
APPROXIMATIONS OF MODULES

JAN TRLIFAJ

It is a well-known fact that the category of all modules, Mod–R, over a general
associative ring R is too complex to admit classification. Unless R is of finite
representation type we have to limit attempts at classification to some restricted
subcategories of modules.

In order to overcome this problem, the approximation theory of modules has
been developed over the past several decades. The idea is to select suitable sub-
categories C of Mod–R whose modules can be classified, and then approximate
arbitrary modules by the ones from C. These approximations are neither unique
nor functorial in general, but there is a rich supply available appropriate to the
requirements of various particular applications. Approximation theory has thus
become an indispensable part of the classification theory of modules.

In these notes, we use set-theoretic homological algebra to develop elements of
the approximation theory of modules. We introduce the basic notion of a filtration,
present a powerful tool for working with filtrations, the Hill Lemma, and some of
its recent applications. We also explain how cotorsion pairs provide for a variety
of approximations; in particular, we prove the Flat Cover Conjecture. Finally, we
show that all deconstructible classes of modules are precovering.

1. Filtrations

We start by introducing the basic notion of a filtration of a module:

Definition 1.1. Let R be a ring, M a module, and C a class of modules.
A chain of submodules, M = (Mα | α ≤ σ), of M is called continuous, provided

that M0 = 0, Mα ⊆ Mα+1 for each α < σ, and Mα =
⋃

β<αMβ for each limit
ordinal α ≤ σ.

A continuous chain M is a C-filtration of M , provided that M = Mσ, and each
of the modules Mα+1/Mα (α < σ) is isomorphic to some element of C.

If M is a C-filtered module, then M is also called a transfinite extension of the
modules in C. A class A is said to be closed under transfinite extensions provided
that A contains all A-filtered modules. Clearly, this implies that A is closed under
extensions and arbitrary direct sums.
M is called C-filtered, provided that M possesses at least one C-filtration M =

(Mα | α ≤ σ). If σ can be taken finite, then M is called finitely C-filtered.
We will use the notation Filt(C) for the class of all C-filtered modules.

For example, if C = simpR is a representative set of all simple modules, then
the C-filtered modules coincide with the semiartinian modules, while the finitely
C-filtered modules are exactly the modules of finite length. The latter modules are
the subject of classic Jordan-Hölder theory. In a sense, the Hill Lemma and its
applications presented below are extensions of this theory to the infinite setting
where no dimensions and direct sum decompositions are available in general.

Date: May 23, 2012.

1



2 JAN TRLIFAJ

For a class of modules C, we denote by ⊥C the common kernel of all the con-
travariant Ext functors induced by the elements of C, that is,

⊥C = KerExt1R(−, C) = {A ∈ Mod–R | Ext1R(A,C) = 0 for all C ∈ C}.

The classes of the form ⊥C provide for a rich supply of the classes closed under
transfinite extensions, as shown by Eklof [6]:

Lemma 1.2. (Eklof Lemma) Let C be a class of modules. Then the class ⊥C
is closed under transfinite extensions. That is, if M is a ⊥C-filtered module, then
M ∈ ⊥C.

Proof. It suffices to prove the claim for the case when C = {N} for a single
module N .

Let (Mα | α ≤ κ) be a ⊥N -filtration of M . So Ext1R(M0, N) = 0 and, for each
α < κ, Ext1R(Mα+1/Mα, N) = 0. We will prove Ext1R(M,N) = 0.

By induction on α ≤ κ we will prove that Ext1R(Mα, N) = 0. This is clear for
α = 0.

The exact sequence

0 = Ext1R(Mα+1/Mα, N) → Ext1R(Mα+1, N) → Ext1R(Mα, N) = 0

proves the induction step.

Assume α ≤ κ is a limit ordinal. Let 0 → N −→ I
π
−→ I/N → 0 be an exact

sequence with I an injective module. In order to prove that Ext1R(Mα, N) = 0,
we show that the abelian group homomorphism HomR(Mα, π) : HomR(Mα, I) →
HomR(Mα, I/N) is surjective.

Let ϕ ∈ HomR(Mα, I/N). We now define by induction homomorphisms ψβ ∈
HomR(Mβ , I), β < α, so that ϕ ↾ Mβ = πψβ and ψβ ↾ Mγ = ψγ for all γ < β < α.

