X[1] in T such that

BX ∈ B and LX ∈ L.
Let us assume for a moment that we have proved the claim and let

A ∈ A. If we consider the shifted triangle LA[−1]
f→ A

wA→ BA → LA,
then clearly wA = 0 and f is split epi. Hence, A is a direct summand
of LA[−1] and consequently, since L is closed under direct summands
by [11], A ∈ L. Thus, A = L and the theorem follows.

Therefore, it remains to prove the claim. Let X ∈ T . If we view X
as an R-module, we can construct a special B-preenvelope 0 → X →
BX → LX → 0 following the lines of [19, Theorem 3.2.1]: We construct
a well-ordered continuous chain

B0 ⊆ B1 ⊆ B2 ⊆ · · · ⊆ Bα ⊆ · · ·
indexed by ordinal numbers such that B0 = X and Bα+1 is a universal
extension of Bα by modules from S. That is, there is an exact sequence
of the form:

0→ Bα → Bα+1 →
⊕
j∈Jα

Yj → 0,
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where Yj is isomorphic to a module from S for each j ∈ Jα and the
connecting homomorphisms δZ : HomR(Z,

⊕
j∈J Yj) → Ext1

R(Z,Bα)

are surjective for all Z ∈ S. In particular, Ext1
R(Z,−) applied on

Bα ⊆ Bβ for any α < β gives the zero map. Since all the modules in S
are countably presented, any morphism Ω(Z)→ Bℵ1 in Mod-R, where
Z ∈ S, factors through the inclusion Bα ⊆ Bℵ1 for some α < ℵ1. It
follows that Ext1

R(Z,Bℵ1) = 0 for each Z ∈ S; hence Bℵ1 ∈ B. Now, if
we set Lα = Bα/X for each α, we have a well-ordered continuous chain

L0 ⊆ L1 ⊆ L2 ⊆ · · · ⊆ Lα ⊆ · · ·
such that Lα+1/Lα

∼= Bα+1/Bα ∈ AddS. It follows from Eklof’s
Lemma ([19, Lemma 3.1.2] or [16, Lemma 1]) that Lα ∈ A for each
ordinal α. Hence, 0→ X → Bℵ1 → Lℵ1 → 0 is a special B-preenvelope
of X.

Now let us focus on the corresponding triangle X → Bℵ1 → Lℵ1 →
X[1] in T . Clearly Bℵ1 ∈ B. Moreover, it follows by a straightforward
transfinite induction on α that Lα ∈ L for each α ≤ ℵ1. For α = 0,
obviously L0 = 0 ∈ L. To pass from α to α + 1, we use the fact that
the third term in the triangle Lα → Lα+1 →

⨿
j∈Jα

Yj → Lα[1] is in
AddS. Finally, limit steps are taken care of by Corollary 6.6. The
claim is proved and so is the theorem. �

Inspired by Theorem 6.3, we can ask the following question:

Question (Countable Telescope Conjecture). Let T be an ar-
bitrary compactly generated triangulated category. Is every smashing
localizing subcategory of T generated by a set of countable objects?2

In this context, it is a natural question if one can characterize the
countable objects in a smashing subcategory of a triangulated cate-
gory. That is, we are looking for a triangulated category analogue of
Theorem 4.8. It turns out that there is an analogous statement that
holds for any compactly generated triangulated category.

Theorem 6.7. Let T be a compactly generated triangulated category
and let X be a smashing subcategory of T . Denote by I the ideal of all
morphisms between compact objects which factor through some object
in X . Then the following are equivalent for a countable object X ∈ T :

(1) X ∈ X ,
(2) X is the homotopy colimit of a countable direct system (Xn, φn)

of compact objects such that φn ∈ I for every n.

Proof. (1) =⇒ (2). Since X is countable, we have X = hocolim−−−−−→Yn

where (Yn, ψn) is a direct system of compact objects (not necessarily
from X ). Let Z be an X -local object and let Z̃ =

⨿
i<ω Zi, where

2An affirmative and far more general answer to this question was given by Krause
in [28, §7.4] after submission of this paper.
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Zi = Z for each i < ω. By assumption, Z̃ is also X -local. If we apply

HomT (−, Z̃) on the triangle
⨿

n Yn
Φ→

⨿
n Yn → X →

⨿
n Yn[1], we see

that HomT (Φ, Z̃) is an isomorphism. Hence we get:

lim←−HomT (Yn, Z̃) = 0 = lim←−
1 HomT (Yn, Z̃).

Note also that HomT (Yn, Z̃) is canonically isomorphic to HomT (Yn, Z)(ω)

for each n < ω since all the Yn are compact. Consequently, the inverse
system

(HomT (Yn, Z),HomT (ψn, Z))n<ω

is Mittag-Leffler by Proposition 1.4 and T-nilpotent by Lemma 4.5.
Since the class of all X -local objects is closed under coproducts, we
infer, as in the proof of Theorem 4.8, that there are some bounds for
T-nilpotency common for all X -local objects Z. In other words, there
is a cofinal subsystem (Ynk

, φk | k < ω) of the direct system (Yn, ψn)
such that HomT (φk, Z) = 0 for all k < ω and X -local objects Z. Note
that X ∼= hocolim−−−−−→k

Ynk
since the homotopy colimit does not change

when passing to a cofinal subsystem, [36, Lemma 1.7.1].
Finally, if φ is a morphism in T such that HomT (φ,Z) = 0 whenever

Z is X -local, then φ factors through an object in X by [29, Lemmas
3.4 and 3.8]. Hence, φk ∈ I for each k and we can just put Xk = Ynk

.
(2) =⇒ (1). If X and (Xn, φn) are as in the assumption, then, by

Lemma 4.5,

lim←−HomT (Xn, Z) = 0 = lim←−
1 HomT (Xn, Z)

whenever Z is X -local. Thus, if we consider the triangle
⨿

nXn
Φ→⨿

nXn → X →
⨿

nXn[1] defining X, then HomT (Φ, Z) is an isomor-
phism. For a similar reason, HomT (Φ[1], Z) is an isomorphism, and
consequently HomT (X,Z) = 0 for all X -local objects Z. In other
words: X ∈ X . �

Triangulated category analogues of Theorems 4.9 and 5.13, the re-
maining main results of this paper, have been proved by Krause in [29].
We include the corresponding statements from [29] here to underline
how straightforward the translation is. Let us start with Theorem 4.9—
actually, [29, Theorem A] served as an inspiration for it:

Theorem 6.8. [29, Theorem A] Let T be a compactly generated tri-
angulated category and let X be a smashing subcategory of T . Denote
by I the ideal of all morphisms between compact objects which factor
through some object in X . Then the following are equivalent for Y ∈ T :

(1) Y is X -local,
(2) HomT (f, Y ) = 0 for each f ∈ I.

We conclude the paper with an analogue of Theorem 5.13. Let us first
recall that one defines pure-injective objects in a compactly generated
triangulated category T as follows (see [29]): Let us call a morphism
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X → Y in T a pure monomorphism if the induced map HomT (C,X)→
HomT (C, Y ) is a monomorphism for every compact objects C. An
object X is then called pure-injective if every pure monomorphism
X → Y splits. As for module categories, the isomorphism classes
of indecomposable pure-injective objects form a set which we call a
spectrum of T . The following has been proved in [29]:

Theorem 6.9. [29, Theorem C] Let T be a compactly generated tri-
angulated category and let X be a smashing subcategory of T . Then
X ∈ X if and only if HomT (X,Y ) = 0 for each indecomposable pure-
injective X -local object Y .

For stable module categories over self-injective artin algebras, the
correspondence via Theorem 6.1 works especially well because of the
following result from [29]:

Proposition 6.10. [29, Proposition 1.16] Let R be a quasi-Frobenius
ring and X be a right R-module. Then X is a pure-injective module if
and only if X is a pure-injective object in Mod-R.
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II.

TELESCOPE CONJECTURE, IDEMPOTENT IDEALS,
AND THE TRANSFINITE RADICAL

Abstract

We show that for an artin algebra Λ, the telescope conjecture for
module categories is equivalent to certain idempotent ideals of modΛ
being generated by identity morphisms. As a consequence, we prove
the conjecture for domestic standard selfinjective algebras and domestic
special biserial algebras. We achieve this by showing that in any Krull-
Schmidt category with local d.c.c. on ideals, any idempotent ideal is
generated by identity maps and maps from the transfinite radical.
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TELESCOPE CONJECTURE, IDEMPOTENT IDEALS,
AND THE TRANSFINITE RADICAL

JAN ŠŤOVÍČEK

Abstract. We show that for an artin algebra Λ, the telescope
conjecture for module categories is equivalent to certain idempo-
tent ideals of mod Λ being generated by identity morphisms. As a
consequence, we prove the conjecture for domestic standard selfin-
jective algebras and domestic special biserial algebras. We achieve
this by showing that in any Krull-Schmidt category with local d.c.c.
on ideals, any idempotent ideal is generated by identity maps and
maps from the transfinite radical.

Introduction

The aim of this paper is to further develop and apply connections
between seemingly rather different topics in algebra:

(1) localizations of triangulated compactly generated categories;
(2) theory of cotorsion pairs and induced approximations;
(3) the structure of idempotent ideals in a module category;
(4) representation type of a finite dimensional algebra.

The main motivation for this paper was point (1), the study of so
called smashing localizations in triangulated compactly generated cat-
egories. There is an important conjecture, the telescope conjecture,
which roughly says that any smashing localization of a compactly gen-
erated triangulated category comes from a set of compact objects. For
an extensive study of this problem and explanation of the terminol-
ogy we refer to work by Krause [18, 16]. Even though the conjecture
is known to be false in this generality—see [14] for a simple algebraic
counterexample—it is not resolved for many particular important set-
tings. Such special solutions would still have significant consequences.
In the case of unbounded derived categories of rings, this is discussed
in [16].
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In this paper, we will focus on another setting. Let R be a quasi-
Frobenius ring (that is, the projective and injective left modules co-
incide), and Mod R be the stable module category of left R-modules.
Then Mod R is a triangulated compactly generated category in the
sense of [18, 16]. If, moreover, R is a self-injective artin algebra, the
telescope conjecture has been translated by Krause and Solberg [20] to
a statement about modules, or more precisely about certain cotorsion
pairs of modules. The precise statements and explanation of termi-
nology are given below. Recently, a positive solution to the telescope
conjecture for stable module categories over finite group algebras was
annouced by the authors of [4]. Their methods are, however, closely
tied to group algebras and do not allow direct generalization to other
self-injective artin algebras. We will develop an alternative approach.

The above mentioned version of the telescope conjecture for cotorsion
pairs of modules from [20, §7] makes sense not only for self-injective
artin algebras, but in fact for any associative ring with unit, leading to
a problem in homological algebra which is of interest by itself (cf. [2,
25]). Even though one loses the translation to triangulated categories,
similarities between the new and the original settings are striking and
have been analyzed more in detail in [25].

In the present paper, we further develop the approach from [25] and
show that the telescope conjecture for module categories depends on
the structure of certain idempotent ideals of the category of finitely
presented modules. This is another analogy to so called exact ideals
from [16]. Further, we prove that the structure of idempotent ideals in
the category of finitely presented modules over an artin algebra, as well
as in many other categories studied by representation theory, heavily
depends on idempotent ideals inside the radical. In particular, if there
are no non-zero idempotent ideals in the radical, we get a positive
answer to the telescope conjecture.

The condition of no non-zero idempotent ideals in the radical of the
module category seems to be closely related to the domestic represen-
tation type. These notions were proved to coincide for special biserial
algebras by Schröer [27, 24]. A stronger but closely related condition
when the infinite radical is nilpotent was studied by several authors,
see for example [15, 28, 5, 6]. Our main interest in the existing results
stems from the fact that they provide us with non-trivial examples
of artin algebras over which the telescope conjecture for module cate-
gories holds. Some of them, coming from a paper by Skowroński and
Kerner [15], are self-injective, thus allowing us to go all the way back
and get a statement about smashing localizations of their stable module
categories.

Another condition which seems to be closely related to both the do-
mestic representation type and vanishing of the transfinite radical is
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that of the Krull-Gabriel dimension of an artin algebra being an ordi-
nal number. The concept of the Krull-Gabriel dimension of a ring R
can be interpreted as a measure for complexity of both the category
fp(mod R, Ab) of finitely presented additive functors mod R → Ab,
and the lattice of primitive positive formulas over R. Using a result
from [19], we prove that the telescope conjecture for module categories
holds true if the Krull-Gabriel dimension of the artin algebra in ques-
tion is an ordinal number.

The author would like to thank Øyvind Solberg for several helpful
discussions. The author is also grateful to Otto Kerner for his com-
ments on idempotent ideals in the radical of some module categories
and communicating the unpublished result by Dieter Vossieck men-
tioned in Section 2.

1. Preliminaries

In this text, Λ will always be an artin algebra and all modules will
be left Λ-modules. Let us denote by Mod Λ the category of all modules
and by mod Λ the full subcategory of finitely generated modules. Some
results in this paper will be proved for more general categories: Krull-
Schmidt categories with local d.c.c. on ideals as defined in Section 3.
This setting includes mod Λ, derived bounded categories, categories
of coherent sheaves, and other categories of representation theoretic
significance. A reader who is not interested in the full generality can,
nevertheless, read the corresponding statements as if they were stated
for mod Λ.

A cotorsion pair in Mod Λ is a pair (A,B) of full subcategories of
Mod Λ such that A = Ker Ext1

Λ(−,B) and B = Ker Ext1
Λ(A,−). A

cotorsion pair is called hereditary if in addition Exti
Λ(A,B) = 0 for

all i ≥ 2. This paper deals with the telescope conjecture for module
categories (TCMC) as formulated in [20, Conjecture 7.9]. Actually, we
slightly alter the assumptions—we require the cotorsion pair in question
to be hereditary (since the cotorsion pairs of interest in [20] always are)
and relax the condition that [20] imposes on the class A of the cotorsion
pair. We state the conjecture as follows:

Conjecture (A). Let Λ be an artin algebra and let (A,B) be a heredi-
tary cotorsion pair in Mod Λ such that B is closed under taking filtered
colimits. Then every module in A is a colimit of a filtered system of
finitely generated modules from A.

Note that, in view of [1, Theorem 1.5], we can equivalently replace
filtered colimits by direct limits in the statement above. We say that a
cotorsion pair (A,B) in Mod Λ is of finite type if B = Ker Ext1

Λ(S,−)
for a set S of finitely generated modules. Similarly, we define (A,B) to
be of countable type if we can take S to be a set of countably generated
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modules. With this definition we can for any particular algebra Λ
equivalently restate Conjecture (A) as follows, see [2, Corollary 4.6]:

Conjecture (B). Let Λ be an artin algebra and let (A,B) be a hered-
itary cotorsion pair in Mod Λ such that B is closed under taking direct
limits. Then (A,B) is of finite type.

As a tool to handle the conjectures, we will need the notion of an ideal
of an additive category. Let C be a skeletally small additive category. A
class I of morphisms in C is called a (2-sided) ideal of C if I contains all
zero morphisms, and it is closed under addition and under composition
with arbitrary morphisms from left and right, whenever the operations
are defined. Let us denote I(X, Y ) = I ∩ HomC(X,Y ). Note that
if C = mod Λ then I(X,Y ) is always a k-submodule of HomΛ(X,Y )
where k is the centre of Λ. Since C was assumed to be skeletally small,
ideals of C form a set.

We say that an additive category C is a Krull-Schmidt category if it
is skeletally small, every indecomposable object of C has a local endo-
morphism ring, and every object of C (uniquely) decomposes as a finite
coproduct of indecomposables. As an example to keep in mind, we
can put C = mod Λ. For Krull-Schmidt categories there is a prominent
ideal called the radical—it is the ideal generated by all non-invertible
morphisms between indecomposable objects. We denote this ideal by
radC and if C = mod Λ we use the abbreviated notation radΛ. Let us re-
call the well known fact that radC contains no identity morphisms and,
clearly, it is the maximal ideal with this property. Here and also later
in this paper we, of course, mean no identity morphisms of non-zero
objects since zero morphisms are in any ideal by definition.

Following an idea in [23], we can inductively define transfinite powers
Iα for any ideal I and any ordinal number α. Let I0 be the ideal of all
morphisms in C and I1 = I. For a natural number n ≥ 1, we define
In as usual as the ideal generated by all compositions of n-tuples of
morphisms from I. If α is a limit ordinal, we define Iα =

∩
β<α Iβ. If

α is infinite non-limit, then uniquely α = β + n for some limit ordinal
β and natural number n ≥ 1, and we set Iα = (Iβ)n+1. Note that since
we assume that C is skeletally small, the decreasing chain

I0 ⊇ I1 ⊇ I2 ⊇ · · · ⊇ Iα ⊇ Iα+1 ⊇ . . .

stabilizes for cardinality reasons. Let us denote I∗ =
∩

α Iα, the mini-
mum of the chain.

We will focus mostly on the case when I = radC. In this case we call
rad∗

C the transfinite radical of C. Notice that not necessarily rad∗
C = 0,

even when C = mod Λ for an artin algebra Λ—see the next section
or [23, 27]. The main goal of this paper is to prove that TCMC formu-
lated as Conjecture (B) holds true over those artin algebras for which
rad∗

Λ = 0. This applies in particular to:
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• [15] standard selfinjective algebras of domestic representation
type;

• [27] special biserial algebras of domestic representation type.

Recall that a finite dimensional algebra over an algebraically closed
field is of domestic representation type if there is a natural number N
such that for each dimension d, all but finitely many indecomposable
modules of dimension d belong to at most N one-parametric families.

2. Transfinite radical

Let C be an additive category. We call an ideal I of C idempotent
if I = I2. Equivalently, I is idempotent if and only if for each f ∈ I
there are g, h ∈ I such that f = gh. Using idempotency, we can give
the following characterization of the transfinite radical:

Lemma 1. Let C be a Krull-Schmidt category. Then rad∗
C is the unique

maximal idempotent ideal of C which does not contain any identity
morphisms.

Proof. We use the same (just more verbose) proof as the one given
for [19, 8.10] for module categories. Clearly, rad∗

C contains no identity
morphisms since neither radC does. It is easy to check that rad∗

C is
idempotent [23, Proposition 0.6]. On the other hand, if I is idempotent
without identity maps, then I = I∗ ⊆ rad∗

C (since I = Iα for any
ordinal α by idempotency). Hence radC is maximal with respect to
those two properties. �

There is also a useful characterization of the morphisms in rad∗
C “from

inside”, sheding more light on the concept than a little cryptic defini-
tion as the intersection of a series of transfinite powers. The following
statement has been proved in [23] for C = mod Λ using standard means
similar to those when one deals with Krull dimension of a poset, and
the proof reads equally well for any skeletally small Krull-Schmidt cat-
egory:

Lemma 2. [23, Proposition 0.6] Let C be a Krull-Schmidt category
and f be a morphism in C. Then f ∈ rad∗

C if and only if there exists
a collection of morphisms fpr : Xr → Xp in radC, one for each pair of
rational numbers p, r such that 0 ≤ p < r ≤ 1, such that

(1) fps = fprfrs whenever p < r < s;
(2) f01 = f .

