Lanczos tridiagonalization
and Golub - Kahan bidiagonalization:
Ideas, connections and impact

Zdeněk Strakoš
Institute of Computer Science AS CR, Prague
http://www.cs.cas.cz/~strakos

GAMM - SIAM ALA Meeting, Düsseldorf, July 2006.
Lanczos tridiagonalization (1950, 1952)

\[A \in \mathbb{R}^{N,N}, \text{ large and sparse, symmetric, } w_1 (\equiv r_0/\|r_0\|, r_0 \equiv b - Ax_0), \]

\[AW_k = W_k T_k + \delta_{k+1} w_{k+1} e_k^T, \quad W_k^T W_k = I, \quad W_k^T w_{k+1} = 0, \quad k = 1, 2, \ldots, \]

\[T_k \equiv \begin{pmatrix}
\gamma_1 & \delta_2 \\
\delta_2 & \gamma_2 \\
\vdots & \vdots & \ddots \\
\delta_k & \gamma_k
\end{pmatrix}, \quad \delta_l > 0. \]

Stewart (1991): Lanczos and Linear Systems
Golub - Kahan bidiagonalization (1965), SVD

\[B \in \mathbb{R}^{M,N}, \text{ with no loss of generality } M \geq N, x_0 = 0; v_0 \equiv 0, u_1 \equiv b/\|b\|, \]

\[B^T U_k = V_k L_k^T, \quad BV_k = [U_k, u_{k+1}] L_{k+}, \quad k = 1, 2, \ldots, \]

\[
L_k \equiv \begin{pmatrix}
\alpha_1 \\
\beta_2 & \alpha_2 \\
\ddots & \ddots \\
\beta_k & \alpha_k
\end{pmatrix}, \quad L_{k+} \equiv \begin{pmatrix}
L_k \\
\beta_{k+1} e_k^T
\end{pmatrix},
\]

\[U_k^T U_k = V_k^T V_k = I, \quad U_k^T u_{k+1} = V_k^T v_{k+1} = 0. \]

Relationship I

The Lanczos tridiagonalization applied to the augmented matrix

\[A \equiv \begin{pmatrix} 0 & B \\ B^T & 0 \end{pmatrix} \]

with the starting vector \(w_1 \equiv (u_1, 0)^T \) yields in \(2k \) steps the orthogonal matrix

\[W_{2k} = \begin{pmatrix} u_1 & 0 & \ldots & u_k & 0 \\ 0 & v_1 & \ldots & 0 & v_k \end{pmatrix} \]

and the Jacobi matrix \(T_{2k} \) with the zero main diagonal and the subdiagonals equal to \((\alpha_1, \beta_2, \ldots, \alpha_{k-1}, \beta_k, \alpha_k)\).
\[BB^T U_k = U_k L_k L_k^T + \alpha_k \beta_{k+1} u_{k+1} e_k^T, \]

\[
L_k L_k^T = \begin{pmatrix}
\alpha_1^2 & \alpha_1 \beta_2 \\
\alpha_1 \beta_2 & \alpha_2^2 + \beta_2^2 \\
\alpha_2 \alpha_2 + \beta_2^2 & \ddots \\
\vdots & \ddots & \ddots & \alpha_{k-1} \beta_k \\
\alpha_{k-1} \beta_k & \alpha_k \alpha_k + \beta_k^2
\end{pmatrix},
\]

which represents \(k \) steps of the Lanczos tridiagonalization of the matrix \(BB^T \) with the starting vector \(u_1 \equiv b/\beta_1 = b/\|b\| \).
Relationship III

\[B^T B V_k = V_k L^T_{k+} L_{k+} + \alpha_{k+1} \beta_{k+1} v_{k+1} e^T_k, \]

\[L^T_{k+} L_{k+} = L^T_k L_k + \beta_{k+1}^2 e_k e_k^T = \begin{pmatrix} \alpha_1^2 + \beta_2^2 & \alpha_2 \beta_2 \\ \alpha_2 \beta_2 & \alpha_2^2 + \beta_3^2 \\ \vdots & \vdots \\ \alpha_k \beta_k & \alpha_k^2 + \beta_{k+1}^2 \end{pmatrix}, \]

which represents \(k \) steps of the Lanczos tridiagonalization of the matrix \(B^T B \) with the starting vector \(v_1 \equiv B^T u_1 / \alpha_1 = B^T b / \| B^T b \| \).
Large scale computational motivation

- Approximation of the spectral decomposition of A, of the SVD of A,
- Approximation of the solution of (possibly ill-posed) $Ax \approx b$.