First define M−1 = 0 and ψ−1 = 0. If ψβ is already defined, the injectivity of I
yields the existence of η ∈ HomR(Mβ+1, I), such that η ↾ Mβ = ψβ . Put δ = ϕ ↾

Mβ+1 − πη ∈ HomR(Mβ+1, I/N). Then δ ↾ Mβ = 0. Since Ext1R(Mβ+1/Mβ, N) =
0, there is ǫ ∈ HomR(Mβ+1, I), such that ǫ ↾ Mβ = 0 and πǫ = δ. Put ψβ+1 = η+ǫ.
Then ψβ+1 ↾ Mβ = ψβ and πψβ+1 = πη+δ = ϕ ↾ Mβ+1. For a limit ordinal β < α,
put ψβ =

⋃

γ<β ψγ .

Finally, put ψα =
⋃

β<α ψβ . By the construction, πψα = ϕ.

The claim is just the case of α = κ.

2. Tools for dealing with filtrations

When studying a particular C-filtered module, we often need to replace the orig-
inal C-filtration by another one that better fits the study in case. A remarkable
construction serving this purpose was discovered by Hill [12]. It expands a given
C-filtration, M, of a module M into a large family, F , consisting of C-filtered sub-
modules of M . Moreover, F inherits the key property of M: it forms a complete
distributive sublattice of the modular lattice of all submodules of M .

The key notion here is that of a closed subset of the length of a C-filtration:

Definition 2.1. Let R be a ring and M = (Mα | α ≤ σ) be a continuous chain of
modules. Consider a family of modules (Aα | α < σ), such that Mα+1 = Mα +Aα
for each α < σ.
A subset S of the ordinal σ is closed, if every α ∈ S satisfies

Mα ∩Aα ⊆
∑

β∈S,β<α

Aβ .
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The height hgt(x) of an element x ∈Mσ is defined as the least ordinal α < σ, such
that x ∈Mα+1. For any subset S of σ, we define

M(S) =
∑

α∈S

Aα.

For each ordinal α ≤ σ, we have Mα =
∑

β<αAβ , so α (= {β < σ | β < α}) is a
closed subset of σ.

Lemma 2.2. Let S be a closed subset of σ and x ∈M(S). Let S′ = {α ∈ S | α ≤
hgt(x)}. Then x ∈M(S′).

Proof. Let x ∈M(S). Then x = x1 + · · ·+xk, where xi ∈ Aαi
for some αi ∈ S,

1 ≤ i ≤ k. W.l.o.g., α1 < · · · < αk, and αk is minimal.
If αk > hgt(x), then xk = x − x1 − · · · − xk−1 ∈ Mαk

∩ Aαk
⊆

∑

α∈S,α<αk
Aα,

since S is closed, in contradiction with the minimality of αk.

As an immediate corollary, we have

Corollary 2.3. Let S be a closed subset of σ and x ∈M(S). Then hgt(x) ∈ S.

Lemma 2.4. Let (Si | i ∈ I) be a family of closed subsets of σ. Then

M
(

⋂

i∈I

Si
)

=
⋂

i∈I

M(Si) and M(
⋃

i∈I

Si) =
∑

i∈I

M(Si).

Proof. For the first equality, let T =
⋂

i∈I Si. Clearly, M(T ) ⊆
⋂

i∈IM(Si).
Suppose there is an x ∈

⋂

i∈IM(Si), such that x 6∈ M(T ), and choose such an
x of minimal height. Then x = y + z for some y ∈ Ahgt(x) and z ∈ Mhgt(x).

By Corollary 2.3, hgt(x) ∈ Si for all i ∈ I, so hgt(x) ∈ T and y ∈ M(T ). Then
z ∈

⋂

i∈IM(Si), z 6∈M(T ) and hgt(z) < hgt(x), in contradiction to minimality.

The second equality is immediate from Definition 2.1.

Remark 2.5. Let M = (Mα | α ≤ σ) be a continuous chain of modules. If N
is a submodule of M = Mσ, then M induces the continuous chain of submodules
N = (N ∩Mα | α ≤ σ) of N .

If, moreover, N = M(S) for a subset S ⊆ σ, then another continuous chain of
submodules of N is given by N ′ = (M(S ∩ α) | α ≤ σ).