Note that the collection (fpr)0≤p<r≤1 is nothing else than an inverse
system indexed by [0, 1]∩Q. Using the two lemmas above, we can give
some examples of what the transfinite radical can be:

• If Λ is an artin algebra of finite representation type, then radΛ

is nilpotent. Hence rad∗
Λ = 0.
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• If Λ is a tame hereditary artin algebra, then radω+2
Λ = (radω

Λ)3 =
0. Hence rad∗

Λ = 0.
• If Λ is a standard (that is, having a simply connected Galois

covering) selfinjective algebra of domestic representation type,
then radω

Λ is nilpotent [15]. Hence rad∗
Λ = 0.

• If Λ is a special biserial algebra, then rad∗
Λ = 0 if and only if

radω2

Λ = 0 if and only if Λ is of domestic representation type.
If Λ is not domestic, then there exists an indecomposable Λ-
module X such that 0 ̸= rad∗

Λ(X,X) ⊆ EndΛ(X) (see [27,
Theorem 2 and Prop. 6.2]).

• As special case of the previous point, one may consider “Gelfand-
Ponomarev” algebras Λm,n = k[x, y]/(xy, yx, xm, yn), see [11].
The algebra Λ2,3 is not of domestic represetation type and pro-
vides a very illustrative example of non-zero maps in the trans-
finite radical, see [23].

• If Λ is a wild hereditary artin algebra, it is conjectured that
radω

Λ is idempotent. In view of Lemma 1, this cojecture can be
rephrased as rad∗

Λ = radω
Λ.

• It is an unpublished result due to Dieter Vossieck that for the
category C = mod k⟨x, y⟩ of finite dimensional modules over the
free algebra k⟨x, y⟩, the radical radC is idempotent. In particu-
lar rad∗

C = radC.

There is an important consequence of some of the examples above
for wild artin algebras over an algebraically closed field. Namely, they
always have the transfinite radical non-zero. Let us state this precisely.

Definition 3. Let Λ and Γ be finite dimensional algebras over a field k
and let F : mod Γ → mod Λ be an additive functor. Then F is called a
representation embedding if F is faithful, exact, preserves indecompos-
ability (i.e. if X is indecomposable, so is FX) and reflects isomorphism
classes (i.e. if FX ∼= FY then also X ∼= Y ).

A finite dimensional k-algebra is called wild if for any other finite
dimensional algebra Γ over k, there is a representation embedding
mod Γ → mod Λ.

The following statement immediately follows from [27, Proposition
6.2] and [23, Lemma 0.2] (the same idea is also presented in [19, 8.15]):

Proposition 4. Let Λ be a wild algebra over an algebraically closed
field. Then rad∗

Λ ̸= 0. Moreover, there exists an indecomposable Λ-
module X such that 0 ̸= rad∗

Λ(X, X) ⊆ EndΛ(X).

3. Idempotent ideals in Krull-Schmidt categories

Let I be an ideal of a Krull-Schmidt category. Then clearly, if I
is generated by a collection of identity morphisms, it is necessarily an
idempotent ideal. In the sequel we will show that in “nice” categories,
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any idempotent ideal is generated by a collection of identity morphisms
together with some morphisms from the transfinite radical. To make
the word nice precise, we need the following definition:

Definition 5. A skeletally small additive category C is said to have
local descending chain condition on ideals if for any decreasing series

I0 ⊇ I1 ⊇ I2 ⊇ . . .

of ideals of C and any pair of objects X, Y in C, the decreasing chain

I0(X, Y ) ⊇ I1(X,Y ) ⊇ I2(X,Y ) ⊇ . . .

stabilizes.

Now, our category is “nice” if it is Krull-Schmidt with local d.c.c. on
ideals. In fact, this setting is very common in representation theory.
Assume that k is a commutative artinian ring and C is a skeletally small
k-category (Hom-spaces are k-modules and composition is k-linear) and
satisfies the following conditions:

(C1) C has splitting idempotents (that is, idempotent morphisms
have kernels in C);

(C2) C is Hom-finite (that is, HomC(X,Y ) is a finitely generated k-
module for any objects X,Y ∈ C).

Then C is “nice”:

Lemma 6. Let k be a commutative artinian ring and C be a skele-
tally small Hom-finite k-category with splitting idempotents. Then C is
Krull-Schmidt with local d.c.c. on ideals.

Proof. It is a well known fact that C is Krull-Schmidt under the as-
sumption. It is straightforward to show that I(X,Y ) is a k-submodule
of HomC(X, Y ) for any ideal I and any pair of objects X,Y ∈ C. Hence
C has clearly local d.c.c. on ideals thanks to (C2). �
As a consequence, we can give plenty of examples of “nice” categories:

• mod Λ for an artin algebra Λ;
• Db(Λ), the derived bounded category for an artin algebra Λ;
• The category of finite dimensional modules over any algebra

over a field;

and many others.
Let us start with the proof of the aforementioned statement. First

we need a technical lemma.

Lemma 7. Let C be a Krull-Schmidt category with local d.c.c. on ideals.
Let X,Y ∈ C and α be a limit ordinal. Then there is β < α such that
radβ

C(X,Y ) = radα
C (X,Y ).

Proof. Since C has local d.c.c. on ideals, the decreasing chain
(radγ

C(X, Y ))γ<α is stationary. Therefore, there is β < α such that
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radβ
C(X, Y ) =

∩
γ<α

radγ
C(X, Y ) = radα

C (X, Y ).

�

Now, we are in a position to give the structure theorem for idempo-
tent ideals:

Theorem 8. Let C be a Krull-Schmidt category with local d.c.c. on
ideals. Let I be an idempotent ideal of C and f ∈ I. Then there are
f1, f2 ∈ I such that f = f1 + f2, the morphism f1 is generated by
identity morphisms from I, and f2 ∈ rad∗

C.

Proof. We will prove the following statement for all ordinal numbers α
by induction:

(∗): For every f ∈ I there are fα,1, fα,2 ∈ I such that f = fα,1 +
fα,2, the morphism fα,1 is generated by identity morphisms
from I, and fα,2 ∈ radα

C .

Then the theorem will follow if we take α sufficiently big. Let f :
X → Y be a morphism from I—we can without loss of generality
assume that X and Y are indecomposable.

For α = 0, we can simply take f0,1 = 0 and f0,2 = f . If α is non-zero
finite, we can construct by induction morphisms g1, g2, . . . , gα ∈ I such
that f = g1g2 . . . gα. The morphisms gi, 1 ≤ i ≤ α, are not necessarily
morphisms between indecomposable objects of C, but we can write f as
a finite sum of compositions of morphisms between indecomposables.
That is:

f =
∑

j

g1jg2j . . . gαj,

where we take gij as components of gi, so that all gij are in I. Finally,
we can take fα,1 as the sum of those compositions g1jg2j . . . gαj where
at least one of the morphisms in the composition is invertible, and fα,2

the sum of the remaining compositions. Then clearly fα,1 is generated
by identities from I and fα,2 ∈ radα

C .

If α is a limit ordinal, there is an ordinal β < α such that radβ
C(X,Y ) =

radα
C (X,Y ) by Lemma 7. Of course, β depends on X and Y . Hence

we can set fα,1 = fβ,1 and fα,2 = fβ,2, where the existence of fβ,1, fβ,2

is given by inductive hypothesis.
Assume now that α is an infinite non-limit ordinal and gβ,1, gβ,2 have

been already constructed for all g ∈ I and β < α. We can write α =
β +n where β is a limit ordinal and n ≥ 1 is a natural number. Since I
is idempotent, we can as in the finite case construct g1, g2, . . . , gn+1 ∈ I
such that f = g1g2 . . . gn+1. By inductive hypothesis, we can for each
1 ≤ i ≤ n + 1 write gi = gi

β,1 + gi
β,2 where gi

β,1 is generated by identity
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morphisms from I and gi
β,2 ∈ I ∩ radβ

C . Now,

f =
∑

g1
β,k1

g2
β,k2

. . . gn+1
β,kn+1

where the sum is running through all tuples (k1, k2, . . . , kn+1)∈{1, 2}n+1.
Put fα,2 = g1

β,2g
2
β,2 . . . gn+1

β,2 and fα,1 = f − fα,2. Then it immediately

follows by the choice of gi
β,1 and gi

β,2 that fα,1 is generated by identity

morphisms from I and fα,2 ∈ (radβ
C)

n+1 = radα
C . �

Just by reformulating Theorem 8, we get the following corollary:

Corollary 9. Let C be a Krull-Schmidt category with local d.c.c. on
ideals. Let I be an idempotent ideal of C, L be a representative set
of identity maps contained in I, and let R = I ∩ rad∗

C. Then I is
generated, as an ideal of C, by L ∪ R.

By combining the above statements, we can also characterize the
situation when ideals are idempotent exactly when they are generated
by a set of identity maps.

Corollary 10. Let C be a Krull-Schmidt category with local d.c.c. on
ideals. Then the following are equivalent:

(1) Every idempotent ideal of C is generated by a set of identity
maps.

(2) rad∗
C = 0.

Proof. (1) =⇒ (2). If rad∗
C ̸= 0, then by Lemma 1 it is a non-zero

idempotent ideal without identity maps, hence (1) does not hold.
(2) =⇒ (1). This is immediate by Corollary 9 since, assuming (2),

we always get R = 0. �

4. Telescope conjecture for module categories

The aim of this section is to prove TCMC for algebras with vanishing
transfinite radicals. First, we need to collect some general results about
TCMC from [25]. Even though the results are often proved under
weaker assumptions and work almost unchanged for left coherent rings,
we specialize them to artin algebras since this is our main concern here.

Proposition 11. [25, Theorems 3.5, 4.8 and 4.9] Let Λ be an artin
algebra, (A,B) be a hereditary cotorsion pair in Mod Λ such that B is
closed under unions of well ordered chains, and I be the ideal of all
morphisms in mod Λ which factor through some (infinitely generated)
module from A. Then:

(1) (A,B) is of countable type.
(2) B = Ker Ext1

Λ(I,−) = {X ∈ Mod Λ | Ext1(f,X) = 0 (∀f ∈
I)}.
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(3) Every countably generated module in A is the direct limit of a
countable chain

C1
f1→ C2

f2→ C3
f3→ . . .

of finitely generated modules such that fi ∈ I for each i ≥ 1.

We also need a technical lemma about filtrations which has been
studied in [8, 26, 31], and whose origins can be traced back to an
ingenious idea of Paul Hill. Let us recall definitions.

Definition 12. Given a class of modules S, an S-filtration of a module
M is a well-ordered chain (Mα | α ≤ σ) of submodules of M such that
M0 = 0, Mσ = M , Mα =

∪
β<α Mβ for each limit ordinal α ≤ σ, and

Mα+1/Mα is isomorphic to a module from S for each α < σ. A module
is called S-filtered if it possesses (at least one) S-filtration.

We will use the following specializations of a general statement from
[31] for finitely and for countably presented modules:

Lemma 13. [31, Theorem 6]. Let S be a set of finitely (countably,
resp.) presented modules over an arbitrary ring and M be a module
possessing an S-filtration (Mα | α ≤ σ). Then there is a family F of
submodules of M such that:

(1) Mα ∈ F for all α ≤ σ.
(2) F is closed under arbitrary sums and intersections.
(3) For each N, P ∈ F such that N ⊆ P , the module P/N is S-

filtered.
(4) For each N ∈ F and a finite (countable, resp.) subset X ⊆ M ,

there is P ∈ F such that N ∪ X ⊆ P and P/N is finitely
(countably, resp.) presented.

Most of what we need to do now before proving the main results is to
observe that the ideal I from Proposition 11 is always idempotent. We
state this statement for artin algebras, but it again admits an almost
verbatim generalization to left coherent rings.

Lemma 14. Let Λ, (A,B) and I be as in Proposition 11. Then I is
an idempotent ideal of mod Λ.

Proof. Let f : X → Y be a morphism from I. By definition, f factors

as X
g→ A

h→ Z for some A ∈ A. Since (A,B) is of countable type, A
must be filtered by countably generated modules from A [31, Theorem
10]. By Lemma 13, we can find a countably generated submodule
A′ ⊆ A such that Im g ⊆ A′ and A′ ∈ A. More precisely, we use part
(4) of the countable version of Lemma 13 for N = 0 and X a finite

set of generators of Im g. Hence, f factors as X
g′→ A′ h′

→ Z, and, by
Proposition 11, we can express A′ as the direct limit of a system

C1
f1→ C2

f2→ C3
f3→ . . .
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of finitely generated modules such that fi ∈ I for each i ≥ 1. Finally,
since X is finitely generated, g′ factors through Ci for some i ≥ 1.
But then we can write f = h′vfi+1fiu for some morphisms u and v,
and clearly both fiu and h′vfi+1 are in I. Hence f ∈ I2 and I is
idempotent. �

Now, we can equivalently rephrase Conjecture (B) in the language
of ideals:

Proposition 15. Let Λ, (A,B) and I be as in Proposition 11. Then
the following are equivalent:

(1) (A,B) is of finite type.
(2) I is generated by a set of identity morphisms from mod Λ.

Proof. (1) =⇒ (2). Assume that (A,B) is of finite type, that is,
B = Ker Ext1

Λ(S,−) for some set S of finitely generated modules. We
can without loss of generality assume that S is a representative set of
all finitely generated modules in A.

We claim that I is then generated by the set {1X | X ∈ S}. To
this end we recall that under our assumption, A consists precisely of
direct summands of S-filtered modules (see [32, Theorem 2.2] or [12,
Corollary 3.2.3]). Hence, if f : X → Y is a morphism from I, then

it factors as X
g→ A

h→ Z for some S-filtered module A. Using part
(4) of the finite version of Lemma 13 for N = 0 and a finite set X
of generators of Im g, we can find a module A′ ⊆ A such that A′ is
isomorphic to some module in X ∈ S and Im g ⊆ A′. Thus, f factors
through 1X and since f was chosen arbitrarily, the claim is proved.

(2) =⇒ (1). Suppose that S is a set of finitely generated modules
such that {1X | X ∈ S} generates I. It is straightforward by Propo-
sition 11 (2) that B =

∩
X∈S Ker Ext1

Λ(1X ,−). But this is exactly the

same as saying that B = Ker Ext1
Λ(S,−). Hence, the cotorsion pair

(A,B) is of finite type.
�

Finally, we can prove TCMC formulated as Conjecture (B) for those
artin algebras Λ for which rad∗

Λ = 0. Note that all what we need to
do in view of Lemma 14 and Proposition 15 is to show that certain
idempotent ideals are generated by identities, and this is always the
case when rad∗

Λ = 0. As mentioned above, rad∗
Λ = 0 whenever Λ

is a domestic standard selfinjective algebra [15] or a domestic special
biserial algebra [27] over an algebraically closed field.

Theorem 16. Let Λ be an artin algebra such that rad∗
Λ = 0. Then

every hereditary cotorsion pair (A,B) in Mod Λ such that B is closed
under unions of well ordered chains is of finite type.

Proof. Let I be the ideal of all morphisms in mod Λ which factor
through some module from A. Then I is an idempotent ideal by
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Lemma 14 and, therefore, generated by a set of identity maps by Corol-
lary 10. The latter is equivalent to saying that (A,B) is of finite type
by Proposition 15. �

Another condition on an artin algebra Λ which seems to be closely
related to vanishing of the transfinite radical and the domestic represen-
tation type is that of the Krull-Gabriel dimension of Λ being an ordinal
number. Let us recall first that the category C(Λ) = fp(mod Λ, Ab) of
finitely presented covariant additive functors mod Λ → Ab is an abelian
category, and we can inductively define a filtration

S0 ⊆ S1 ⊆ S2 ⊆ · · · ⊆ Sα ⊆ Sα+1 ⊆ . . .

of Serre subcategories of C(Λ) as follows: Let S0 be the full subcateory
of C(Λ) formed by functors of finite length, and for each ordinal number
α, let Sα+1 be the full subcategory of all functors whose image under
the localization functor C(Λ) → C(Λ)/Sα is of finite length. At limit
ordinals α, we take just the unions Sβ =

∪
β<α Sα. We refer to [19, §7]

for more details and further references. The construction leads to the
following definition:

Definition 17. The Krull-Gabriel dimension of an artin algebra Λ is
defined as KGdim Λ = α where α is the least ordinal number such that
Sα = C(Λ). If no such α exists, one puts KGdim Λ = ∞.

As a consequence of a deeper and more refined theorem, [19, Corol-
lary 8.14] shows that rad∗

Λ = 0 whenever KGdim Λ < ∞. In particular,
we get as a corollary of Theorem 16 that TCMC holds for any artin
algebra with ordinal Krull-Gabriel dimension:

Corollary 18. Let Λ be an artin algebra such that KGdim Λ < ∞.
Then every hereditary cotorsion pair (A,B) in Mod Λ such that B is
closed under unions of well ordered chains is of finite type.

Remark. The concept of the Krull-Gabriel dimension has been nicely
illustrated by Geigle for tame hereditary algebras Λ in [9], where he
explicitly computed that KGdim Λ = 2 and described the localization
categories S1/S0 and S2/S1.

The proof of the fact that KGdim Λ < ∞ implies rad∗
Λ = 0 in [19]

goes through a stronger statement and involves many technical argu-
ments. There is, however, a more elementary way to see this. Namely,
one can define a so called m-dimension of a modular lattice follow-
ing [22, §10.2]. Then KGdim Λ is equal to the m-dimension of the lat-
tice of subobjects in fp(mod Λ, Ab) of the forgetful functor HomΛ(Λ,−),
[19, 7.2]. Such subobjects precisely correspond to pairs (M, m) where
M ∈ mod Λ and m ∈ M , and (M ′,m′) corresponds to a subobject of
(M,m) if and only if there is a homomorphism f : M → M ′ in mod Λ
such that f(m) = m′, [19, 7.1]. Now, KGdim Λ = ∞ if and only if there
is a factorizable system in mod Λ in the sense of [23]. Existence of such
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a factorizable system is easily implied by Lemma 2 or [23, Proposition
0.6] if rad∗

Λ ̸= 0.
The Krull-Gabriel dimension of Λ gives also a strong link to model

theory of modules, as it is equal to the m-dimension of the lattice of
primitive positive formulas in the first order theory of Λ-modules. We
refer to [23, Proposition 0.3] and [22, §12] for more details.