The underlying principle: Model reduction by projection onto Krylov subspaces.

A. N. Krylov, *On the numerical solution of the equations by which the frequency of small oscillations is determined in technical problems* (1931 R.),

but the story goes back to Gauss (1777-1855), Jacobi (1804-1851), Chebyshev (1821-1894), Christoffel (1829-1900), Stieltjes (1856-1894), Markov (1856-1922) and to many others not mentioned here.
Outline

1. Essence of Krylov subspace methods - the problem of moments
2. Lanczos, CG and the Gauss-Christoffel quadrature - links impossible to cover in a single exposition
3. LSQR and its relatives - projections based on the Golub-Kahan bidiagonalization
4. Golub-Kahan bidiagonalization - a fundamental decomposition of data
5. Concluding remarks
Essence of Krylov subspace methods

- the problem of moments
Projections on nested subspaces

\[Ax = b \]

\[A_n x_n = b_n \]

\[x_n \] approximates the solution \(x \) using the subspace of small dimension.
Projection processes

\[x_n \in x_0 + S_n, \quad r_0 \equiv b - Ax_0 \]

where the constraints needed to determine \(x_n \) are given by

\[r_n \equiv b - Ax_n \in r_0 + AS_n, \quad r_n \perp C_n. \]

Here \(S_n \) is the search space, \(C_n \) is the constraint space.

\(r_0 \) is decomposed to \(r_n + \) the part in \(AS_n \). It should be called orthogonal projection if \(C_n = AS_n \), oblique otherwise.
Krylov subspaces accumulate the dominant information of A with respect to r_0. Unlike in the power method for computing the dominant eigenspace, here all the information accumulated along the way is used.

The idea of projections using Krylov subspaces is in a fundamental way linked with the problem of moments.
In a Stieltjes moment problem

a sequence of numbers ξ_k, $k = 0, 1, \ldots$ is given and a non-decreasing distribution function $\omega(\lambda)$, $\lambda \geq 0$ is sought such that the Riemann-Stieltjes integrals defining the moments satisfy

$$\int_0^\infty \lambda^k \, d\omega(\lambda) = \xi_k, \quad k = 0, 1, \ldots$$

An interesting historical source: Wintner, Spektraltheorie der unendlichen Matritzen - Enführung in den Analytischen Apparat der Quantenmechanik, (1929), thanks to Michele Benzi!
The origin in

C. F. Gauss, *Methodus nova integralium valores per approximationem inveniendi*, (1814)

C. G. J. Jacobi, *Uber Gauss’ neue Methode, die Werthe der Integrale näherungsweise zu finden*, (1826)

A useful algebraic formulation:
Given A, r_0, find a linear operator A_n on \mathcal{K}_n such that

\begin{align*}
A_n r_0 &= Ar_0, \\
A_n (Ar_0) &= A^2r_0, \\
&\vdots \\
A_n (A^{n-2}r_0) &= A^{n-1}r_0, \\
A_n (A^{n-1}r_0) &= Q_n (A^n r_0),
\end{align*}

where Q_n projects onto \mathcal{K}_n orthogonally to C_n.

Vorobyev (1958 R., 1965 E.), Brezinski (1997), Liesen and S (200?)
in the Stieltjes formulation: $S(PD)$ case

Given the first $2n - 1$ moments for the distribution function $\omega(\lambda)$, find the distribution function $\omega_n(\lambda)$ with n points of increase which matches the given moments.

Vorobyev (1958 R.), Chapter III, with references to Lanczos (1950, 1952), Hestenes and Stiefel (1952), Ljusternik (1956 R., *Solution of problems in linear algebra by the method of continued fractions*)

Though the founders were well aware of the relationship (Stiefel (1958), Rutishauser (1954, 1959), ... see Gutknecht, the computational potential of the CG approach has not been by mathematicians fully realized, cf. Golub and O’Leary (1989), Saulyev (1960 R., 1964 E.) - thanks to Michele Benzi, (Trefethen (2000).

Gene Golub has emphasized the importance of moments for his whole life. Here see the Minisymposium on Moments - Meurant, Reichel, ...; model reduction plenary talk of Bunse-Gerstner, ...
Conclusions 1, based on moments

- Information contained in the data is not processed linearly in projections using Krylov subspace methods, including Lanczos tridiagonalization and Golub-Kahan bidiagonalization,

\[T_k = W_k^T(A) A W_k(A). \]

- Any linearization in description of behavior of such methods is of limited use, and it should be carefully justified.