Notice that the set S is closed in σ, if and only if the chains N and N ′ coincide.
The only-if part holds, because M(S) ∩Mα = M(S) ∩M(α) = M(S ∩ α) for each
α ≤ σ by Lemma 2.4. Conversely, if α ∈ S, then Mα ∩ Aα ⊆ M(α) ∩M(S) =
M(S ∩ α) =

∑

β∈S,β<αAβ .

Next we prove that intersections and unions of closed subsets are again closed:

Proposition 2.6. Let (Si | i ∈ I) be a family of closed subsets of σ. Then both
the union and the intersection of this family are again closed in σ.

Proof. As for the union, if β ∈ S =
⋃

i∈I Si, then β ∈ Si for some i ∈ I and
Mβ ∩Aβ ⊆

∑

α∈Si,α<β
Aα ⊆

∑

α∈S,α<β Aα.

For the intersection, let β ∈ T =
⋂

i∈I Si. Then Mβ ∩Aβ ⊆M(Si ∩ β) for each
i ∈ I. Therefore Lemma 2.4 implies that

Mβ ∩Aβ ⊆
⋂

i∈I

M(Si ∩ β) = M(T ∩ β),

which exactly says that T is closed.

By Proposition 2.6, closed subsets form a complete sublattice C(σ) of the com-
plete Boolean lattice of all subsets of σ.
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Assume that the chain M is strictly increasing, and S, S′ ∈ C(σ). Then S ⊆ S′,
if and only ifM(S) ⊆M(S′). The only-if-part is trivial; to prove the if-part, assume
that M(S) ⊆M(S′) and there is a least ordinal α in S \S′. Then Aα ⊆M(S∩(α+
1)) = M(S)∩M(α+1) ⊆M(S′)∩M(α+1) = M(S′∩(α+1)) = M(S′∩α) ⊆Mα,
a contradiction.

Let M = Mσ, and let L(M) denote the lattice of all submodules of M . We can
summarize the above as

Corollary 2.7. Assume that the chain M is strictly increasing. Then the map
θ : S 7→M(S) is a complete lattice isomorphism of the complete distributive lattice
C(σ) onto a sublattice of the complete modular lattice L(M).

Even if M is not strictly increasing, being a homomorphic image of a distributive
lattice, the image of θ is still a distributive sublattice of L(M). This image yields
the desired family of submodules F , extending the given continuous chain M. Basic
properties of F are the subject matter of the general version of the Hill Lemma
from [18]:

Theorem 2.8. (Hill Lemma) Let R be a ring, κ an infinite regular cardinal,
and C a set of < κ-presented modules. Let M be a module with a C-filtration
M = (Mα | α ≤ σ). Then there is a family F consisting of submodules of M such
that

(H1) M ⊆ F .
(H2) F is closed under arbitrary sums and intersections. F is a complete dis-

tributive sublattice of the modular lattice of all submodules of M .
(H3) Let N,P ∈ F be, such that N ⊆ P . Then the module P/N is C-filtered.

Moreover, there exist an ordinal τ ≤ σ and a continuous chain (Fγ |
γ ≤ τ) of elements of F , such that Q = (Fγ/N | γ ≤ τ) is a C-filtration
of P/N , and for each γ < τ there is a β < σ with Fγ+1/Fγ isomorphic to
Mβ+1/Mβ.

(H4) Let N ∈ F and X be a subset of M of cardinality < κ. Then there is a
P ∈ F , such that N ∪X ⊆ P and P/N is < κ-presented.

Proof. Consider a family of < κ-generated modules (Aα | α < σ), such that for
each α < σ:

Mα+1 = Mα +Aα,

as in Definition 2.1. We claim that

F = {M(S) | S a closed subset of σ}

has properties (H1)-(H4).
Property (H1) is clear, since each ordinal α ≤ σ is a closed subset of σ.
The first claim in (H2) follows by Proposition 2.6 and Lemma 2.4, the second

by Corollary 2.7, because F is the image of θ.
Property (H3) is proved as follows: we have N = M(S) and P = M(T ) for some

closed subsets S, T . Since S ∪ T is closed, we can w.l.o.g. assume that S ⊆ T . For
each β ≤ σ, put

Fβ = N +
∑

α∈T\S,α<β

Aα = M(S ∪ (T ∩ β)) and F̄β = Fβ/N.