5. Telescope conjecture for triangulated categories

We also shortly recall the application on the telescope conjecture for
triangulated categories. If Λ is a selfinjective artin algebra, then the
stable module category Mod Λ modulo injective modules is triangulated
in the sense of [10, IV] or [13, I]. The triangles are, up to isomorphism,
of the form

X
f→ Y

g→ Z
h→ ΣX

where 0 → X
f→ Y

g→ Z → 0 is a short exact sequence in Mod Λ,
and the suspension functor Σ : Mod Λ → Mod Λ corresponds to taking
cosyzygies in Mod Λ. Clearly, Σ is an auto-equivalence of Mod Λ and
the corresponding inverse Σ−1 is given by taking syzygies in Mod Λ.

An object X in a triangulated category with (set-indexed) coprod-
ucts is called compact if the representable functor Hom(X,−) com-
mutes with coproducts. In particular, an object X ∈ Mod Λ is com-
pact if and only if it is isomorphic to a finitely generated Λ-module in
Mod Λ (see [18, §1.5] or [17, §6.5]).

A full triangulated subcategory X of Mod Λ is called localizing if it
is closed under forming coproducts in Mod Λ. A localizing subcategory
X is called smashing if the inclusion X ↪→ Mod Λ has a right adjoint
which preserves coproducts. We say that a localizing subcategory X is
generated by a class C of objects if there is no proper localizing subclass
of X ′ of X such that C ⊆ X ′. We refer to [18, 16] for a thorough discus-
sion of these concepts. It follows that Mod Λ is a compactly generated
triangulated category, that is, Mod Λ is generated, as a localizing class,
by a set of compact objects.

The telescope conjecture studied in [18, 16] asserts that every smash-
ing localizing subcategory of a compactly generated triangulated cat-
egory is generated by a set of compact objects. Even though it is
generally false as mentioned in the introduction, we can give an affir-
mative answer in a special case. Namely Theorem 16 together with
results from [20] imply that the conjecture holds for Mod Λ where Λ is
a selfinjective artin algebra with vanishing transfinite radical.

Theorem 19. Let Λ be a selfinjective artin algebra such that rad∗
Λ =

0. Let X be a smashing localizing subcategory of Mod Λ. Then X is
generated by a set of finitely generated Λ-modules.
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Proof. We know that Conjecture (B) (see page 72) holds for Λ by Theo-
rem 16. Hence also Conjecture (A) holds by the discussion in Section 1.
The rest follows immediately from [20, Corollary 7.7]. �

6. Examples

We conclude with some examples of particular representation-infinite
selfinjective algebras with vanishing transfinite radical.

Example 20. The simplest example is probably the exterior algebra of
a 2-dimensional vector space over an algebraically closed field. That
is, Λ2 = k⟨x, y⟩/(x2, y2, xy + yx). It is a special biserial algebra in the
sense of [30] and it has, up to rotation equivalence and inverse, only one
band xy−1. In particular, Λ2 is domestic and we have exactly one one-
parametric family of indecomposable modules in each even dimension.
For example, we have M(a:b) = Λ2/Λ2(ax + by) for each (a:b) ∈ P1(k)
in dimension 2. Thus, rad∗

Λ2
= 0 by [27, Theorem 2].

With a little more effort, we can classify all smashing localizations
and all hereditary cotorsion pairs with the right hand class closed under
unions of chains. Using the representation theory of special biserial
algeras, one can readily compute the Auslander-Reiten quiver of Λ2. It
consists of a family (T(a:b) | (a:b) ∈ P1(k)) of homogeneous tubes, the
corresponding quasi-simples being precisely the modules M(a:b) above.
In addition, there is one more component, which we denote by C, of
the form

Λ2

!!B
BB

BB
BB

X−3

""F
FFFFFF

""F
FFFFFF

X−1

!!D
DD

DD
DD

!!D
DD

DD
DD

<<zzzzzzz
τoo X1

  B
BB

BB
BB

  B
BB

BB
BB

τoo X3

��<
<<

<<
<<

<

��<
<<

<<
<<

<

τoo oo
??��������

??�������� X−2

<<xxxxxxx

<<xxxxxxx

τ
oo X0

>>|||||||

>>|||||||
τ

oo X2

>>|||||||

>>|||||||
τ

oo
τ

oo

where X0 is the unique simple module, and Xn and X−n are the string
modules corresponding to the strings (yx−1)n and (x−1y)n, respectively.
In particular, dimk Xn = 2·|n|+1. It is easy to compute that Ω−(Xn) ∼=
Xn+1 and Ω−(M) = M for each indecomposable finite dimensional
module in a tube. This describes the restriction of the suspension
functor Σ : Mod Λ2 → Mod Λ2 to mod Λ2.

We recall that a full triangulated subcategory X0 of mod Λ2 is called
thick if it is closed under direct summands. There is a bijective cor-
respondence between thick subcategories X0 of mod Λ2 and localizing
subcategories X of Mod Λ2 generated by a set of compact objects. More
precisely, if X is generated by X0 ⊆ mod Λ2 and X0 is thick, then
X ∩ mod Λ2 = X0, [21, 2.2]. It is clear that each thick subcategory is
uniquely determined by its indecomposable objects.
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We will now describe thick subcategories of mod Λ2. It is straight-
forward to check that if an indecomposable non-injective module M ∈
mod Λ2 is contained in a thick subcategory X0, then all modules in the
same component of the Auslander-Reiten quiver are in X0, too. On the
other hand, if Tp is a tube for some p ∈ P1(k), then one can check that
in mod Λ2, the additive closure of Tp ∪ {Λ2} equals to

{X ∈ mod Λ2 | HomΛ2
(X, Tq) = 0 = HomΛ2

(Tq, X) (∀q ∈ P1(k)\{p})}
Therefore, add(Tp ∪ {Λ2}) is closed under extensions, syzygies and
cosyzygies in mod Λ2, and consequently addTp is thick in mod Λ2. It is
easy to see that HomΛ2

(Tp, Tq) = 0 for p ̸= q, so the additive closure of
any set of tubes is thick in mod Λ2. Finally, there is an exact sequence
0 → M → Xm → Xm+1 → 0 for each m < 0 and each quasi-simple
module M in a tube; hence a thick subcategory containing the com-
ponent C contains all the tubes, too. When summarizing all the facts
(and using Theorem 19), we obtain the following classification:

Proposition 21. Let k be an algebraically closed field, Λ2 =
k⟨x, y⟩/(x2, y2, xy + yx), and C and Tp, p ∈ P1(k), be the components
of the Auslander-Reiten quiver of Λ2 as above. Then each smashing
localizing class X in Mod Λ2 is generated by X0 = X ∩mod Λ2, and the
possible intersections X0 are classified as follows:

(1) X0 = 0; or
(2) X0 is the additive closure of

∪
p∈P Tp for some P ⊆ P1(k); or

(3) X0 = mod Λ2.

In the same spirit, we can classify the hereditary cotorsion pairs
(A,B) in Mod Λ2 such that B is closed under unions of chains. Recall
that a subcategory A0 of mod Λ2 is called resolving if it contains Λ2

and it is closed under extensions, kernels of epimorphisms and direct
summands. There is a bijective correspondence between resolving sub-
categories A0 in mod Λ2 and hereditary cotorsion pairs (A,B) of finite
type in Mod Λ2, [3, 2.5]. Note that if A0 is resolving and contains a
module Xm ∈ C, it must contain all Xz, z ≤ m, and all tubes. On
the other hand, it is not difficult to see that there is an exact sequence
0 → Xn → U → X−k → 0 with an indecomposable (string) module U
from a tube for each n, k > 0. Hence A0 must contain all of C, too.
We will leave details of the following statement (using Theorem 16) for
the reader:

Proposition 22. Let k be an algebraically closed field, Λ2 =
k⟨x, y⟩/(x2, y2, xy + yx), and C and Tp, p ∈ P1(k), be the components
of the Auslander-Reiten quiver of Λ2 as above. Let (A,B) be a hered-
itary cotorsion pair in Mod Λ2 such that B is closed under unions of
chains, and let A0 = A ∩ mod Λ2. Then B = Ker Ext1

Λ2
(A0,−), and

the possible classes A0 are classified as follows:

(1) A0 = add{Λ2}; or
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(2) A0 is the additive closure of {Λ2} ∪
∪

p∈P Tp for P ⊆ P1(k); or

(3) A0 = mod Λ2.

Example 23. A recipe for construction of more complicated examples
is given in [15]. Let B be a representation-infinite tilted algebra of

Euclidean type over an algebraically closed field and B̂ be its repetitive
algebra. Put Λ = B̂/G where G is an admissible infinite cyclic group of

k-linear automorphisms of B̂ (see [29, §1] for unexplained terminology).
Then Λ is selfinjective and rad∗

Λ = 0 by the main result of [15].
We illustrate the construction on B = k(·⇒ ·), the Kronecker alge-

bra. The repetitive algebra B̂ is then given by the following infinite
quiver with relations:

·
x0 //
y0

//·
x1 //
y1

// ·
x2 //
y2

// ·
x3 //
y3

//·

xi+1xi − yi+1yi = 0, xi+1yi = 0, yi+1xi = 0 for each i ∈ Z.

Let n ≥ 1 and q̄ = (q1, . . . , qn) be an n-tuple of non-zero elements of
k. It is not difficult to see that we get the algebra Λn,q̄ described by

the quiver and relations below as B̂/G for a suitable G:

·
x1 //
y1

// ·
x2

��=
==

==
==

y2 ��=
==

==
==

·

xn

@@������� yn

@@������� ·
x3

��
y3

��
·

xn−1

OO
yn−1

OO

·

xi+1yi+qiyi+1xi = 0, xi+1xi = 0, yi+1yi = 0 for each i ∈ {1, 2, . . . , n}.
The addition in indicies of arrows above is considered modulo n. It
is easy to see that Λn,q̄ is special biserial and there are exactly n one-
parametric families of indecomposable Λn,q̄-modules in each even di-
mension. They correspond to the bands xiy

−1
i . In fact, if n = 1 and

q1 = 1, we get precisely the exterior algebra on a 2-dimensional space.
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III.

THE TELESCOPE CONJECTURE FOR HEREDITARY
RINGS VIA EXT-ORTHOGONAL PAIRS

(JOINT WITH HENNING KRAUSE)

Abstract

For the module category of a hereditary ring, the Ext-orthogonal
pairs of subcategories are studied. For each Ext-orthogonal pair that
is generated by a single module, a 5-term exact sequence is constructed.
The pairs of finite type are characterized and two consequences for the
class of hereditary rings are established: homological epimorphisms
and universal localizations coincide, and the telescope conjecture for
the derived category holds true. However, we present examples showing
that neither of these two statements is true in general for rings of global
dimension 2.

This paper is a preprint available as arXiv:0810.1401.
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THE TELESCOPE CONJECTURE FOR HEREDITARY
RINGS VIA EXT-ORTHOGONAL PAIRS

HENNING KRAUSE AND JAN ŠŤOVÍČEK

Dedicated to Helmut Lenzing on the occasion of his 70th birthday.

Abstract. For the module category of a hereditary ring, the
Ext-orthogonal pairs of subcategories are studied. For each Ext-
orthogonal pair that is generated by a single module, a 5-term exact
sequence is constructed. The pairs of finite type are characterized
and two consequences for the class of hereditary rings are estab-
lished: homological epimorphisms and universal localizations co-
incide, and the telescope conjecture for the derived category holds
true. However, we present examples showing that neither of these
two statements is true in general for rings of global dimension 2.

1. Introduction

In this paper, we prove the telescope conjecture for the derived cat-
egory of any hereditary ring. To achieve this, we study Ext-orthogonal
pairs of subcategories for hereditary module categories.

The telescope conjecture for the derived category of a module cate-
gory is also called smashing conjecture. It is the analogue of the tele-
scope conjecture from stable homotopy theory which is due to Bousfield
and Ravenel [6, 28]. In each case one deals with a compactly generated
triangulated category. The conjecture then claims that a localizing
subcategory is generated by compact objects provided it is smashing,
that is, the localizing subcategory arises as the kernel of a localization
functor that preserves arbitrary coproducts [24]. In this general form,
the telescope conjecture seems to be wide open. For the stable homo-
topy category, we refer to the work of Mahowald, Ravenel, and Shick
[22] for more details. In our case, the conjecture takes the following
form and is proved in §7:

Theorem A. Let A be a hereditary ring. For a localizing subcategory
C of D(Mod A) the following conditions are equivalent:

(1) There exists a localization functor L : D(Mod A) → D(Mod A)
that preserves coproducts and such that C = Ker L.

(2) The localizing subcategory C is generated by perfect complexes.

Version from August 13, 2009.
The second author is supported by the Research Council of Norway through the
Storforsk-project “Homological and geometric methods in algebra”.
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For the derived category of a module category, only two results seem
to be known so far. Neeman proved the conjecture for the derived cat-
egory of a commutative noetherian ring [25], essentially by classifying
all localizing subcategories; see [16] for a treatment of this approach in
the context of axiomatic stable homotopy theory. On the other hand,
Keller gave an explicit example of a commutative ring where the con-
jecture does not hold [17]. In fact, an analysis of Keller’s argument
[18] shows that there are such examples having global dimension 2; see
Example 7.8.

The approach for hereditary rings presented here is completely differ-
ent from Neeman’s. In particular, we are working in a non-commutative
setting and without using any noetherianess assumption. The main
idea here is to exploit the very close connection between the module cat-
egory and the derived category in the hereditary case. Unfortunately,
this approach cannot be extended directly even to global dimension 2,
as mentioned above.

At a first glance, the telescope conjecture seems to be a rather ab-
stract statement about unbounded derived categories. However in the
context of a fixed hereditary ring, it turns out that smashing local-
izing subcategories are in bijective correspondence to various natural
structures; see §8:

Theorem B. For a hereditary ring A there are bijections between the
following sets:

(1) Extension closed abelian subcategories of Mod A that are closed
under products and coproducts.

(2) Extension closed abelian subcategories of mod A.
(3) Homological epimorphisms A → B (up to isomorphism).
(4) Universal localizations A → B (up to isomorphism).
(5) Localizing subcategories of D(Mod A) that are closed under prod-

ucts.
(6) Localization functors D(Mod A) → D(Mod A) preserving co-

products (up to natural isomorphism).
(7) Thick subcategories of Db(mod A).

This reveals that the telescope conjecture and its proof are related
to interesting recent work by some other authors. In [34], Schofield
describes for any hereditary ring its universal localizations in terms
of appropriate subcategories of finitely presented modules. This is a
consequence of the present work since we show that homological epi-
morphisms and universal localizations coincide for any hereditary ring;
see §6. However, as we mention at the end of §6, the identification be-
tween homological epimorphisms and universal localizations also fails
already for rings of global dimension 2.
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In [27], Nicolás and Saoŕın establish for a differential graded algebra
a correspondence between recollements for its derived category and dif-
ferential graded homological epimorphisms. This correspondence spe-
cializes for a hereditary ring to the above mentioned bijection between
smashing localizing subcategories and homological epimorphisms.

The link between the structures mentioned in Theorem B is provided
by so-called Ext-orthogonal pairs. This concept seems to be new, but
it is based on the notion of a perpendicular category which is one
of the fundamental tools for studying hereditary categories arising in
representation theory [32, 13].

Given any abelian category A, we call a pair (X ,Y) of full subcat-
egories Ext-orthogonal if X and Y are orthogonal to each other with
respect to the bifunctor

⨿
n≥0 Extn

A(−,−). This concept is the analogue
of a torsion pair and a cotorsion pair where one considers instead the
bifunctors HomA(−,−) and

⨿
n>0 Extn

A(−,−), respectively [9, 30].
Torsion and cotorsion pairs are most interesting when they are com-

plete. For a torsion pair this means that each object M in A admits
a short exact sequence 0 → XM → M → Y M → 0 with XM ∈ X and
Y M ∈ Y . In the second case this means that each object M admits
short exact sequences 0 → YM → XM → M → 0 and 0 → M →
Y M → XM → 0 with XM , XM ∈ X and YM , Y M ∈ Y .

It turns out that there is also a reasonable notion of completeness
for Ext-orthogonal pairs. In that case each object M in A admits a
5-term exact sequence

0 → YM → XM → M → Y M → XM → 0

with XM , XM ∈ X and YM , Y M ∈ Y . This notion of a complete
Ext-orthogonal pair is meaningful also for non-hereditary module cat-
egories, see Example 4.5.

In this work, however, we study Ext-orthogonal pairs mainly for the
module category of a hereditary ring. As already mentioned, this as-
sumption implies a close connection between the module category and
its derived category, which we exploit in both directions. We use Bous-
field localization functors which exist for the derived category to estab-
lish the completeness of certain Ext-orthogonal pairs for the module
category; see §2. On the other hand, we are able to prove the telescope
conjecture for the derived category by showing first a similar result for
Ext-orthogonal pairs; see §5 and §7.

Specific examples of Ext-orthogonal pairs arise in the representa-
tion theory of finite dimensional algebras via perpendicular categories;
see §4. Note that a perpendicular category is always a part of an
Ext-othogonal pair. Schofield introduced perpendicular categories for
representations of quivers [32] and this fits into our set-up because the
path algebra of any quiver is hereditary. In fact, the concept of a per-
pendicular category is fundamental for studying hereditary categories
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arising in representation theory [13]. It is therefore somewhat surpris-
ing that the 5-term exact sequence for a complete Ext-orthogonal pair
seems to appear for the first time in this work.

Acknowledgements. The authors would like to thank Lidia Angeleri
Hügel and Manolo Saoŕın for helpful discussions concerning this work.

2. Ext-orthogonal pairs

Let A be an abelian category. Given a pair of objects X, Y ∈ A, set

Ext∗A(X,Y ) =
⨿
n∈Z

Extn
A(X, Y ).

For a subcategory C of A we consider its full Ext-orthogonal subcate-
gories

⊥C = {X ∈ A | Ext∗A(X,C) = 0 for all C ∈ C},
C⊥ = {Y ∈ A | Ext∗A(C, Y ) = 0 for all C ∈ C}.

If C = {X} is a singleton, we write ⊥X instead of ⊥{X}, and similarly
with X⊥.

Definition 2.1. An Ext-orthogonal pair for A is a pair (X ,Y) of full
subcategories such that X⊥ = Y and X = ⊥Y . An Ext-orthogonal
pair (X ,Y) is called complete if there exists for each object M ∈ A an
exact sequence

εM : 0 → YM → XM → M → Y M → XM → 0

with XM , XM ∈ X and YM , Y M ∈ Y . The pair (X ,Y) is generated by
a subcategory C of A if Y = C⊥.