- In order to understand the methods, it is very useful (even necessary) to combine tools from algebra and analysis.
Lanczos, CG and the Gauss-Christoffel quadrature

- links impossible to cover in a single exposition
Lanczos, CG and orthogonal polynomials

\[AW_k = W_k T_k + \delta_{k+1} w_{k+1} e_k^T, \quad A \text{ SPD} \]

\[T_k y_k = \|r_0\| e_1, \quad x_k = x_0 + W_k y_k. \]

Spectral decompositions of \(A \) and \(T_k \) with projections of \(w_1 \) resp. \(e_1 \) onto invariant subspaces corresponding to individual eigenvalues leads to the scalar product expressed via the Riemann-Stieltjes integral and to the world of orthogonal polynomials, Jacobi matrices, continued fractions, Gauss-Christoffel quadrature ...

Lanczos represents matrix formulation of the Stieltjes algorithm for computing orthogonal polynomials. This fact is widely known, but its benefits are not always used in the orthogonal polynomial literature. Numerical stability analysis of the Lanczos recurrences due to Paige, Parlett, Scott, Simon, Greenbaum, Grcar, Meurant, S, Notay, Druskin, Knizhnermann, Zemke, Wülling and others is not used at all.
CG: matrix formulation of the Gauss Quadrature

\[Ax = b, \quad x_0 \quad \rightarrow \quad \int_{\zeta}^{\xi} f(\lambda) \, d\omega(\lambda) \]

\[T_n y_n = \|r_0\| e_1 \quad \leftrightarrow \quad \sum_{i=1}^{n} \omega_i^{(n)} f(\theta_i^{(n)}) \]

\[x_n = x_0 + W_n y_n \]

\[\omega_n(\lambda) \rightarrow \omega(\lambda) \]
Vast literature on the subject

From the side of computational theory of orthogonal polynomials, see the encyclopedic work of Gautschi (1968, …, 1981, …, 2005, 2006, …).

Many related subjects as construction of orthogonal polynomials from modified moments, sensitivity of the map from moments to the quadrature nodes and weights, reconstruction of Jacobi matrices from the spectral data and sensitivity of this problem, sensitivity and computation of the spectral decomposition of Jacobi matrices, ...

Lines of development sometimes parallel, independent and with relationships unnoticed.
Literature (continuation)

Some summary in Meurant and S (2006), O’Leary, S and Tichy (200?).
I have resigned on including the description of the relationship with the Sturm-Liouville problem, inverse scattering problem and Gelfand-Levitan theory, as well as applications in sciences, in particular in quantum chemistry and quantum physics, engineering, statistics ...

No algorithmic developments with founding contributions of Concus, Golub, O’Leary, Axelsson, van der Vorst, Saad, Fletcher, Freund, Stoer, ...

That would deserve independent presentations ... and another person.
An example - sensitivity of Lanczos recurrences

\[
A \in \mathbb{R}^{N,N} \quad \text{diagonal SPD,}
\]

\[
A, \; w_1 \quad \rightarrow \quad T_k \quad \rightarrow \quad T_N = W_N^T A W_N
\]

\[
A + E, \; w_1 + e \quad \rightarrow \quad \tilde{T}_k \quad \rightarrow \quad \tilde{T}_N = \tilde{W}_N^T (A + E) \tilde{W}_N
\]

\(\tilde{T}_k\) is, under some assumptions on the size of the perturbations relative to the separation of the eigenvalues of \(A\), close to \(T_k\).

\(\tilde{T}_N\) has all its eigenvalues close to that of \(A\).
A particular larger problem

\[\hat{A} \in \mathbb{R}^{2N,2N}, \quad \hat{w}_1 \in \mathbb{R}^{2N}, \quad \text{obtained by replacing each eigenvalue of } A \text{ by a pair of very close eigenvalues of } \hat{A} \text{ sharing the weight of the original eigenvalue. In terms of the distribution functions, } \hat{\omega}(\lambda) \text{ has doubled points of increase but it is very close to } \omega(\lambda). \]

\[\hat{A}, \hat{w}_1 \rightarrow \hat{T}_k \rightarrow \hat{T}_{2N} = \hat{W}_{2N}^T \hat{A} \hat{W}_{2N} \]

\[\hat{T}_k \text{ can be very different from } T_k. \quad \hat{T}_{2N} \text{ has all its eigenvalues close to that of } A. \]

Relationship to the mathematical model of finite precision computation, see Greenbaum (1989), S (1991), Greenbaum and S (1992), (in some sense also Parlett (1990)). Here, however, all is computed exactly!
In terms of CG or Gauss-Ch. quadrature

![Graph showing quadrature error and difference between estimates and integrals.](image)
A contradiction to published results

The convergence of CG for A, w_1 and \hat{A}, \hat{w}_1 ought to be similar; at least $\|\hat{x} - \hat{x}_N\|_{\hat{A}}$ should be small.