Clearly (F̄β | β ≤ σ) is a filtration of P/N , such that F̄β+1 = F̄β + (Aβ +N)/N for
β ∈ T \ S and F̄β+1 = F̄β otherwise. Let β ∈ T \ S. Then

F̄β+1/F̄β ∼= Fβ+1/Fβ ∼= Aβ/(Fβ ∩Aβ),
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and

Fβ ∩Aβ ⊇
(

∑

α∈T,α<β

Aα

)

∩Aβ = Mβ ∩Aβ .

However, if x ∈ Fβ ∩ Aβ , then hgt(x) ≤ β, so x ∈ M(T ′) by Lemma 2.2, where
T ′ = {α ∈ S∪(T ∩β) | α ≤ β}. By Proposition 2.6, we get x ∈Mβ , because β 6∈ S.
Hence Fβ ∩ Aβ = Mβ ∩ Aβ and F̄β+1/F̄β ∼= Aβ/(Mβ ∩Aβ) ∼= Mβ+1/Mβ. The
desired C-filtration Q of P/N is obtained from (F̄β | β ≤ σ) by removing possible
repetitions, and (H3) follows. Denote by τ ′ the ordinal type of the well-ordered set
(T \ S,<). Notice that the length τ of the filtration can be taken as 1 + τ ′ (the
ordinal sum, hence τ = τ ′ for τ ′ infinite).

For property (H4) we first prove that every subset of σ of cardinality < κ is
contained in a closed subset of cardinality < κ. Because κ is an infinite regular
cardinal, by Proposition 2.6, it is enough to prove this only for one-element subsets
of σ. So we prove that every β < σ is contained in a closed subset of cardinality
< κ, by induction on β. For β < κ, we just take S = β + 1. Otherwise, the short
exact sequence

0 → Mβ ∩Aβ → Aβ →Mβ+1/Mβ → 0

shows that Mβ ∩ Aβ is < κ-generated. Thus Mβ ∩ Aβ ⊆
∑

α∈S0
Aα for a subset

S0 ⊆ β of cardinality < κ. Moreover, we can assume that S0 is closed in σ by
inductive premise, and put S = S0 ∪ {β}. To show that S is closed, it suffices to
check the definition only for β. But Mβ ∩Aβ ⊆M(S0) =

∑

α∈S,α<β Aα.

Finally, let N = M(S), where S is closed in σ, and let X be a subset of M of
cardinality < κ. Then X ⊆

∑

α∈T Aα for a subset T of σ of cardinality < κ. By
the preceding paragraph, we can assume that T is closed in σ. Let P = M(S ∪ T ).
Then P/N is C-filtered by property (H3), and the filtration can be chosen indexed
by 1+ the ordinal type of T \ S, which is certainly less than κ. In particular, P/N
is < κ-presented.

Remark 2.9. If we assume the stronger assumption that each module in C pos-
sesses a projective resolution consisting of < κ-generated modules, then the same
is true of the module P/N in (H4).

3. Approximations

Throughout this section we assume that R is a ring, M is a (right R-) module
and C a class of modules closed under isomorphic images and direct summands.

Definition 3.1. A map f ∈ HomR(M,C) with C ∈ C is a C-preenvelope of M ,
provided that the map HomR(f, C′) : HomR(C,C′) → HomR(M,C′) is surjective
for each C′ ∈ C. That is, for each homomorphism f ′ : M → C′ there is a homo-
morphism g : C → C′, such that f ′ = gf :

M
f

//

f ′

!!C
C

C

C

C

C

C

C

C

g

��
�

�

�

C′.

(Note that we require the existence, but not the uniqueness, of the map g.)
The C-preenvelope f is a C-envelope of M . provided that f is left minimal, that is,
provided f = gf implies g is an automorphism for each g ∈ EndR(C).

Example 3.2. The embedding M →֒ E(M) is easily seen to be the I0-envelope of
a module M .
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Clearly a C-envelope of M is unique in the following sense: if f : M → C and
f ′ : M → C′ are C-envelopes of M , then there is an isomorphism g : C → C′, such
that f ′ = gf .