The definition can be extended to the derived category D(A) of A
if we put for each pair of complexes X,Y ∈ D(A) and n ∈ Z

Extn
A(X, Y ) = HomD(A)(X,Y [n]).

Thus an Ext-orthogonal pair for D(A) is a pair (X ,Y) of full subcate-
gories of D(A) such that X⊥ = Y and X = ⊥Y .

Recall that an abelian subcategory of A is a full subcategory C such
that the category C is abelian and the inclusion functor C → A is exact.
Suppose A is hereditary, that is, Extn

A(−,−) vanishes for all n > 1.
Then a simple calculation shows that for any subcategory C of A, the
subcategories C⊥ and ⊥C are extension closed abelian subcategories;
see [13, Proposition 1.1].

The following result establishes the completeness for certain Ext-
orthogonal pairs. Recall that an abelian category is a Grothendieck
category if it has a set of generators and admits colimits that are exact
when taken over filtered categories.



THE TELESCOPE CONJECTURE FOR HEREDITARY RINGS 93

Theorem 2.2. Let A be a hereditary abelian Grothendieck category
and X an object in A. Set Y = X⊥ and let X denote the smallest
extension closed abelian subcategory of A that is closed under taking
coproducts and contains X. Then (X ,Y) is a complete Ext-orthogonal
pair for A. Thus there exists for each object M ∈ A an exact sequence

0 → YM → XM → M → Y M → XM → 0

with XM , XM ∈ X and YM , Y M ∈ Y. This sequence is natural and in-
duces bijections HomA(X,XM) → HomA(X, M) and HomA(Y M , Y ) →
HomA(M, Y ) for all X ∈ X and Y ∈ Y.

The proof uses derived categories and Bousfield localization functors.
Thus we need to collect some basic facts about hereditary abelian cat-
egories and their derived categories.

The derived category of a hereditary abelian category. Let A
be a hereditary abelian category and let D(A) denote its derived cat-
egory. We assume that A admits coproducts and that the coproduct
of any set of exact sequences is again exact. Thus the category D(A)
admits coproducts, and for each integer n these coproducts are pre-
served by the functor Hn : D(A) → A which takes a complex to its
cohomology in degree n.

It is well-known that each complex is quasi-isomorphic to its coho-
mology. That is:

Lemma 2.3. Given a complex X in D(A), there are (non-canonical)
isomorphisms ⨿

n∈Z

(HnX)[−n] ∼= X ∼=
∏
n∈Z

(HnX)[−n].

Proof. See for instance [19, §1.6]. �

A full subcategory C of D(A) is called thick if it is a triangulated sub-
category which is, in addition, closed under taking direct summands.
A thick subcategory is localizing if it is closed under taking coprod-
ucts. Note that for each subcategory C the subcategories C⊥ and ⊥C
are thick.

To a subcategory C of D(A) we assign the full subcategory

H0C = {M ∈ A | M = H0X for some X ∈ C},

and given a subcategory X of A, we define the full subcategory

DX (A) = {X ∈ D(A) | HnX ∈ X for all n ∈ Z}.

Both assignments induce mutually inverse bijections between appro-
priate subcategories. This is a useful fact which we recall from [7,
Theorem 6.1].
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Proposition 2.4. The functor H0 : D(A) → A induces a bijection
between the localizing subcategories of D(A) and the extension closed
abelian subcategories of A that are closed under coproducts. The inverse
map sends a subcategory X of A to DX (A). �
Remark 2.5. The bijection in Proposition 2.4 has an analogue for thick
subcategories. Given any hereditary abelian category B, the functor
H0 : Db(B) → B induces a bijection between the thick subcategories
of Db(B) and the extension closed abelian subcategories of B; see [7,
Theorem 5.1].

Next we extend these maps to bijections between Ext-orthogonal
pairs.

Proposition 2.6. The functor H0 : D(A) → A induces a bijection
between the Ext-orthogonal pairs for D(A) and the Ext-orthogonal pairs
for A. The inverse map sends a pair (X ,Y) for A to (DX (A),DY(A)).

Proof. First observe that for each pair of complexes X,Y ∈ D(A),
we have Ext∗A(X,Y ) = 0 if and only if Ext∗A(HpX,HqY ) = 0 for all
p, q ∈ Z. This is a consequence of Lemma 2.3. It follows that H0 and
its inverse send Ext-orthogonal pairs to Ext-orthogonal pairs. Each
Ext-orthogonal pair is determined by its first half, and therefore an
application of Proposition 2.4 shows that both maps are mutually in-
verse. �
Localization functors. Let T be a triangulated category. A local-
ization functor L : T → T is an exact functor that admits a natural
transformation η : IdT → L such that LηX is an isomorphism and
LηX = ηLX for all objects X ∈ T . Basic facts about localization
functors one finds, for example, in [4, §3].

Proposition 2.7. Let A be a hereditary abelian category. For a full
subcategory X of A the following are equivalent.

(1) There exists a localization functor L : D(A) → D(A) such that
Ker L = DX (A).

(2) There exists a complete Ext-orthogonal pair (X ,Y) for A.

Proof. (1) ⇒ (2): The kernel Ker L and the essential image Im L of a
localization functor L form an Ext-orthogonal pair for D(A); see for
instance [4, Lemma 3.3]. Then it follows from Proposition 2.6 that the
pair (X ,Y) = (H0 Ker L,H0 Im L) is Ext-orthogonal for A.

The localization functor L comes equipped with a natural trans-
formation η : IdD(A) → L, and for each complex M we complete the
morphism ηM : M → LM to an exact triangle

ΓM → M → LM → ΓM [1].

Note that ΓM ∈ Ker L and LM ∈ Im L since LηM is an isomorphism
and L is exact. Now suppose that M is concentrated in degree zero.
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Applying H0 to this triangle yields an exact sequence

0 → YM → XM → M → Y M → XM → 0

with XM , XM ∈ X and YM , Y M ∈ Y .
(2) ⇒ (1): Let (X ,Y) be an Ext-orthogonal pair for A. This pair

induces an Ext-orthogonal pair (DX (A),DY(A)) for D(A) by Proposi-
tion 2.6. In order to construct a localization functor L : D(A) → D(A)
such that Ker L = DX (A), it is sufficient to construct for each object M
in D(A) an exact triangle X → M → Y → X[1] with X ∈ DX (A) and
Y ∈ DY(A). Then one defines LM = Y and the morphism M → Y
induces a natural transformation η : IdD(A) → L having the required
properties. In view of Lemma 2.3 it is sufficient to assume that M is a
complex concentrated in degree zero.

Suppose that M admits an approximation sequence

εM : 0 → YM → XM → M → Y M → XM → 0

with XM , XM ∈ X and YM , Y M ∈ Y . Let M ′ denote the image of
XM → M and M ′′ the image of M → Y M . Then εM induces the
following three exact sequences

αM : 0 → M ′ → M → M ′′ → 0,

βM : 0 → YM → XM → M ′ → 0,

γM : 0 → M ′′ → Y M → XM → 0.

In D(A) these three exact sequence give rise to the following commut-
ing square

XM [−2]
γM //

0

��

M ′′[−1]

αM

��
XM

β̄M // M ′

where β̄M is the second morphism in βM . Commutativity of the di-
agram is clear since HomD(A)(U [−2], V ) = 0 for any U, V ∈ A. An
application of the octahedral axiom shows that this square can be ex-
tended as follows to a diagram where each row and each column is an
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exact triangle.

XM [−2] //

0

��

M ′′[−1] //

��

Y M [−1] //

0
��

XM [−1]

0
��

XM
//

��

M ′ //

��

YM [1] //

��

XM [1]

��
XM ⊕ XM [−1] //

��

M //

��

YM [1] ⊕ Y M //

��

XM [1] ⊕ XM

��
XM [−1] // M ′′ // Y M // XM

The first and third column are split exact triangles, and this explains
the objects appearing in the third row. In particular, this yields the
desired exact triangle X → M → Y → X[1] with X ∈ DX (A) and
Y ∈ DY(A). �

Remark 2.8. The proof of the implication (2) ⇒ (1) comes as a special
case of a more general result on the existence of exact triangles with a
specified long exact sequence of cohomology objects. We refer to work
of Neeman [23] for more details.

Next we formulate the functorial properties of the 5-term exact se-
quence constructed in Proposition 2.7.

Lemma 2.9. Let A be an abelian category and (X ,Y) an Ext-orthog-
onal pair for A. Suppose there is an exact sequence

εM : 0 → YM → XM → M → Y M → XM → 0

in A with XM , XM ∈ X and YM , Y M ∈ Y.

(1) The sequence εM induces for all X ∈ X and Y ∈ Y bijec-
tions HomA(X, XM) → HomA(X, M) and HomA(Y M , Y ) →
HomA(M,Y ).

(2) Let εN : 0 → YN → XN → N → Y N → XN → 0 be an exact
sequence in A with XN , XN ∈ X and YN , Y N ∈ Y. Then each
morphism M → N extends uniquely to a morphism εM → εN

of exact sequences.
(3) Any exact sequence 0 → Y ′ → X ′ → M → Y ′′ → X ′′ → 0 in A

with X ′, X ′′ ∈ X and Y ′, Y ′′ ∈ Y is uniquely isomorphic to εM .

Proof. We prove part (1). Then parts (2) and (3) are immediate con-
sequences.

Fix an object X ∈ X . The map µ : HomA(X, XM) → HomA(X,M)
is injective because HomA(X, YM) = 0. Any morphism X → M fac-
tors through the kernel M ′ of M → Y M since HomA(X, Y M) = 0.
The induced morphism X → M ′ factors through XM → M ′ since
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Ext1
A(X, YM) = 0. Thus µ is surjective. The argument for the other

map HomA(Y M , Y ) → HomA(M,Y ) is dual. �

Ext-orthogonal pairs for Grothendieck categories. Now we give
the proof of Theorem 2.2. The basic idea is to establish a localization
functor for D(A) and to derive the exact approximation sequence in
A by taking the cohomology of some appropriate exact triangle as in
Proposition 2.7.

Proof of Theorem 2.2. Let X denote the smallest extension closed abel-
ian subcategory of A that contains X and is closed under coproducts.
Then Proposition 2.4 implies that DX (A) is the smallest localizing
subcategory of D(A) containing X. Thus there exists a localization
functor L : D(A) → D(A) with Ker L = DX (A). This is a result
which goes back to Bousfield’s work in algebraic topology, [6]. In the
context of derived categories we refer to [2, Theorem 5.7]. Now apply
Proposition 2.7 to get the 5-term exact sequence for each object M in
A. The properties of this sequence follow from Lemma 2.9. �

Remark 2.10. We do not know an example of an Ext-orthogonal pair
(X ,Y) for a hereditary abelian Grothendieck category such that the
pair (X ,Y) is not complete.

Ext-orthogonal pairs naturally arise also for non-hereditary abelian
categories. Here we mention one such class of examples, but we do not
know whether or when exactly they are complete:

Example 2.11. Let A be any abelian Grothendieck category and X
a localizing subcategory. That is, X is a full subcategory closed under
taking coproducts and such that for any exact sequence 0 → M ′ →
M → M ′′ → 0 in A we have M ∈ X if and only if M ′,M ′′ ∈ X . Set
Y = X⊥ and let Yinj denote the full subcategory of injective objects
of A contained in Y . Then X = ⊥Yinj and therefore (X ,Y) is an
Ext-orthogonal pair for A; see [11, III.4] for details.

Torsion and cotorsion pairs. We also sketch an interpretation of an
Ext-orthogonal pair in terms of torsion and cotorsion pairs. Here, a pair
(U ,V) of full subcategories of A is called a torsion pair if U and V are
orthogonal to each other with respect to HomA(−,−). Analogously,
a pair of full subcategories is a cotorsion pair if both categories are
orthogonal to each other with respect to

⨿
n>0 Extn

A(−,−).
Let A be an abelian category and (X ,Y) an Ext-orthogonal pair.

The subcategory X generates a torsion pair (X0,Y0) and a cotorsion
pair (X1,Y1) for A, if one defines the corresponding full subcategories
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of A as follows:

Y0 = {Y ∈ A | HomA(X, Y ) = 0 for all X ∈ X},
X0 = {X ∈ A | HomA(X, Y ) = 0 for all Y ∈ Y0},
Y1 = {Y ∈ A | Extn

A(X, Y ) = 0 for all X ∈ X , n > 0},
X1 = {X ∈ A | Extn

A(X, Y ) = 0 for all Y ∈ Y1, n > 0}.
Note that X = X0 ∩ X1 and Y = Y0 ∩ Y1. In particular, one recovers
the pair (X ,Y) from (X0,Y0) and (X1,Y1).

Suppose an object M ∈ A admits an approximation sequence

εM : 0 → YM → XM → M → Y M → XM → 0

with XM , XM ∈ X and YM , Y M ∈ Y . We give the following interpre-
tation of this sequence. Let M ′ denote the image of XM → M and M ′′

the image of M → Y M . Then there are three short exact sequences:

αM : 0 → M ′ → M → M ′′ → 0,

βM : 0 → YM → XM → M ′ → 0,

γM : 0 → M ′′ → Y M → XM → 0.

The sequence αM is the approximation sequence of M with respect
to the torsion pair (X0,Y0), that is, M ′ ∈ X0 and M ′′ ∈ Y0. On
the other hand, βM and γM are approximation sequences of M ′ and
M ′′ respectively, with respect to the cotorsion pair (X1,Y1), that is,
XM , XM ∈ X1 and YM , Y M ∈ Y1. Thus the 5-term exact sequence
εM is obtained by splicing together three short exact approximation
sequences.

Suppose finally that the Ext-orthogonal pair (X ,Y) is complete. It
is not hard to see that then the associated torsion pair (X0,Y0) has an
explicit description: we have X0 = FacX and Y0 = SubY , where

FacX = {X/U | U ⊆ X, X ∈ X} and SubY = {U | U ⊆ Y, Y ∈ Y}.

3. Homological epimorphisms

From now on we will study Ext-orthogonal pairs only for module
categories. Thus we fix a ring A and denote by Mod A the category
of (right) A-modules. The full subcategory formed by all finitely pre-
sented A-modules is denoted by mod A.

Most of our results require the ring A to be (right) hereditary. This
means the category of A-modules is hereditary, that is, Extn

A(−,−)
vanishes for all n > 1.

We are going to show that Ext-orthogonal pairs for module categories
over hereditary rings are closely related to homological epimorphisms.
Recall that a ring homomorphism A → B is a homological epimorphism
if

B ⊗A B ∼= B and TorA
n (B, B) = 0 for all n > 0,
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or equivalently, if restriction induces isomorphisms

Ext∗B(X, Y )
∼−→ Ext∗A(X, Y )

for all B-modules X, Y ; see [13] for details. The first observation is
that every homological epimorphism naturally induces two complete
Ext-orthogonal pairs:

Proposition 3.1. Let A be a hereditary ring and f : A → B a ho-
mological epimorphism. Denote by Y the category of A-modules which
are restrictions of modules over B. Set X = ⊥Y and Y⊥ = Z. Then
(X ,Y) and (Y ,Z) are complete Ext-orthogonal pairs for Mod A with
Y = (Ker f ⊕ Coker f)⊥ and Z = B⊥.

Proof. We wish to apply Theorem 2.2 which provides a construction
for complete Ext-orthogonal pairs.

First observe that Y is the smallest extension closed abelian subcat-
egory of Mod A closed under coproducts and containing B. This yields
Z = B⊥.

Next we show that Y = (Ker f ⊕Coker f)⊥. In fact, an A-module Y
is the restriction of a B-module if and only if f induces an isomorphism
HomA(B, Y ) → HomA(A, Y ). Using the assumptions on A and f , a
simple calculation shows that this implies Y = (Ker f ⊕ Coker f)⊥.

It remains to apply Theorem 2.2. Thus (X ,Y) and (Y ,Z) are com-
plete Ext-orthogonal pairs. �

Now we use a crucial theorem of Gabriel and de la Peña. It identifies,
only by their closure properties, the full subcategories of a module
category Mod A that arise as the images of the restriction functors
Mod B → Mod A for ring epimorphisms A → B. In our version, we
identify in a similar way the essential images of the restriction functors
of homological epimorphisms, provided A is hereditary.

Proposition 3.2. Let A be a hereditary ring and Y an extension closed
abelian subcategory of Mod A that is closed under taking products and
coproducts. Then there exists a homological epimorphism f : A → B
such that the restriction functor Mod B → Mod A induces an equiva-
lence Mod B

∼−→ Y.

Proof. It follows from [12, Theorem 1.2] that there exists a ring epimor-
phism f : A → B such that the restriction functor Mod B → Mod A
induces an equivalence Mod B

∼−→ Y . To be more specific, one con-
structs a left adjoint F : Mod A → Y for the inclusion Y → Mod A.
Then FA is a small projective generator for Y , because A has this prop-
erty for Mod A and the inclusion of Y is an exact functor that preserves
coproducts. Thus one takes for f the induced map A ∼= EndA(A) →
EndA(FA).

We claim that restriction via f induces an isomorphism

Extn
B(X, Y )

∼−→ Extn
A(X, Y )
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for all B-modules X, Y and all n ≥ 0. This is clear for n = 0, 1 since
Y is extension closed. On the other hand, the isomorphism for n = 1
implies that Ext1

B(X,−) is right exact since A is hereditary. It follows
that B is hereditary and Extn

B(−,−) vanishes for all n > 1. �

We get as an immediate consequence that any class Y satisfying
the assumptions of Proposition 3.2 belongs to two complete cotorsion
pairs. In order to obtain more information about the corresponding
5-term approximation sequences, we prefer, however, to postpone this
corollary after the following lemma:

Lemma 3.3. Let A → B be a homological epimorphism and denote by
Y the category of A-modules which are restrictions of modules over B.

(1) The functor D(Mod A) → D(Mod A) sending a complex X to
X ⊗L

A B is a localization functor with essential image equal to
DY(Mod A).

(2) The functor D(Mod A) → D(Mod A) sending a complex X to
the cone (which is in this case functorial) of the natural mor-
phism RHomA(B, X) → X is a localization functor with kernel
equal to DY(Mod A).

Proof. Restriction along f : A → B identifies Mod B with Y . The
functor induces an isomorphism

Extn
B(X, Y )

∼−→ Extn
A(X, Y )

for all B-modules X,Y and all n ≥ 0, because f is a homo-
logical epimorphism. This isomorphism implies that the induced
functor f∗ : D(Mod B) → D(Mod A) is fully faithful with essential
image DY(Mod A). Moreover, f∗ is naturally isomorphic to both
RHomB(AB,−) and −⊗L

B BA. It follows that:
(1) The functor f∗ admits a left adjoint f ∗ = −⊗L

A B and we there-
fore have a localization functor L : D(Mod A) → D(Mod A) sending a
complex X to f∗f

∗(X); see [4, Lemma 3.1]. It remains to note that
the essential images of L and f∗ coincide.