The argument in the paper is based on relating the CG minimizing polynomial to the minimal polynomial of A. It has been underestimated, however, that for some distribution of eigenvalues of A its minimal polynomial (normalized to one at zero) can have extremely large gradients and therefore it can be very large at points even very close to its roots. That happens for the points equal to the eigenvalues of \hat{A}!

Conclusions 2, based on the rich matter

- It is good to look for interdisciplinary links and for different lines of thought. An overemphasized specialization together with malign deformation of the *publish or perish* policy is counterproductive. It leads to vasting of energy and to a dissipative loss of information.

- Rounding error analysis of iterative methods is not a (perhaps useful but obscure) discipline for a few strangers. It has an impact not restricted to development of methods and algorithms. Through its wide methodology and questions it can lead to understanding of general mathematical phenomena independent of any numerical issues.
LSQR and its relatives

- projections based on the Golub-Kahan bidiagonalization
A natural step towards new developments

\[B \in \mathbb{R}^{M,N}, \text{ with no loss of generality } M \geq N, x_0 = 0; v_0 \equiv 0, u_1 \equiv b/\|b\|, \]

\[B^T U_k = V_k L_k^T, \quad BV_k = [U_k, u_{k+1}] L_{k+}, \quad k = 1, 2, \ldots, \]

\[Bx \approx b, \quad (B^T b \neq 0) \]

\[[U_k, u_{k+1}]^T [b, BV_k] = [\beta_1 e_1, L_{k+}] \equiv \begin{bmatrix}
\beta_1 & \alpha_1 \\
\beta_2 & \alpha_2 \\
\ddots & \ddots \\
\beta_k & \alpha_k \\
\beta_{k+1}
\end{bmatrix} \]
LSQR and extensions

Paige and Saunders (1982 I+II) classics contains, in addition to LSQR for solving least squares problems, also stopping criteria, approximation to truncated SVD - regularization, see also Golub and Kahan (1965), relationship to other methods like CGLS, Craig, PLS of Wold (1980), see Eldén (2004), numerical stability issues, code.

Golub-Kahan bidiagonalization

- a fundamental decomposition of data
Core problem theorem

Let B be a nonzero M by N real matrix and b a nonzero real N-vector, $B^Tb \neq 0$. Then there exists a decomposition

$$P^T \left[\begin{array}{c|c} b & BQ \end{array} \right] = \left[\begin{array}{c|c|c} b_1 & B_{11} & 0 \\ \hline 0 & 0 & B_{22} \end{array} \right],$$

where $P^{-1} = P^T$, $Q^{-1} = Q^T$, $b_1 = \beta_1 e_1$, and B_{11} is a lower bidiagonal matrix with nonzero bidiagonal elements.

Moreover:
Core problem theorem - continuation

S1. The matrix B_{11} has full column rank and its singular values are simple. Consequently, any zero singular values or repeats that B has must appear in B_{22}.

S2. The matrix B_{11} has minimal dimensions, and B_{22} has maximal dimensions, over all orthogonal transformations giving the block structure above, without any additional assumptions on the structure of B_{11} and b_1.

S3. All components of $b_1 = \beta_1 e_1$ in the left singular vector subspaces of B_{11}, i.e., the first elements of all left singular vectors of B_{11}, are nonzero.

$B_{11} x_1 \approx b_1$ represents the core approximation problem containing all necessary and sufficient information for solving the approximation problem with the original data, $x = Q [x_1, 0]^T$.
A surprising path

which have resulted in the core problem formulation, Paige and Strakos (2006), with an alternative proof based on the properties of Jacobi matrices and the relationship between the Lanczos tridiagonalization and the Golub - Kahan bidiagonalization in Hnětynková and S (2006).

Origin - loss of OG and NRBE in MGS GMRES
Golub and Kahan would clearly have presented the core problem decomposition, together with its properties, SVD-based and {Jacobi matrices, the Lanczos tridiagonalization and the Golub and Kahan bidiagonalization}-based proof, had the use for it been put to them in 1965. The same is undoubtedly true for Paige and Saunders in 1982.

This is just one example of many.

The founding papers should be read and studied. It is worth. One can learn a lot from them.
Dedication

Thank you, Gene!