In general a module M may have many non-isomorphic C-preenvelopes, but no
C-envelope. Nevertheless, if the C-envelope exists, its minimality implies that it is
isomorphic to a direct summand in each C-preenvelope of M :

Lemma 3.3. Let f : M → C be a C-envelope and f ′ : M → C′ a C-preenvelope of
a module M . Then

(a) C′ = D ⊕D′, where Im f ′ ⊆ D and f ′ : M → D is a C-envelope of M ;
(b) f ′ is a C-envelope of M , if and only if C′ has no proper direct summands

containing Im f ′.

Proof. (a) By definition there are homomorphisms g : C → C′ and g′ : C′ → C,
such that f ′ = gf and g′g is an automorphism of C. So D = Im g ∼= C is a direct
summand in C′ containing Im f ′, and the assertion follows.
(b) by part (a).

Definition 3.4. A class C ⊆ Mod–R is a preenveloping class, (enveloping class)
provided that each module has a C-preenvelope (C-envelope).

For example, the class I0 of all injective modules from Example 3.2 is an en-
veloping class of modules.

Now we briefly discuss the dual concepts:

Definition 3.5. A map f ∈ HomR(C,M) with C ∈ C is a C-precover of M ,
provided that the abelian group homomorphism HomR(C′, f) : HomR(C′, C) →
HomR(C′,M) is surjective for each C′ ∈ C.
A C-precover f ∈ HomR(C,M) of M is called a C-cover of M , provided that f is
right minimal, that is, provided fg = f implies that g is an automorphism for each
g ∈ EndR(C).
C ⊆ Mod–R is a precovering class, (covering class) provided that each module has
a C-precover (C-cover).

Remark 3.6. C-preenvelopes and C-precovers are also called left and right approx-
imations.

If Mod–R is replaced by its subcategory mod–R in the definitions above, then
preenveloping and precovering classes are called covariantly finite and contravari-
antly finite, respectively (cf. [3] and [4]).

Example 3.7. Each module M has a P0-precover (where P0 denotes the class of
all projective modules), since each module is a homomorphic image of a projective
module. Moreover, M has a P0-cover, if and only if M has a projective cover in
the sense of Bass (that is, there is an epimorphism f : P → M with P projective
and Ker(f) a small submodule of P ). So P0 is always a precovering class, and it is
a covering class, if and only if R is a right perfect ring.

C-covers may not exist in general, but if they exist, they are unique up to isomor-
phism. As in Lemma 3.3, we get

Lemma 3.8. Let f : C → M be the C-cover of M . Let f ′ : C′ → M be any
C-precover of M . Then

(a) C′ = D ⊕D′, where D ⊆ Ker f ′ and f ′ ↾ D′ is a C-cover of M .
(b) f ′ is a C-cover of M , if and only if C′ has no non-zero direct summands

contained in Ker f ′.
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Proof. Dual to the proof of Lemma 3.3.

The following lemma is known as the Wakamatsu Lemma (see [19]). It shows
that under rather weak assumptions on the class C, C-envelopes and C-covers are
special in the sense of the following definition:

Definition 3.9. Let C ⊆ Mod–R. We define

C⊥ = KerExt1R(C,−) =
{

N ∈ Mod–R | Ext1R(C,N) = 0 for allC ∈ C
}

.

For C = {C}, we write for short C⊥ and ⊥C in place of {C}⊥ and ⊥{C}, respec-
tively.
Let M ∈ Mod–R. A C-preenvelope f : M → C of M is called special, provided that
f is injective and Coker f ∈ ⊥C. So a special C-preenvelope may be viewed as an
exact sequence

0 →M
f
−→ C −→ D → 0

with C ∈ C and D ∈ ⊥C.
Dually, a C-precover f : C → M of M is called special, if f is surjective and
Ker f ∈ C⊥.
If C is a class of modules such that each module M has a special C-preenvelope
(special C-precover), then C is called special preenveloping (special precovering).

Lemma 3.10. (Wakamatsu Lemma) Let M ∈ Mod–R and C ⊆ Mod–R be a class
closed under extensions.

(a) Let f : M → C be a monic C-envelope of M . Then f is special.
(b) Let f : C →M be a surjective C-cover of M . Then f is special.

Proof. (a) By assumption, there is an exact sequence

0 →M
f
−→ C

g
−→ D → 0.