(2) The functor f∗ admits a right adjoint f ! = RHomA(B,−) and
we therefore have a colocalization functor Γ : D(Mod A) → D(Mod A)
sending a complex X to f∗f

!(X). Note that the adjunction morphism
ΓX → X is an isomorphism if and only if X belongs to DY(Mod A).
Completing ΓX → X to a triangle yields a well defined localiza-
tion functor D(Mod B) → D(Mod A) with kernel DY(Mod A); see [4,
Lemma 3.3]. �

Now we state the above mentioned immediate consequence of Propo-
sitions 3.1 and 3.2, but with an alternative and more explicit proof.

Corollary 3.4. Let A be a hereditary ring and Y an extension closed
abelian subcategory of Mod A that is closed under taking products and
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coproducts. Set X = ⊥Y and Z = Y⊥. Then (X ,Y) and (Y ,Z) are
both complete Ext-orthogonal pairs.

Proof. There exists a homological epimorphism f : A → B such that re-
striction identifies Mod B with Y ; see Proposition 3.2. Then Lemma 3.3
produces two localization functors L1, L2 : D(Mod A) → D(Mod A)
with Im L1 = DY(Mod A) = Ker L2. Thus

Ker L1 = ⊥(Im L1) = DX (Mod A), and
Im L2 = (Ker L2)

⊥ = DZ(Mod A),

where in both cases the first equality follows from [4, Lemma 3.3] and
the second from Proposition 2.6. It remains to apply Proposition 2.7
which yields in both cases for each A-module the desired 5-term exact
sequence. �

Remark 3.5. The proof of Lemma 3.3 and Corollary 3.4 yields for any
A-module M an explicit description of some terms of the 5-term exact
sequence εM , using the homological epimorphism A → B. In the first
case, we have

εM : 0 → TorA
1 (M, B) → XM → M → M ⊗A B → XM → 0,

and in the second case, we have

εM : 0 → ZM → HomA(B, M) → M → ZM → Ext1
A(B, M) → 0.

We also mention another consequence of the above discussion, which
is immediately implied by Corollary 3.4. It reflects the fact that
given a homological epimorphism A → B and the fully faithful func-
tor f∗ : D(Mod B) → D(Mod A) having both a left and a right ad-
joint, there exists a corresponding recollement of the derived category
D(Mod A); see [20, §4.13].

Corollary 3.6. Let A be a hereditary ring and (X ,Y) an Ext-orthog-
onal pair for the category of A-modules.

(1) There is an Ext-orthogonal pair (W ,X ) if and only if X is closed
under products.

(2) There is an Ext-orthogonal pair (Y ,Z) if and only if Y is closed
under coproducts.

4. Examples

We present a number of examples of Ext-orthogonal pairs which
illustrate the results of this work. The first example is classical and
provides one of the motivations for studying perpendicular categories
in representation theory of finite dimensional algebras. We refer to
Schofield’s work [33, 32] which contains some explicit calculations; see
also [13, 14].
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Example 4.1. Let A be a finite dimensional hereditary algebra over a
field k and X a finite dimensional A-module. Then X⊥ = Y identifies
via a homological epimorphism A → B with the category of mod-
ules over a k-algebra B and this yields a complete Ext-orthogonal pair
(X ,Y). If X is exceptional, that is, Ext1

A(X, X) = 0, then B is finite
dimensional (see the proposition below) and often can be constructed
explicitly. We refer to [33] for particular examples. Note that in this
case for each finite dimensional A-module M the corresponding 5-term
exact sequence εM consists of finite dimensional modules. Moreover,
the category X is equivalent to the module category of another finite
dimensional algebra. We do not know of a criterion on X that charac-
terizes the fact that B is finite dimensional; see however the following
proposition.

Proposition 4.2. Let A be a finite dimensional hereditary algebra over
a field k and (X ,Y) a complete Ext-orthogonal pair such that Y is closed
under coproducts. Fix a homological epimorphism A → B inducing an
equivalence Mod B

∼−→ Y. Then the following are equivalent.

(1) There exists an exceptional module X ∈ mod A such that Y =
X⊥.

(2) The algebra B is finite dimensional over k.
(3) For each M ∈ mod A, the 5-term exact sequence εM belongs to

mod A.

Proof. (1) ⇒ (2): This follows, for example, from [13, Proposition 3.2].
(2) ⇒ (3): This follows from Remark 3.5.
(3) ⇒ (1): Let Xfp = X ∩mod A and Yfp = Y∩mod A. The assump-

tion on (X ,Y) implies that (Xfp,Yfp) is a complete Ext-orthogonal pair
for mod A. Moreover, every object in X is a filtered colimit of objects in
Xfp. To see this, we first express X as a filtered colimit lim−→Mi of finitely
presented modules. Then, using the forthcoming Lemma 5.3(2), we see
that εX = lim−→ εMi

, from which it easily follows that X ∼= lim−→XMi
. Now

choose an injective cogenerator Q in mod A and let X = XQ be the
module from the 5-term exact sequence εQ. This module is the image of
Q under a right adjoint of the inclusion Xfp → mod A. Note that a right
adjoint of an exact functor preserves injectivity. It follows that X is an
exceptional object and that Xfp is the smallest extension closed abelian
subcategory of mod A containing X. Thus X⊥ = X⊥

fp = X⊥ = Y , using
the fact that X = lim−→Xfp. �

As a special case, any finitely generated projective module generates
an Ext-orthogonal pair that can be described explicitly; see [13, §5].
For cyclic projective modules, this is discussed in more generality in
the following example.

Example 4.3. Let A be a hereditary ring and e2 = e ∈ A an idempo-
tent. Let X denote the category of A-modules M such that the natural
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map Me ⊗eAe eA → M is an isomorphism, and let Y = eA⊥ = {M ∈
Mod A | Me = 0}. Thus −⊗eAe eA identifies Mod eAe with X and re-
striction via A → A/AeA identifies Mod A/AeA with Y . Then (X ,Y)
is a complete Ext-orthogonal pair for ModA, and for each A-module
M the 5-term exact sequence εM is of the form

0 → TorA
1 (M, A/AeA) → Me⊗eAeeA → M → M⊗AA/AeA → 0 → 0.

The next example1 arises from the work of Reiten and Ringel on in-
finite dimensional representations of canonical algebras; see [29] which
is our reference for all concepts and results in the following discussion.
Note that these algebras are not necessarily hereditary. The exam-
ple shows the interplay between Ext-orthogonal pairs and (co)torsion
pairs.

Example 4.4. Let A be a finite dimensional canonical algebra over a
field k. Take for example a tame hereditary algebra, or, more specif-
ically, the Kronecker algebra

[
k k2

0 k

]
. For such algebras, there is the

concept of a separating tubular family. We fix such a family and de-
note by T the category of finite dimensional modules belonging to this
family. There is also a particular generic module over A which depends
in some cases on the choice of the tubular family; it is denoted by G.
Then the full subcategory X = lim−→T consisting of all filtered colimits
of modules in T and the full subcategory Y = Add G consisting of
all coproducts of copies of G form an Ext-orthogonal pair (X ,Y) for
Mod A. Note that the endomorphism ring D = EndA(G) of G is a di-
vision ring and that the canonical map A → B with B = EndD(G) is a

homological epimorphism which induces an equivalence ModB
∼−→ Y .

In the particular case of the Kronecker algebra A =
[

k k2

0 k

]
, a direct

computation shows that B = M2

(
k(x)

)
.

The category of A-modules which are generated by T and the cat-
egory of A-modules which are cogenerated by G form a torsion pair
(FacX , SubY) for Mod A which equals the torsion pair (X0,Y0) gen-
erated by X . On the other hand, let C denote the category of A-
modules which are cogenerated by X , and let D denote the category
of A-modules M satisfying HomA(M, T ) = 0. Then the pair (C,D)
forms a cotorsion pair for ModA which identifies with the cotorsion
pair (X1,Y1) generated by X .

If A is hereditary, then the Ext-orthogonal pair (X ,Y) is complete
by Corollary 3.4; see also Remark 3.5 for an explicit description of the
5-term approximation sequence εM for each A-module M . Alterna-
tively, one obtains the sequence εM by splicing together appropriate
approximation sequences which arise from (X0,Y0) and (X1,Y1).

1The first author is grateful to Lidia Angeleri Hügel for suggesting this example.



104 HENNING KRAUSE AND JAN ŠŤOVÍČEK

The following example of an Ext-orthogonal pair arises from a local-
izing subcategory; it is a specialization of Example 2.11 and provides a
simple (and not necessarily hereditary) model for the previous example.

Example 4.5. Let A be an integral domain with quotient field Q. Let
X denote the category of torsion modules and Y the category of torsion
free divisible modules. Note that the modules in Y are precisely the
coproducts of copies of Q. Then (X ,Y) is a complete Ext-orthogonal
pair for Mod A, and for each A-module M the 5-term exact sequence
εM is of the form

0 → 0 → tM → M → M ⊗A Q → M̄ → 0.

We conclude the section by showing that there are examples of
abelian categories that admit only trivial Ext-orthogonal pairs.

Example 4.6. Let A be a local artinian ring and set A = Mod A.
Then HomA(X,Y ) ̸= 0 for any pair X,Y of non-zero A-modules. This
is because the unique (up to isomorphism) simple module S is a sub-
module of Y and a factor of X. Thus if (X ,Y) is an Ext-orthogonal
pair for A, then X = A or Y = A.

5. Ext-orthogonal pairs of finite type

At this point, we use the results from §3 to characterize for hereditary
rings the Ext-orthogonal pairs of finite type. Those are, by definition,
the Ext-orthogonal pairs generated by a set of finitely presented mod-
ules.

Theorem 5.1. Let A be a hereditary ring and (X ,Y) an Ext-orthogonal
pair for the module category of A. Then the following are equivalent.

(1) The subcategory Y is closed under taking coproducts.
(2) Every module in X is a filtered colimit of finitely presented mod-

ules from X .
(3) There exists a category C of finitely presented modules such that

C⊥ = Y.

We need some preparations for the proof of this result. The first
lemma is a slight modification of [3, Proposition 2.1].

Lemma 5.2. Let A be a ring and Y a subcategory of its module cate-
gory. Denote by X the category of A-modules X of projective dimension
at most 1 satisfying Ext1

A(X,Y ) = 0 for all Y ∈ Y. Then any module
in X is a filtered colimit of finitely presented modules from X .

Proof. Let X ∈ X . Choose an exact sequence 0 → P
ϕ−→ Q → X → 0

such that P is free and Q is projective. Note that Ext1
A(X, Y ) = 0 im-

plies that every morphism P → Y factors through ϕ. The commuting
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diagrams of A-module morphisms

0 // Pi

ϕi //

��

Qi

��

// Xi

��

// 0

0 // P
ϕ // Q // X // 0

with Pi and Qi finitely generated projective form a filtered system of
exact sequences such that lim−→ϕi = ϕ. Note that P is a filtered colimit
of its finitely generated direct summands since P is free. Thus there
is a cofinal subsystem such that each morphism Pi → P is a split
monomorphism. Therefore we may without loss of generality assume
that each morphism Pi → P is a split monomorphism.

Clearly lim−→Xi = X, and it remains to prove that Ext1
A(Xi,Y) = 0 for

all i. This is equivalent to showing that each morphism µ : Pi → Y with
Y ∈ Y factors through ϕi. For this, we first factor each such µ through
the split monomorphism Pi → P , then through ϕ, and finally compose
the morphism Q → Y which we have obtained with the morphism
Qi → Q. The result is a morphism ν : Qi → Y such that νϕi = µ, as
desired. �

The second lemma establishes some necessary properties of the 5-
term sequences.

Lemma 5.3. Let A be a hereditary ring and (X ,Y) a complete Ext-
orthogonal pair for Mod A. Let M be an A-module and εM the corre-
sponding 5-term exact sequence.

(1) If Ext1
A(M,Y) = 0, then YM = 0.

(2) Suppose that Y is closed under coproducts and let M = lim−→Mi

be a filtered colimit of A-modules Mi. Then εM = lim−→ εMi
.

Proof. We use the uniqueness of the 5-term exact sequences guaranteed
by Lemma 2.9. If Ext1

A(M,Y) = 0, then the image of the morphism
XM → M belongs to X . Thus XM → M is a monomorphism since εM

is unique, and this yields (1).
To prove (2), one uses that X and Y are closed under taking colimits

and that taking filtered colimits is exact. Thus lim−→ εMi
is an exact

sequence with middle term M and all other terms in X or Y . Now the
uniqueness of εM implies that εM = lim−→ εMi

. �
Finally, the following lemma is needed for hereditary rings which are

not noetherian.

Lemma 5.4. Let M be a finitely presented module over a hereditary
ring and N ⊆ M any submodule. Then N is a direct sum of finitely
presented modules.

Proof. We combine two results. Over a hereditary ring, any submodule
of a finitely presented module is a direct sum of a finitely presented
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module and a projective module; see [8, Theorem 5.1.6]. In addition,
one uses that any projective module is a direct sum of finitely generated
projective modules; see [1]. �

Proof of Theorem 5.1. (1) ⇒ (2): Suppose that Y is closed under tak-
ing coproducts. We apply Corollary 3.4 to obtain for each module M
the natural exact sequence εM . Here note that we a priori did not
assume completeness of (X ,Y). Now suppose that M belongs to X .
Then one can write M = lim−→Mi as a filtered colimit of finitely pre-

sented modules with Ext1
A(Mi,Y) = 0 for all i; see Lemma 5.2. Next

we apply Lemma 5.3. Thus

lim−→XMi

∼−→ XM
∼−→ M,

and each XMi
is a submodule of the finitely presented module Mi.

Finally, each XMi
is a filtered colimit of finitely presented direct sum-

mands by Lemma 5.4. Thus M is a filtered colimit of finitely presented
modules from X .

(2) ⇒ (3): Let Xfp denote the full subcategory that is formed by
all finitely presented modules in X . Observe that ⊥Y is closed under
taking colimits for each module Y , because ⊥Y is closed under taking
coproducts and cokernels. Thus X⊥

fp = X⊥ = Y provided that X =
lim−→Xfp.

(3) ⇒ (1): Use that for each finitely presented A-module X, the
functor Ext∗A(X,−) preserves all coproducts. �

Note that Theorem 5.1 gives rise to a bijection between extension
closed abelian subcategories of finitely presented modules and Ext-
orthogonal pairs of finite type. We will state this explicitly in §8, but
we in fact prove it here by the following proposition.

Proposition 5.5. Let A be a hereditary ring and C a category of finitely
presented A-modules. Then ⊥(C⊥)∩mod A equals the smallest extension
closed abelian subcategory of mod A containing C.

Proof. Let D denote the smallest extension closed abelian subcategory
of mod A containing C. We claim that the category lim−→D which is
formed by all filtered colimits of modules in D is an extension closed
abelian subcategory of Mod A.

Assume for the moment that the claim holds. Then Theorem 2.2
implies that X = ⊥(C⊥) equals the smallest extension closed abelian
subcategory of Mod A closed under coproducts and containing C. Our
claim then implies X = lim−→D, so X ∩mod A = D and we are finished.

Therefore, it only remains to prove the claim. First observe that ev-
ery morphism in lim−→D can be written as a filtered colimit of morphisms
in D. Using that taking filtered colimits is exact, it follows immediately
that lim−→D is closed under kernels and cokernels in Mod A.
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It remains to show that lim−→D is closed under extensions. To this end
let η : 0 → L → M → N → 0 be an exact sequence with L and N in
lim−→D. We can without loss of generality assume that N belongs to D,
because otherwise the sequence η is a filtered colimit of the pull-back
exact sequences with the last terms in D. Next we choose a morphism
ϕ : M ′ → M with M ′ finitely presented. All we need to do now is to
show that ϕ factors through an object in D; see [21]. We may, moreover,
assume that the composite of ϕ with M → N is an epimorphism. This
is because otherwise we can take an epimorphism P → N with P
finitely generated projective, factor it through M → N , and replace ϕ
by ϕ′ : M ′ ⊕ P → M . Finally, denote by L′ the kernel of ϕ, which is
necessarily a finitely presented module. The induced map L′ → L then
factors through an object L′′ in D since L belongs to lim−→D. Forming
the push-out exact sequence of 0 → L′ → M ′ → N → 0 along the
morphism L′ → L′′ gives an exact sequence 0 → L′′ → M ′′ → N → 0.
Now ϕ factors through M ′′ which belongs to D. �

6. Universal localizations

A ring homomorphism A → B is called a universal localization if
there exists a set Σ of morphisms between finitely generated projective
A-modules such that

(1) σ ⊗A B is an isomorphism of B-modules for all σ ∈ Σ, and
(2) every ring homomorphism A → B′ such that σ ⊗A B′ is an iso-

morphism of B-modules for all σ ∈ Σ factors uniquely through
A → B.

Let A be a ring and Σ a set of morphisms between finitely gener-
ated projective A-modules. Then there exists a universal localization
inverting Σ and this is unique up to a unique isomorphism; see [31]
for details. The universal localization is denoted by A → AΣ and re-
striction identifies Mod AΣ with the full subcategory consisting of all
A-modules M such that HomA(σ,M) is an isomorphism for all σ ∈ Σ.
Note that HomA(σ,M) is an isomorphism if and only if M belongs to
{Ker σ, Coker σ}⊥, provided that A is hereditary. The main result of
this section is then the following theorem.

Theorem 6.1. Let A be a hereditary ring. A ring homomorphism
f : A → B is a homological epimorphism if and only if f is a universal
localization.

Proof. Suppose first that f : A → B is a homological epimorphism.
This gives rise to an Ext-orthogonal pair (X ,Y) for Mod A, if we iden-
tify Mod B with a full subcategory Y of Mod A; see Proposition 3.1.
Let Xfp denote the subcategory that is formed by all finitely presented
modules in X . It follows from Theorem 5.1 that X⊥

fp = Y . Now fix for
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each X ∈ Xfp an exact sequence

0 → PX
σX−→ QX → X → 0

such that PX and QX are finitely generated projective, and let Σ =
{σX | X ∈ Xfp}. Then

Mod B = X⊥
fp = Mod AΣ.

Therefore, f : A → B is a universal localization, since X⊥
fp determines

the corresponding ring epimorphism uniquely up to isomorphism, see
the proof of Proposition 3.2.

Now suppose f : A → B is a universal localization. Then restriction
identifies the category of B-modules with an extension closed subcat-
egory of Mod A. Thus we have induced isomorphisms

Ext∗B(X, Y )
∼−→ Ext∗A(X, Y )

for all B-modules X, Y , since A is hereditary. It follows that f is a
homological epimorphism. �
Remark 6.2. Neither implication in Theorem 6.1 is true if one drops
the assumption on the ring A to be hereditary, not even if the global
dimension is 2. In [17], Keller gives an example of a Bézout domain
A and a non-zero ideal I such that the canonical map A → A/I is a
homological epimorphism, but any map σ between finitely generated
projective A-modules needs to be invertible if σ ⊗A A/I is invertible.
We refine the constrcution so that gldim A = 2, see Example 7.8. On
the other hand, Neeman, Ranicki, and Schofield use finite dimensional
algebras to construct in [26] examples of universal localizations that are
not homological epimorphisms. They are also able to construct such
examples of global dimension 2, see [26, Remark 2.13].

7. The telescope conjecture

Now we are ready to state and prove an extended version of Theo-
rem A after recalling the necessary notions.

Let A be a ring. A complex of A-modules is called perfect if it
is isomorphic to a bounded complex of finitely generated projective
modules. Note that a complex X is perfect if and only if the functor
HomD(Mod A)(X,−) preserves coproducts. One direction of this state-
ment is easy to prove since HomD(Mod A)(A,−) preserves coproducts
and every perfect complex is finitely built from A. The converse fol-
lows from [24, Lemma 2.2] and [5, Proposition 3.4]. Recall also that a
localizing subcategory C of D(Mod A) is generated by perfect complexes
if C admits no proper localizing subcategory containing all perfect com-
plexes from C.

Theorem 7.1. Let A be a hereditary ring. For a localizing subcategory
C of D(Mod A) the following conditions are equivalent:
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(1) There exists a localization functor L : D(Mod A) → D(Mod A)
that preserves coproducts and such that C = Ker L.

(2) The localizing subcategory C is generated by perfect complexes.
(3) There exists a localizing subcategory D of D(Mod A) that is

closed under products such that C = ⊥D.

Proof. (1) ⇒ (2): The kernel Ker L and the essential image Im L of a
localization functor L form an Ext-orthogonal pair for D(Mod A); see
[4, Lemma 3.3]. We obtain an Ext-orthogonal pair (X ,Y) for Mod A
by taking X = H0 Ker L and Y = H0 Im L; see Proposition 2.6. The
fact that L preserves coproducts implies that Y is closed under taking
coproducts. It follows from Theorem 5.1 that X is generated by finitely
presented modules. Each finitely presented module is isomorphic in
D(Mod A) to a perfect complex, and therefore Ker L is generated by
perfect complexes.

(2) ⇒ (3): Suppose that C is generated by perfect complexes. Then
there exists a localization functor L : D(Mod A) → D(Mod A) such
that Ker L = C. Thus we have an Ext-orthogonal pair (C,D) for
D(Mod A) with D = Im L; see [4, Lemma 3.3]. Now observe that
D = C⊥ is closed under coproducts, since for any perfect complex X
the functor HomD(Mod A)(X,−) preserves coproducts. It follows that D
is a localizing subcategory.

(3) ⇒ (1): Let D be a localizing subcategory that is closed under
products such that C = ⊥D. Then Y = H0D is an extension closed
abelian subcategory of Mod A that is closed under products and co-
products; see Proposition 2.4. In the proof of Corollary 3.4 we have
constructed a localization functor L : D(Mod A) → D(Mod A) such
that C = Ker L. More precisely, there exists a homological epimor-
phism A → B such that L = − ⊗L

A B. It remains to notice that this
functor preserves coproducts. �

Remark 7.2. The implication (1) ⇒ (2) is known as the telescope con-
jecture. Let us sketch the essential ingredients of the proof of this
implication. In fact, the proof is not as involved as one might expect
from the references to preceding results of this work.

We need the 5-term exact sequence εM for each module M which
one gets immediately from the the localization functor L; see Propo-
sition 2.7. The perfect complexes generating C are constructed in the
proof of Theorem 5.1, where the relevant implication is (1) ⇒ (2). For
this proof, one uses Lemmas 5.2 – 5.4, but this is all.

Remark 7.3. Let A be a herditary ring and B a ring that is derived
equivalent to A, that is, there is an equivalence of triangulated cate-
gories D(Mod A)

∼−→ D(Mod B). Then the statement of Theorem 7.1
carries over from A to B. In particular, the statement of Theorem 7.1
holds for every tilted algebra in the sense of Happel and Ringel [15].
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Given the proof of the telescope conjecture for the derived categories
of hereditary rings, one may be tempted to think that perhaps it is
possible to get a similar result for rings of higher global dimension.
Here we show that this is not the case. Namely, we construct a class
of rings for which the conjecture fails for the derived category, and we
will see that some of them have global dimension 2. To achieve this,
we use the following result due to Keller [17].

Lemma 7.4. Let A be a ring and I a non-zero two-sided ideal of A
such that

(1) TorA
i (A/I,A/I) = 0 for all i ≥ 1 (that is, the surjection A →

A/I is a homological epimorphism), and
(2) I is contained in the Jacobson radical of A.

Then L = − ⊗L
A A/I : D(Mod A) → D(Mod A) is a coproduct pre-

serving localization functor but Ker L, which is the smallest localizing
subcategory containing I, contains no non-zero perfect complexes. In
particular, the telescope conjecture fails for D(Mod A).

In order to find such A and I with (right) global dimension of A equal
to 2, we restrict ourself to the case when A is a valuation domain. That
is, A is a commutative domain with the property that for each pair
a, b ∈ A, either a divides b or b divides a. We refer to [10, Chapter II]
for a discussion of such domains. Here, we mention only the properties
which we need for our example:

Lemma 7.5. The following holds for a valuation domain A which is
not a field.

(1) The ring A is local and its weak global dimension equals 1.
(2) The maximal ideal P of A is either principal or idempotent.
(3) For any ideal I of A we have the isomorphism TorA

1 (A/I, A/I) ∼=
I/I2.

Proof. (1) The ring A is local since the ideals of A are totally ordered
by inclusion. The second part of (1) follows from [10, VI.10.4].

(2) This is a direct consequence of results in [10, Section II.4]. For
an ideal I, one defines

I ′ = {a ∈ A | aI ( I}.
It turns out that I ′ is always a prime ideal and I is naturally an RI′-
module. Moreover, I = I ′ if I itself is a prime ideal, [10, II.4.3 (iv)].
In particular we have P ′ = P . On the other hand, [10, p. 69, item (d)]
says that I ′ ·I ( I if and only if I is a principal ideal of RI′ . Specialized
to P , this precisely says that P 2 = P ′ · P ( P if and only if P is a
principal ideal of R.

(3) Tensoring the exact sequence 0 → I → A → A/I → 0 with A/I
gives the exact sequence

A/I ⊗A I
0−→ A/I

∼−→ A/I ⊗A A/I → 0.
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It follows that TorA
1 (A/I,A/I) ∼= A/I ⊗A I, and the right exactness of

the tensor product yields A/I ⊗A I ∼= I/I2. �
The following result is a straightforward consequence.

Proposition 7.6. Let A be a valuation domain whose maximal ideal
P is non-principal. Then the telescope conjecture fails for D(Mod A).
More precisely, L = − ⊗L

A A/P is a coproduct preserving localization
functor on D(Mod A) whose kernel is non-trivial (it contains P ) but
not generated by perfect complexes.

Proof. It is enough to prove that the maximal ideal P meets the con-
ditions of Lemma 7.4. As P is the Jacobson radical of A, condition (2)
is fulfilled. Condition (1) follows easily from Lemma 7.5. �

What we are left with now is to construct a valuation domain whose
maximal ideal is non-principal and whose global dimension is 2. To
this end, we recall the basic tool to construct valuation domains with
given properties: the value group. If A is a valuation domain, denote
by Q its quotient field and by U the group of units of A. Then U is
clearly a subgroup of the multiplicative group Q∗ = Q \ {0} and

G = Q∗/U

is a totally ordered abelian group. More precisely, G is an abelian
group, the relation ≤ on G defined by aU ≤ bU if ba−1 ∈ A gives a
total order on G, and we have the compatibility condition

α ≤ β implies α · γ ≤ β · γ for all α, β, γ ∈ G.

The pair (G,≤) is called the value group of A. We will use the following
fundamental result [10, Theorem 3.8].

Proposition 7.7. Let k be a field and (G,≤) a totally ordered abelian
group. Then there is a valuation domain A whose residue field A/P
is isomorphic to k, and whose value group is isomorphic to G as an
ordered group.

Now, we can give the promised example.

Example 7.8. Let G be a free abelian group of countable rank. If we
view G as the group Z(N) (with additive notation), then G is naturally
equipped with the lexicographic ordering which makes it to a totally
ordered group. Let A be a valuation domain whose value group is
isomorphic to G. In fact, looking closer at the particular construction
in [10, Section II.3], we can construct A such that it is countable.

We claim that the maximal ideal P of A is non-principal and that
gldim A = 2. Indeed, each ideal of A is flat and countably gener-
ated since the value group is countable. Thus, each ideal is of pro-
jective dimension at most 1 and gldim A ≤ 2. On the other hand, it
is easy to see that A has non-principal, hence non-projective, ideals
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and so is not hereditary. One of them is P , which is generated by
elements of A whose cosets in the value group Q∗/U correspond, un-
der the isomorphism Q∗/U ∼= Z(N), to the canonical basis elements
e1, e2, e3, . . . ∈ Z(N).

This way, we obtain a countable valuation domain A of global di-
mension 2 such that the telescope conjecture fails for D(Mod A) by
Proposition 7.6.

8. A bijective correspondence

In this final section we summarize our findings by stating explic-
itly the correspondence between various structures arising from Ext-
orthogonal pairs for hereditary rings. In particular, this completes the
proof of an extended version of Theorem B:

Theorem 8.1. For a hereditary ring A there are bijections between the
following sets:

(1) Ext-orthogonal pairs (X ,Y) for Mod A such that Y is closed
under coproducts.

(2) Ext-orthogonal pairs (Y ,Z) for Mod A such that Y is closed
under products.

(3) Extension closed abelian subcategories of Mod A that are closed
under products and coproducts.

(4) Extension closed abelian subcategories of mod A.
(5) Homological epimorphisms A → B (up to isomorphism).
(6) Universal localizations A → B (up to isomorphism).
(7) Localizing subcategories of D(Mod A) that are closed under prod-

ucts.
(8) Localization functors D(Mod A) → D(Mod A) preserving co-

products (up to natural isomorphism).
(9) Thick subcategories of Db(mod A).

Proof. We state the bijections explicitly in the following table and give
the references to the places where these bijections are established.

Direction Map Reference

(1) ↔ (3) (X ,Y) 7→ Y Corollary 3.4
(2) ↔ (3) (Y ,Z) 7→ Y Corollary 3.4
(3) → (4) Y 7→ (⊥Y) ∩ mod A Thm. 5.1 & Prop. 5.5
(4) → (3) C 7→ C⊥ Thm. 5.1 & Prop. 5.5
(3) → (5) Y 7→ (A → EndA(FA)) Proposition 3.2
(5) → (3) f 7→ (Ker f ⊕ Coker f)⊥ Proposition 3.1
(5) ↔ (6) f 7→ f Theorem 6.1
(3) → (7) Y 7→ DY(Mod A) Proposition 2.4
(7) → (3) C 7→ H0C Proposition 2.4
(7) → (8) C 7→ (X 7→ GX) Theorem 7.1
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Direction Map Reference

(8) → (7) L 7→ Im L Theorem 7.1
(4) → (9) X 7→ Db

X (mod A) Remark 2.5
(9) → (4) C 7→ H0C Remark 2.5

For (3) → (5), the functor F denotes a left adjoint of the inclusion
Y → Mod A. For (7) → (8), the functor G denotes a left adjoint of the
inclusion C → D(Mod A), �

Let us mention that this correspondence is related to recent work
of some other authors. In [34], Schofield establishes for any hereditary
ring the bijection (4) ↔ (6). In [27], Nicolás and Saoŕın establish for
a differential graded algebra A a correspondence between recollements
for the derived category D(A) and differential graded homological epi-
morphisms A → B. This correspondence specializes for a hereditary
ring to the bijection (5) ↔ (8).2

A finiteness condition. Given an Ext-orthogonal pair for the cate-
gory of A-modules as in Theorem 8.1, it is a natural question to ask
when its restriction to the category of finitely presented modules yields
a complete Ext-orthogonal pair for modA. This is very important
especially when considering relations of results from this paper to rep-
resentation theory of finite dimensional algebras. For that setting, we
characterize this finiteness condition in terms of finitely presented mod-
ules; see also Proposition 4.2.

Proposition 8.2. Let A be a finite dimensional hereditary algebra over
a field and C an extension closed abelian subcategory of mod A. Then
the following are equivalent.

(1) There exists a complete Ext-orthogonal pair (C,D) for mod A.
(2) The inclusion C → mod A admits a right adjoint.
(3) There exists an exceptional object X ∈ C such that C is the

smallest extension closed abelian subcategory of mod A contain-
ing X.

(4) Let (X ,Y) be the Ext-orthogonal pair for Mod A generated by
C. Then for each M ∈ mod A the 5-term exact sequence εM

belongs to mod A.

Proof. (1) ⇒ (2): For M ∈ mod A let 0 → DM → CM → M → DM →
CM → 0 be its 5-term exact sequence. Sending a module M to CM

induces a right adjoint for the inclusion C → mod A; see Lemma 2.9.
(2) ⇒ (3): Choose an injective cogenerator Q in mod A and let X

denote its image under the right adjoint of the inclusion of C. A right
adjoint of an exact functor preserves injectivity. It follows that X is an

2The first author is grateful to Manolo Saoŕın for pointing out this bijection.
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exceptional object and that C is the smallest extension closed abelian
subcategory of mod A containing X.

(3) ⇒ (4): See Proposition 4.2.
(4) ⇒ (1): The property of the pair (X ,Y) implies that (X ∩

mod A,Y ∩ mod A) is a complete Ext-orthogonal pair for modA. An
application of Proposition 5.5 yields the equality X ∩mod A = C. Thus
there exists a complete Ext-orthogonal pair (C,D) for mod A. �
Remark 8.3. There is a dual result which is obtained by applying the
duality between modules over the algebra A and its opposite Aop. Note
that condition (3) is self-dual.
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IV.

LOCALLY WELL GENERATED HOMOTOPY
CATEGORIES OF COMPLEXES

Abstract

We show that the homotopy category of complexes K(B) over any
finitely accessible additive category B is locally well generated. That
is, any localizing subcategory L in K(B) which is generated by a set
is well generated in the sense of Neeman. We also show that K(B)
itself being well generated is equivalent to B being pure semisimple, a
concept which naturally generalizes right pure semisimplicity of a ring
R for B = Mod-R.
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LOCALLY WELL GENERATED HOMOTOPY
CATEGORIES OF COMPLEXES

JAN ŠŤOVÍČEK

Abstract. We show that the homotopy category of complexes
K(B) over any finitely accessible additive category B is locally well
generated. That is, any localizing subcategory L in K(B) which is
generated by a set is well generated in the sense of Neeman. We
also show that K(B) itself being well generated is equivalent to B
being pure semisimple, a concept which naturally generalizes right
pure semisimplicity of a ring R for B = Mod-R.

Introduction

The main motivation for this paper is to study when the homotopy
category of complexes K(B) over an additive category B is compactly
generated or, more generally, well generated.

In the last few decades, the theory of compactly generated triangu-
lated categories has become an important tool unifying concepts from
various fields of mathematics. Standard examples are the unbounded
derived category of a ring or the stable homotopy category of spectra.
The key property of such a category T is the Brown Representability
Theorem, cf. [28, 23], originally due to Brown [8]:

Any contravariant cohomological functor F : T → Ab
which sends coproducts to products is representable.

This theorem is an important tool and has been used in several
places. We mention Neeman’s proof of the Grothendieck Duality Theo-
rem [28], Krause’s work on the Telescope Conjecture [26, 22], or Keller’s
representation theorem for algebraic compactly generated triangulated
categories [21].

Recently, there has been a growing interest in giving criteria for cer-
tain homotopy categories K(B) to be compactly generated, [14, 19, 27,
29]. Here, B typically was a suitable subcategory of a module category.
The main reason for studying such homotopy categories were results
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concerning the Grothendieck Duality Theorem [16, 29] and relative ho-
mological algebra [18]. There is, however, a conceptual reason, too.
Namely, every algebraic triangulated category is triangle equivalent to
a full subcategory of some homotopy category, [23, §7.5].

It turned out when studying the homotopy category of complexes of
projective modules in [29] that it is useful to consider well generated
triangulated categories in this context. More precisely, K(Proj-R) is
always well generated, but may not be compactly generated. Well
generated categories have been defined by Neeman [30] in a natural
attempt to extend results such as the Brown Representability from
compactly generated triangulated categories to a wider class of trian-
gulated categories.

Although one has already known for some time that there exist rather
natural triangulated categories, such as the homotopy category of com-
plexes of abelian groups, which are not even well generated, one has
typically viewed those as rare and exceptional cases.

We will give some arguments to show that this interpretation is not
very accurate. First, the categories of the shape K(Mod-R) for a ring
R are rarely well generated. It happens if and only if R is right pure
semisimple, which establishes the converse of [14, §4 (3), p. 17]. More-
over, we generalize this result to the homotopy categories K(B) with B
additive finitely accessible. This way, we obtain a fairly complete an-
swer regarding when K(Flat-R) is compactly or well generated, see [14,
Question 4.2].

We also give a partial remedy for the typical failure of K(B) to be
well generated. Roughly said, the main problem with K(B), where
B is finitely accessible, is that it may not have any set of generators
at all. But if we take a localizing subcategory L generated by any
set of objects, it will automatically be well generated. We will call a
triangulated category with this property locally well generated.

We will as well give basic properties of locally well generated cate-
gories and see that some usual results regarding localization work fine
in the new setting. For example, any localizing subcategory generated
by a set of objects is realized as the kernel of a localization endofunc-
tor. This version of a Bousfield localization theorem generalizes [24,
§7.2] and [2, 5.7]. However, one has to be more careful. The Brown
Representability theorem as stated above does not work for locally well
generated categories in general, and there are localizing subcategories
which are not associated to any localization endofunctor. We illustrate
this in Example 3.7.

Acknowledgements. The author would like to thank Henning Krause
for several helpful discussions and suggestions, as well as for his hospi-
tality during the author’s visits in Paderborn.
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1. Preliminaries

Let T be a triangulated category. A triangulated subcategory S ⊆ T
is called thick if, whenever X ⨿ Y ∈ S, then also X ∈ S. From now
on, we will assume that T has arbitrary (set-indexed) coproducts. A
full triangulated subcategory L ⊆ T is called localizing if it is closed
under forming coproducts. Note that by [30, 1.6.8], T has splitting
idempotents and any localizing subcategory L ⊆ T is thick.

If S is any class of objects of T , we denote by LocS the smallest
localizing subcategory of T which contains S. In other words, LocS is
the closure of S under shifts, coproducts and triangle completions.

Given T and a localizing subcategory L ⊆ T , one can construct
the so-called Verdier quotient T /L by formally inverting in T all mor-
phisms in the class Σ(L) defined as

Σ(L) = {f | ∃ triangle X
f→ Y → Z → X[1] in T such that Z ∈ L}.

It is a well known fact that the Verdier quotient always has coproducts,
admits a natural triangulated structure, and the canonical localization
functor Q : T → T /L is exact and preserves coproducts, [30, Chap-
ter 2]. However, one has to be careful, since T /L might not be a
usual category in the sense that the homomorphism spaces might be
proper classes rather than sets. This fact, although often inessential
and neglected, as T /L has a very straightforward and constructive de-
scription, may nevertheless have important consequences in some cases;
see eg. [5].

Let L : T → T be an exact endofunctor of T . Then L is called a
localization functor if there exists a natural transformation η : IdT → L
such that LηX = ηLX and ηLX : LX → L2X is an isomorphism for each
X ∈ T .

It is easy to check that the full subcategory Ker L of T given by

Ker L = {X ∈ T | LX = 0}

is always localizing [2, 1.2]. Moreover, there is a canonical triangle
equivalence between T / Ker L and Im L, the essential image of L; see
[30, 9.1.16] or [24, 4.9.1]. This among others implies that all morphism
spaces in T / Ker L are sets. Note that although ImL has coproducts
as a category, it might not be closed under coproducts in T . This type
of localization, coming from a localization functor, is often refered to as
Bousfield localization. However, not every localizing subcategory L is
realized as the kernel of a localization functor, [5, 1.3]. Namely, L is of
the form Ker L for some localization functor if and only if the inclusion
L → T has a right adjoint, [2, 1.6].

A central concept in this paper is that of a well generated triangu-
lated category. Let κ be a regular cardinal number. An object Y in
a category with arbitrary coproducts is called κ–small provided that
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every morphism of the form

Y −→
⨿
i∈I

Xi

factorizes through a subcoproduct
⨿

i∈J Xi with |J | < κ.

Definition 1.1. Let T be a triangulated category with arbitrary co-
products and κ be a regular cardinal. Then T is called κ–well generated
provided there is a set S of objects of T satisfying the following con-
ditions:

(1) If X ∈ T such that T (Y,X) = 0 for each Y ∈ S, then X = 0;
(2) Each object Y ∈ S is κ–small;
(3) For any morphism in T of the form f : Y →

⨿
i∈I Xi with

Y ∈ S, there exists a family of morphisms fi : Yi → Xi such
that Yi ∈ S for each i ∈ I and f factorizes as

Y −−→
⨿
i∈I

Yi

⨿
fi−−→

⨿
i∈I

Xi.

The category T is called well generated if it is κ–well generated for
some regular cardinal κ.

This definition differs to some extent from Neeman’s original defini-
tion in [30, 8.1.7]. The equivalence between the two follows from [25,
Theorem A] and [25, Lemmas 4 and 5]. Note that if κ = ℵ0, then con-
dition (3) is vacuous and ℵ0–well generated triangulated categories are
precisely the compactly generated triangulated categories in the usual
sense.

The key property of well generated categories is that the Brown
Representability Theorem holds:

Proposition 1.2. [30, 8.3.3] Let T be a well generated triangulated
category. Then:

(1) Any contravariant cohomological functor F : T → Ab which
takes coproducts to products is, up to isomorphism, of the form
T (−, X) for some X ∈ T .

(2) If S is a set of objects of T which meets assumptions (1), (2)
and (3) of Definition 1.1 for some cardinal κ, then T = LocS.

Next we turn our attention to categories of complexes. Let B be an
additive category. Using a standard notation, we denote by C(B) the
category of chain complexes

X : · · · → Xn−1 dn−1

→ Xn dn

→ Xn+1 → . . . ,

of objects of B. By K(B), we denote the factor-category of C(B) mod-
ulo the ideal of null-homotopic chain complex morphisms. It is well
known that K(B) has a triangulated structure where triangle comple-
tions are constructed using mapping cones (see for example [13, Chap-
ter I]). Moreover, if B has arbitrary coproducts, so have them both
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C(B) and K(B), and the canonical functor C(B) → K(B) preserves
coproducts.

We will often take for B module categories or their subcategories.
In this case, R will denote an associative unital ring and Mod-R the
category of all (unital) right R–modules. By Proj-R and Flat-R we
denote, respectively, the full subcategories of projective and flat R–
modules.

In fact, our considerations will usually work in a more general set-
ting. Let A be a skeletally small additive category and Mod-A be
the category of all contravariant additive functors A → Ab. We will
call such functors right A–modules. Then Mod-A shares many formal
properties with usual module categories. We refer to [17, Appendix
B] for more details. Correspondingly, we denote by Proj-A the full
subcategory of projective functors and by Flat-A the category of flat
functors. We discuss the categories of the form Flat-A more in detail
in Section 4 since those are, up to equivalence, precisely the so called
additive finitely accessible categories. Many natural abelian categories
are of this form.

Finally, we spend a few words on set-theoretic considerations. All
our proofs work in ZFC with an extra technical assumption: the axiom
of choice for proper classes. The latter assumption has no algebraic
significance, it is only used to keep arguments simple in the following
case:

Let F : C → D be a covariant additive functor. If we know, for
example by the Brown Representability Theorem, that the composition
of functors

C F−−−−→ D D(−,X)−−−−→ Ab

is representable for each X ∈ D, we would like to conclude that F has
a right adjoint G : D → C. In order to do that, we must for each Y ∈ C
choose one particular value for GY from a class of mutually isomorphic
candidates.

2. Pure semisiplicity

A relatively straightforward but crucial obstacle causing a homotopy
category of complexes K(B) not to be well generated is that the addi-
tive base category B is not pure semisimple. Here, we use the following
very general definition:

Definition 2.1. An additive category B with arbitrary coproducts is
called pure semisimple if it has an additive generator. That is, there
is an object X ∈ B such that B = AddX, where AddX stands for the
full subcategory formed by all objects which are summands in (possibly
infinite) coproducts of copies of X.

The term is inspired by the case B = Mod-R, where we have the
following proposition:
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Proposition 2.2. A ring R is right pure semisimple (that is, each pure
monomorphism between right R–modules splits) if and only if Mod-R
is pure semisimple in the sense of Definition 2.1.

Proof. If every pure monomorphism in Mod-R splits, then also every
pure epimorphism splits. That is, every module is pure projective, or
equivalently a summand in a direct sum of finitely presented modules.
By a theorem of Kaplansky, [20, Theorem 1], it follows that every mod-
ule is a direct sum of countably generated modules. Hence, Mod-R is
pure semisimple according to our definition. In fact, one can show more
in this case: Every module is even a direct sum of finitely presented
modules; see for example [15] or [17, App. B].

Let us conversely assume that Mod-R is a pure semisimple additive
category. First, one can use a straightforward variation of [20, The-
orem 1] for higher cardinalities to see, provided Mod-R = AddX for
some κ–generated module X, that each module in Mod-R is a direct
sum of λ–generated modules where λ = max(κ,ℵ0). This fact implies
that every module is Σ–pure injective, [11]. In particular, each pure
monomorphism in Mod-R splits and R is right pure semisimple. �

If R is an artin algebra, then the conditions of Proposition 2.2 are
well-known to be further equivalent to R being of finite representation
type; see [3, Theorem A]. For more details and references on this topic,
we also refer to [15]. It turns out that the pure semisimplicity condition
has a nice interpretation for finitely accessible additive categories as
well. We will discuss this more in detail in Section 4.

For giving a connection between pure semisimplicity of B and prop-
erties of K(B), we recall a structure result for the so-called contractible
complexes in C(B). A complex Y ∈ C(B) is contractible if it is mapped
to a zero object under C(B) → K(B). It is clear that the complexes of
the form

IX,n : · · · → 0 → 0 → X = X → 0 → 0 → . . . ,

such that the first X is in degree n, are contractible. Moreover, all
other contractible complexes are obtained in the following way:

Lemma 2.3. Let B be an additive category with splitting idempotents
and Y ∈ C(B). Then the following are equivalent:

(1) Y is contractible;
(2) Y is isomorphic in C(B) to a complex of the form

⨿
n∈Z IXn,n.

Proof. (2) =⇒ (1). This is trivial given the fact that the functor
C(B) → K(B) preserves those componentwise coproducts of complexes
which exist in C(B).

(1) =⇒ (2). Let us fix a contractible complex in K(B):

Y : . . .
dn−2

−−−→ Y n−1 dn−1

−−−→ Y n dn

−−→ Y n+1 dn+1

−−−→ . . . .
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By definition, the identity morphism of Y is homotopy equivalent to
the zero morphism in C(B), so there are morphisms sn : Y n → Y n−1

in B such that
1Y n = dn−1sn + sn+1dn.

When composing with dn, we get dn = dnsn+1dn, so sn+1dn : Y n →
Y n is idempotent in B for each n ∈ Z. Hence there are morphisms
pn : Y n → Xn and jn : Xn → Y n in B such that pnjn = 1Xn and
jnpn = sn+1dn. Let us denote by fn : Xn−1 ⨿Xn → Y n and gn : Y n →
Xn−1 ⨿ Xn the morphisms defined as follows:

fn = (dn−1jn−1, jn), and gn =

(
pn−1sn

pn

)
.

Using the identities above, it is easy to check that fngn = 1Y n and
gnfn is an isomorphism in B for each n. Therefore, both fn and gn

are isomorphisms and gnfn is the identity morphism. Finally, it is
straightforward to check that the family of morphisms (fn | n ∈ Z)
induces an (iso)morphism f :

⨿
n∈Z IXn,n → Y in C(B). �

It is not difficult to see that the condition of B having splitting
idempotents is really necessary in Lemma 2.3. However, there is a
standard construction which allows us to amend B with the missing
summands if B does not have splitting idempotents.

Definition 2.4. Let B be an additive category. Then an additive
category B̄ is called an idempotent completion of B if

(1) B̄ has splitting idempotents;
(2) B is a full subcategory of B̄;
(3) Every object in B̄ is a direct summand of an object in B.

It is a classical result that idempotent completions always exist. We
refer for example to [4, §1] for a particular construction. Moreover, it
is well-known that if B has arbitrary coproducts, then also B̄ has them
and they are compatible with coproducts in B.

Now we can state the main result of the section showing that for
K(B) being generated by a set (and, in particular, for K(B) being well
generated), the category B is necessarily pure semisimple.

Theorem 2.5. Let B be an additive category with arbitrary coproducts
and assume that there is a set of objects S ⊆ K(B) such that K(B) =
LocS. Then B is pure semisimple.

Proof. Note that we can replace S by a singleton {Y }; take for instance
Y =

⨿
Z∈S Z. Let us denote by X ∈ B the coproduct

⨿
n∈Z Y n of all

components of Y . We will show that B = AddX.
First, we claim that K(AddX) is a dense subcategory of K(B), that

is, each object in K(B) is isomorphic to one in K(AddX). Clearly,
Y ∈ K(AddX) and any family of objects from K(AddX) admits a
coproduct in K(B) which lies again in K(AddX). Now, if f : U → V
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is a morphism in C(AddX), then the mapping cone Cf is in C(AddX)
and U → V → Cf → U [1] forms a triangle in K(B). As coproducts
and triangle completions are unique up to isomorphism, the closure
of K(AddX) under taking isomorphic objects in K(B) is obviously a
localizing subcategory of K(B). Hence it coincides with K(B) and the
claim is proved.

Suppose for the moment that B has splitting idempotents. If we
identify B with the full subcategory of K(B) formed by complexes
concentrated in degree zero, we have proved that each object Z ∈ B
is isomorphic to a complex Q ∈ K(AddX). That is, there is a chain
complex homomorphism f : Z → Q such that Q ∈ C(AddX) and f
becomes an isomorphism in K(B). In particular, the mapping cone Cf

of f is contractible:

Cf : . . . −→ Q−3 d−3

−→ Q−2 (d−2

0 )
−→ Q−1⨿Z

(d−1,f0)−→ Q0 d0

−→ Q1 −→ . . .

Here, f0 is the degree 0 component of f . Consequently, Lemma 2.3
yields the following commutatuve diagram in B with isomorphisms in
columns:

Q−2 (d−2

0 )
−−−→ Q−1 ⨿ Z

(d−1,f0)−−−−−→ Q0

∼=
y ∼=

y ∼=
y

U ⨿ V
(0 1
0 0)

−−−→ V ⨿ W
(0 1
0 0)

−−−→ W ⨿ Z

It follows that V, W and also Q−1 ⨿ Z and Z are in AddX. Hence
B = AddX.

Finally, let B be a general additive category with coproducts and
B̄ be its idempotent completion. From the fact that K(B) has split-
ting idempotents, [30, 1.6.8], one easily sees that the full embedding
K(B) → K(B̄) is dense. We already know that if K(B) = LocS for a
set S, then B̄ = AddX for some X ∈ B̄. In fact, we can take X ∈ B by
the above construction. But then clearly B = AddX when the additive
closure is taken in B. Hence B is pure semisimple. �

Remark. When studying well generated triangulated categories, an
important role is played by so-called κ–localizing subcategories, see
[30, 24]. We recall that given a cardinal number κ, a κ–coproduct is a
coproduct with fewer than κ summands. If T is a triangulated cate-
gory with arbitrary κ–coproducts, a thick subcategory L ⊆ T is called
κ–localizing if it is closed under taking κ–coproducts. In this context,
one can state the following “bounded” version of Theorem 2.5:

Let κ be an uncountable regular cardinal and B be an additive cat-
egory with κ–coproducts. If K(B) is generated as a κ–localizing sub-
category by a set S of fewer than κ objects, then there is X ∈ B such
that every object of B is a summand in a κ–coproduct of copies of X.
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Note that Theorem 2.5 gives immediately a wide range of examples
of categories which are not well generated. For instance, K(Mod-R) is
not well generated for any ring R which is not right pure semisimple.
One can take R = Z or R = k(·⇒ ·), the Kronecker algebra over a field
k. The fact that K(Ab) is not well generated was first observed by
Neeman, [30, E.3.2], using different arguments. In fact, we can state
the following proposition, which we later generalize in Section 5:

Proposition 2.6. Let R be a ring. Then the following are equivalent:

(1) K(Mod-R) is well generated;
(2) K(Mod-R) is compactly generated;
(3) R is right pure semisimple.

If R is an artin algebra, the conditions are further equivalent to:

(4) R is of finite representation type.

Proof. (2) =⇒ (1) is clear, as compactly generated is the same as
ℵ0–well generated. (1) =⇒ (3) follows by Theorem 2.5 and Proposi-
tion 2.2. (3) =⇒ (2) has been proved by Holm and Jørgensen, [14,
§4 (3), p. 17]. Finally, the equivalence between (3) and (4) is due to
Auslander, [3, Theorem A]. �

3. Locally well generated triangulated categories

We have seen in the last section that a triangulated category of the
form K(Mod-R) is often not well generated. One might get an impres-
sion that handling such categories is hopeless, but the main problem
here actually is that the category is very big in the sense that it is not
generated by any set. Otherwise, it has a very reasonable structure.
We shall see that it is locally well generated in the following sense:

Definition 3.1. A triangulated category T with arbitrary coproducts
is called locally well generated if LocS is well generated for any set S
of objects of T .

In fact, we prove that K(Mod-A) is locally well generated for any
skeletally small additive category A. To this end, we first need to be
able to measure the size of modules and complexes.

Definition 3.2. Let A be a skeletally small additive category and M ∈
Mod-A. Recall that M is a contravariant additive functor A → Ab by
definition. Then the cardinality of M , denoted by |M |, is defined as

|M | =
∑
A∈S

|M(A)|,

where |M(A)| is just the usual cardinality of the group M(A) and S
is a fixed representative set for isomorphism classes of objects from A.
The cardinality of a complex Y = (Y n, dn) ∈ K(Mod-A) is defined as

|Y | =
∑
n∈Z

|Y n|.
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It is not so difficult to see that the category of all complexes whose
cardinalities are bounded by a given regular cardinal always gives rise
to a well-generated subcategory of K(Mod-A):

Lemma 3.3. Let A be a skeletally small additive category and κ be an
infinite cardinal. Then the full subcategory Sκ formed by all complexes
of cardinality less than κ meets conditions (2) and (3) of Definition 1.1.

In particular, Tκ = LocSκ is a κ–well generated subcategory of
K(Mod-A) for any regular cardinal κ.

Proof. Let Y ∈ K(Mod-A) such that |Y | < κ. If (Zi | i ∈ I) is an
arbitrary family of complexes in K(Mod-A), we can construct their co-
product as a componentwise coproduct in C(Mod-A). Then whenever
f : Y →

⨿
i∈I Zi is a morphisms in C(Mod-A), it is straightforward to

see that f factorizes through
⨿

i∈J Zi for some J ⊆ I of cardinality less
than κ. Hence Y is κ–small in K(Mod-A).

Regarding part (3) of Definition 1.1, consider a morphism f : Y →⨿
i∈I Zi. We have the following factorization in the abelian category of

complexes C(Mod-A):

Y
(fi)−→

⨿
i∈I

Im fi
j−→

⨿
i∈I

Zi.

Here, fi : Y → Zi are the compositions of f with the canonical projec-
tions πi :

⨿
i′∈I Zi′ → Zi, and j stands for the obvious inclusion. It is

easy to see that | Im fi| < κ for each i ∈ I and that the morphism j is
a coproduct of the inclusions Im fi → Zi. Hence (3) is satisfied.

For the second part, let κ be regular and Tκ = LocSκ. Let us denote
by S ′ a representative set of objects in Sκ. It only remains to prove
that S ′ satisfies condition (1) of Definition 1.1, which is rather easy.
Namely, let X ∈ Tκ such that Tκ(Y,X) = 0 for each Y ∈ S ′. Then
T ′ = {Y ∈ Tκ | Tκ(Y, X) = 0} defines a localizing subcategory of Tκ

containing Sκ. Hence, T ′ = Tκ and X = 0. �
We will also need (a simplified version of) an important result, which

is essentially contained already in [30]. It says that the property of be-
ing well generated is preserved when passing to any localizing subcat-
egory generated by a set. In particular, every well generated category
is locally well generated.

Proposition 3.4. [24, Theorem 7.2.1] Let T be a well generated tri-
angulated category and S ⊆ T be a set of objects. Then LocS is a well
generated triangulated category, too.

Now, we are in a position to state a theorem which gives us a major
source of examples of locally well generated triangulated categories.

Theorem 3.5. Let A be a skeletally small additive category. Then the
triangulated category K(Mod-A) is locally well generated.
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Proof. As in Lemma 3.3, we denote by Sκ the full subcategory of
K(Mod-A) formed by complexes of cardinality less than κ and put
Tκ = LocSκ, the localizing class generated by Sκ in K(Mod-A). Then
Tκ is (κ–)well generated for each regular cardinal κ by Lemma 3.3 and
clearly

K(Mod-A) =
∪

κ regular

Sκ =
∪

κ regular

Tκ.

Now, if S ⊆ K(Mod-A) is a set of objects, then S ⊆ Tκ for some κ.
Hence also LocS ⊆ Tκ and LocS is well generated by Proposition 3.4.
It follows that K(Mod-A) is locally well generated.

�

Having obtained a large class of examples of locally well generated
triangulated categories, one might ask for some basic properties of such
categories. We will prove a version of the so-called Bousfield Localiza-
tion Theorem here:

Proposition 3.6. Let T be a locally well generated triangulated cat-
egory and S ⊆ T be a set of objects. Then T /LocS is a Bousfield
localization; that is, there is a localization functor L : T → T such that
Ker L = LocS. In particular, we have

Im L = {X ∈ T | T (Y, X) = 0 for each Y ∈ S},

there is a canonical triangle equivalence between T /LocS and Im L
given by the composition

Im L
⊆−→ T Q−→ T /LocS,

and all morphism spaces in T /LocS are sets.

Proof. The proof is rather standard. LocS is well generated, so it satis-
fies the Brown Representability Theorem (see Proposition 1.2). Hence
the inclusion i : LocS → T has a right adjoint by [30, 8.4.4]. The
composition of this right adjoint with i gives a so-called colocalization
functor Γ : T → T whose essential image is equal to LocS. The
definition of a colocalization functor is formally dual to the one of a lo-
calization functor; see [24, §4.12] for details. A well-known construction
then yields a localization functor L : T → T such that Ker L = LocS.
We refer to [30, 9.1.14] or [24, 4.12.1] for details. The rest follows from
[30, 9.1.16] or [24, 4.9.1]. �

Remark. Proposition 3.6 has been proved before for well generated
triangulated categories. This is implicitly contained for example in [24,
§7.2]. It also generalizes more classical results, such as a corresponding
statement for the derived category D(B) of a Grothendieck abelian
category B, [2, 5.7]. To see this, one only needs to observe that D(B)
is well generated, see [24, Example 7.7].
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An obvious question is whether the Brown Representability Theorem
also holds for locally well generated categories, as this was the crucial
feature of well generated categories. Unfortunately, this is not the
case in general, as the following example suggested by Henning Krause
shows.

Example 3.7. According to [9, Exercise 1, p. 131], one can construct an
abelian category B with some Ext-spaces being proper classes. Namely,
let U be the class of all cardinals, and let B = Mod-Z⟨U⟩, the category
of all “modules over the free ring on the proper class of generators U .”
That is, an object X of B is an abelian group such that each κ ∈ U
has a Z-linear action on X and this action is trivial for all but a set of
cardinals. Such a category admits a valid set-theoretical description in
ZFC. If we denote by Z the object of B whose underlying group is free
of rank 1 and κ · Z = 0 for each κ ∈ U , then Ext1

B(Z, Z) is a proper
class (see also [24, 4.15] or [5, 1.1]).

Given the above description of objects of B, one can easily adjust
the proof of Theorem 3.5 to see that K(B) is locally well generated.
Let Kac(B) stand for the full subcategory of all acyclic complexes in
K(B). Then Kac(B) is clearly a localizing subcategory of K(B), hence
locally well-generated.

It has been shown in [5] that Kac(B) does not satisfy the Brown
Representability Theorem. In fact, one proved even more: Kac(B) is
localizing in K(B), but it is not a kernel of any localization functor
L : K(B) → K(B). More specifically, the composition of functors, the
second of which is contravariant,

Kac(B)
⊆−−−→ K(B)

K(B)(−,Z)−−−−−−→ Ab

is not representable by any object of Kac(B).

Yet another natural question is what other triangulated categories
are locally well generated. A deeper analysis of this problem is left for
future research, but we will see in Section 4 that K(B) is locally well
generated for any finitely accessible additive category B. For now, we
will prove that the class of locally well generated triangulated categories
is closed under some natural constructions. Let us start with a general
lemma, which holds even if morphism spaces in the quotient T /L are
proper classes:

Lemma 3.8. Let T be a triangulated category and L ⊆ L′ be two
localizing subcategories of T . Then L′/L is a localizing subcategory of
T /L.

Proof. Given the construction of the Verdier quotients and their tri-
angulated structures (see [30, §2.1]), proof of the lemma immediately
reduces to proof of the following two statements:

(1) L′/L is a full subcategory of T /L;
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(2) L′/L is closed under taking isomorphic objects in T /L.

To this end, let g : X → Y be a homomorphism in T /L. Then g is
represented by a fraction fσ−1 of morphisms from T . More precisely,
there are triangles

Z
σ−−−→ X −−−→ V −−−→ Z[1],

Z
f−−−→ Y −−−→ W −−−→ Z[1]

in T such that V ∈ L. Now, if both X, Y ∈ L′, then clearly Z ∈ L′

and g = fσ−1 is a morphism in L′/L. This proves (1). On the other
hand, if g is an isomorphism, then W ∈ L by [30, 2.1.35 and 1.6.8]. If,
moreover, X ∈ L′, then immediately Z, Y ∈ L′. This shows (2). �

Now we can show that taking localizing subcategories and localizing
with respect to a set of objects preserves the locally well generated
property.

Proposition 3.9. Let T be a locally well generated triangulated cate-
gory.

(1) Any localizing subcategory L of T is itself locally well generated.
(2) The Verdier quotient T /LocS is locally well generated for any

set S of objects in T .

Proof. (1) is trivial. For (2), put L = LocS and consider a set C
of objects in T /L. We have to prove that the localizing subcategory
generated by C in T /L is well generated. Since the objects of T and
T /L coincide by definition, we can consider a localizing subcategory
L′ ⊆ T defined by L′ = Loc (S ∪ C). One easily sees using Lemma 3.8
that L′/L = Loc C in T /L. Since both L and L′ are well generated
by definition, so is L′/L by [24, 7.2.1]. Hence T /L is locally well
generated. �

We conclude this section with an immediate consequence of Theo-
rem 3.5 and Proposition 3.9, which will be useful in the next section:

Corollary 3.10. Let A be a small additive category and B be a full
subcategory of K(Mod-A) which is closed under arbitrary coproducts.
Then K(B) is locally well generated.

4. Finitely accessible additive categories

There is a natural generalization of module categories, namely the
additive version of finitely accessible categories in the terminology of [1].
As we have seen, there is quite a lot of freedom to choose B in the
above Corollary 3.10. We will use this fact and a standard trick to
(seemingly) generalize Theorem 3.5 from module categories to finitely
accessible additive categories. We start with a definition.

Definition 4.1. Let B be an additive category which admits arbitrary
filtered colimits. Then:
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• An object X ∈ B is called finitely presentable if the repre-
sentable functor B(X,−) : B → Ab preserves filtered colimits.

• The category B is called finitely accessible if there is a set A of
finitely presentable objects from B such that every object in B
is a filtered colimit of objects from A.

Note that if B is finitely accessible, the full subcategory fp(B) of B
formed by all finitely presentable objects in B is skeletally small, [1,
2.2]. Several other general properties of finitely accessible categories
will follow from Proposition 4.2.

Finitely accessible categories occur at many occasions. The simplest
and most natural example is the module category Mod-R over an asso-
ciative unital ring. It is well-known that finitely presentable objects in
Mod-R coincide with finitely presented R–modules in the usual sense.
The same holds for Mod-A, the category of modules over a small addi-
tive category A. Motivated by representation theory, finitely accessible
categories were studied by Crawley-Boevey [7] under the name locally
finitely presented categories; see [7, §5] for further examples. The term
from [7], however, may cause some confusion in the light of other def-
initions. Namely, Gabriel and Ulmer [10] have defined the concept of
a locally finitely presentable category which is, in our terminology, a
cocomplete finitely accessible category. As the latter concept has been
used quite substantially in one of our main references, [24], we stick to
the terminology of [1].

The crucial fact about finitely accessible additive categories is the
following representation theorem:

Proposition 4.2. The assignments

A 7→ Flat-A and B 7→ fp(B)

form a bijective correspondence between

(1) equivalence classes of skeletally small additive categories A with
splitting idempotents, and

(2) equivalence classes of additive finitely accessible categories B.

Proof. See [7, §1.4]. �
Remark. The correspondence from Proposition 4.2 restricts, using [7,
§2.2], to a bijection between equivalence classes of skeletally small ad-
ditive categories with finite colimits (equivalently, with cokernels) and
equivalence classes of locally finitely presentable categories in the sense
of Gabriel and Ulmer [10].

One of the main results of this paper has now become a mere corol-
lary of preceding results:

Theorem 4.3. Let B be a finitely accessible additive category. Then
K(B) is locally well generated.
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Proof. Let us put A = fp(B), the full subcategory of B formed by all
finitely presentable objects. Using Proposition 4.2, we see that B is
equivalent to the category Flat-A. The category K(Flat-A) is locally
well generated by Corollary 3.10, and so must be K(B). �

The remaining question when K(B) is κ–well generated and which
cardinals κ can occur will be answered in the next section. For now,
we know by Theorem 2.5 that a neccessary condition is that B be pure
semisimple. In fact, we will show that this is also sufficient, but at
the moment we will only give a better description of pure semisimple
finitely accessible additive categories.

Proposition 4.4. Let B be a finitely accessible additive category. Then
the following are equivalent:

(1) B is pure semisimple in the sense of Definition 2.1;
(2) Each object in B is a coproduct of (indecomposable) finitely pre-

sentable objects;
(3) Each flat right A–module is projective, where A = fp(B).

Proof. For the whole argument, we put A = fp(B) and without loss of
generality assume that B = Flat-A.

(1) =⇒ (3). Assume that Flat-A is pure semisimple. As in the proof
for Proposition 2.2, we can use an obvious generalization of Kaplansky’s
theorem, [20, Theorem 1], to deduce that there is a cardinal number λ
such that each flat A–module is a direct sum of at most λ–generated
flat A–modules. The key step is then contained in [12, Corollary 3.6]
which says that under the latter condition A is a right perfect category.
That is, it satisfies the equivalent conditions of Bass’ theorem [17, B.12]
(or more precisely, its version for contravariant functors A → Ab). One
of the equivalent conditions is condition (3).

(3) =⇒ (2). This is a consequence of Bass’ theorem; see [17, B.13].
(2) =⇒ (1). Trivial, B = AddX where X =

⊕
Y ∈A Y . �

For further reference, we mention one more condition which one
might impose on a finitely accessible additive category. Namely, it
is well known that for a ring R, the category Flat-R is closed un-
der products if and only if R is left coherent. This generalizes in
a natural way for finitely accessible additive categories. Let us re-
call that an additive category A is said to have weak cokernels if
for each morphism X → Y there is a morphism Y → Z such that
A(Z,W ) → A(Y,W ) → A(X,W ) is exact for all W ∈ A.

Lemma 4.5. Let B be a finitely accessible additive category and A =
fp(B). Then the following are equivalent:

(1) B has products.
(2) Flat-A is closed under products in Mod-A.
(3) A has weak cokernels.
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Proof. See [7, §2.1]. �

Remark. If B has products, one can give a more classical proof for
Proposition 4.4. Namely, one can then replace the argument by Guil
Asensio, Izurdiaga and Torrecillas [12] by an older and simpler argu-
ment by Chase [6, Theorem 3.1].

5. When is the homotopy category well generated?

In this final section, we have developed enough tools to answer the
question when exactly is the homotopy category of complexes K(B)
well generated if B is a finitely accessible additive category. This way,
we will generalize Proposition 2.6 and also give a rather complete an-
swer to [14, Question 4.2] asked by Holm and Jørgensen. Finally, we
will give another criterion for a triangulated category to be (or not to
be) well generated and this way construct other classes of examples of
categories which are not well generated.

First, we recall a crucial result due to Neeman:

Lemma 5.1. Let A be a skeletally small additive category. Then the
homotopy category K(Proj-A) is ℵ1–well generated. If, moreover, A
has weak cokernels, then K(Proj-A) is compactly generated.

Proof. Neeman has proved in [29, Theorem 1.1] that, given a ring R,
the category K(Proj-R) is ℵ1–well generated, and if R is left coherent
then K(Proj-R) is even compactly generated. The actual arguments,
contained in [29, §§4–7], immediately generalize to the setting of pro-
jective modules over small categories. The role of finitely generated free
modules over R is taken by representable functors, and instead of the
duality between the categories of left and right projective finitely gen-
erated modules we consider the duality between the idempotent com-
pletions of the categories of covariant and contravariant representable
functors. �

We already know that K(B) is always locally well generated. When
employing Lemma 5.1, we can show the following statement, which is
one of the main results of this paper:

Theorem 5.2. Let B be a finitely accessible additive category. Then
the following are equivalent:

(1) K(B) is well generated;
(2) K(B) is ℵ1–well generated;
(3) B is pure semisimple.

If, moreover, B has products, then the conditions are further equivalent
to

(4) K(B) is compactly generated.
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Proof. (1) =⇒ (3). If K(B) is well generated, it is in particular
generated by a set of objects as a localizing subcategory of itself; see
Proposition 1.2. Hence B is pure semisimple by Theorem 2.5.

(3) =⇒ (2) and (4). If B is pure semisimple and A = fp(B), then
B is equivalent to Flat-A by Proposition 4.2, and Flat-A = Proj-A by
Proposition 4.4. The conlusion follows by Lemmas 5.1 and 4.5.

(2) or (4) =⇒ (1). This is obvious. �

Remark. (1) Neeman proved in [29] more than stated in Lemma 5.1. He
described a particular set of generators for K(Proj-A) satisfying condi-
tions of Definition 1.1. Namely, K(Proj-A) is always ℵ1–well generated
by a representative set of bounded below complexes of finitely gener-
ated projectives. Moreover, he gave an explicit description of compact
objects in K(Proj-A) in [29, 7.12].

(2) An exact characterization of when K(B) is compactly generated
and thereby a complete answer to [14, Question 4.2] does not seem
to be known. We have shown that this reduces to the problem when
K(Proj-A) is compactly generated. A sufficient condition is given in
Lemma 5.1, but it is probably not necessary. On the other hand, if
R = k[x1, x2, x3, . . . ]/(xixj; i, j ∈ N) where k is a field, then K(Flat-R)
coincides with K(Proj-R), but the latter is not a compactly generated
triangulated category; see [29, 7.16] for details.

Example 5.3. The above theorem adds other locally well generated
but not well generated triangulated categories to our repertoire. For
example K(T F), where T F stands for the category of all torsion-free
abelian groups, has this property.

We finish the paper with some examples of triangulated categories
where the fact that they are not generated by a set is less obvious. For
this purpose, we will use the following criterion:

Proposition 5.4. Let T be a locally well generated triangulated cate-
gory and L be a localizing subcategory. Consider the diagram

L ⊆−−−→ T Q−−−→ T /L.

If two of the categories L, T and T /L are well generated, so is the
third.

Proof. If L = LocS and T /L = Loc C for some sets S, C, let L′ be
the localizing subcateogry of T generated by the set of objects S ∪ C.
Lemma 3.8 yields the equality T /L = L′/L. Hence also T = L′, so T
is generated by a set, and consequently T is well generated.

If L and T are well generated, so is T /L by [24, 7.2.1]. Finally, one
knows that X ∈ T belongs to L if and only if QX = 0; see [30, 2.1.33
and 1.6.8]. Therefore, if T and T /L are well generated, so is L by [24,
7.4.1]. �
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Remark. We stress here that by saying that T /L is well generated, we
in particular mean that T /L is a usual category in the sense that all
morphism spaces are sets and not proper classes.

Now we can conclude by showing that some homotopy categories of
acyclic complexes are not well generated.

Example 5.5. Let R be a ring, Kac(Mod-R) be the full subcategory of
K(Mod-R) formed by all acyclic complexes, and L = Loc {R}. It is
well-known but also an easy consequence of Proposition 3.6 that the
composition

Kac(Mod-R)
⊆−→ K(Mod-R)

Q−→ K(Mod-R)/L

is a triangle equivalence between K(Mod-R)/L and Kac(Mod-R).
By Proposition 2.6, K(Mod-R) is well generated if and only if R

is right pure semisimple. Therefore, Kac(Mod-R) is well generated if
and only if R is right pure semisimple by Proposition 5.4. In fact,
Kac(Mod-R) is not generated by any set of objects if R is not right
pure semisimple. As particular examples, we may take R = Z or
R = k(·⇒ ·) for any field k.

Example 5.6. Let B be a finitely accessible category. Recall that B is
equivalent to Flat-A for A = fp(B). Then the natural exact structure
on Flat-A coming from Mod-A is nothing else than the well-known
exact structure given by pure exact short sequences in B (see eg. [7]).

We denote by Kpac(Flat-A) the full subcategory of K(Flat-A) formed
by all complexes exact with respect to this exact structure, and call
such complexes pure acyclic. More explicitly, X ∈ K(Flat-A) is pure
acyclic if and only if X is acyclic in Mod-A and all the cycles Zi(X)
are flat. Note that Kpac(Flat-A) is closed under taking coproducts in
K(Flat-A).

Neeman proved in [29, Theorem 8.6] that X ∈ K(Flat-A) is pure
acyclic if and only if there are no non-zero homomorphisms from any
Y ∈ K(Proj-A) to X. Then either by combining Proposition 3.6 with
Lemma 5.1 or by using [29, 8.1 and 8.2], one shows that the composition

Kpac(Flat-A)
⊆−→ K(Flat-A)

Q−→ K(Flat-A)/K(Proj-A)

is a triangle equivalence. Now again, Proposition 5.4 implies that
Kpac(Flat-A) is well generated if and only if B is pure semisimple. If B
is of the form Flat-R for a ring R, this precisely means that R is right
perfect.

As a particular example, Kpac(T F) is locally well generated but not
well generated, where T F stands for the class of all torsion-free abelian
groups.
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