In order to prove that D ∈ ⊥C, we take an arbitrary extension

0 → C′ −→ X
h
−→ D → 0

with C′ ∈ C. We will prove that h splits. First consider the pullback of g and h:

0 0




y





y

C′ C′





y





y

0 −−−−→ M
α

−−−−→ P
β

−−−−→ X −−−−→ 0
∥

∥

∥

γ





y
h





y

0 −−−−→ M
f

−−−−→ C
g

−−−−→ D −−−−→ 0




y





y

0 0.
Since C,C′ ∈ C, also P ∈ C by assumption. Since f is a C-envelope of M , there

is a homomorphism δ : C → P with α = δf . Then f = γα = γδf , so γδ is an
automorphism of C.

Define i : D → X by i(g(c)) = βδ(γδ)−1(c). This is well-defined, since

δ(γδ)−1f(m) = δf(m) = α(m).
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Moreover, hig = hβδ(γδ)−1 = gγδ(γδ)−1 = g, so hi = idD and h splits.
(b) is dual to (a).

Remark 3.11. The C-envelope f of a module M must be monic, provided that
I0 ⊆ C. This is because M →֒ E(M) factors through f . Similarly, P0 ⊆ C implies
that any C-cover of M is surjective.

Also notice that the Wakamatsu Lemma holds with Mod–R replaced by its
subcategory of all finitely presented modules mod–R.

4. Cotorsion pairs

Besides the Wakamatsu Lemma, there is another reason for investigating special
preenvelopes and precovers, namely the existence of an explicit duality between
them arising from the notion of a cotorsion pair:

Definition 4.1. Let A,B ⊆ Mod–R. The pair (A,B) is called a cotorsion pair if
A = ⊥B and B = A⊥.

Let C be a class of modules. Then C ⊆ ⊥(C⊥) as well as C ⊆ (⊥C)⊥. Moreover,
GC = (⊥(C⊥), C⊥) and CC = (⊥C, (⊥C)⊥) are easily seen to be cotorsion pairs, called
the cotorsion pairs generated and cogenerated, respectively, by the class C.

For any ring R, the cotorsion pairs of right R-modules are partially ordered by
inclusion of their first components. In fact, they form a complete lattice LExt.

The largest element of LExt is GMod–R = (Mod–R, I0), while the least is
CMod–R = (P0,Mod–R). These are the trivial cotorsion pairs.

Note that (
⋂

α<κAα, (
⋂

α<κAα)⊥) is the infimum of a sequence of cotorsion pairs

{(Aα,Bα) | α < κ} in LExt, while (⊥((
⋃

α<κAα)⊥),
⋂

α<κ Bα) is its supremum.
Cotorsion pairs are analogues of the classical (non-hereditary) torsion pairs,

where Hom (= Ext0 ) is replaced by Ext1. Similarly, one can define F -pairs for any
additive bifunctor F on Mod–R.

Now we present several important examples of cotorsion pairs:

Example 4.2. For any ring R and any n ≥ 0, there are cotorsion pairs (Pn,P
⊥
n ),

(Fn,F⊥
n ), and (⊥In, In) where Pn, Fn, and In denotes the class of all modules of

projective (flat, injective) dimension ≤ n, respectively.

If R is an integral domain, then there is a cotorsion pair (T F , T F⊥) where T F
is the class of all torsionfree modules.

We now record an immediate corollary of Lemma 3.10:

Corollary 4.3. Let R be a ring and (A,B) be a cotorsion pair. If A is covering,
then A is special precovering, and if B is enveloping, then B is special preenveloping.

The key property of cotorsion pairs is their relation to module approximations.
This fact – discovered by Salce [16] – says that the mutually dual categorical notions
of a special precover and a special preenvelope are tied up by the homological tie of
a cotorsion pair. In a sense, this fact is a remedy for the non-existence of a duality
involving the category of all modules over a ring.

Lemma 4.4. (Salce Lemma) Let R be a ring and C = (A,B) be a cotorsion pair
of modules. Then the following are equivalent:

(a) Each module has a special A-precover.
(b) Each module has a special B-preenvelope.

In this case, the cotorsion pair C is called complete.
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Proof. (a) implies (b): let M ∈ Mod–R. There is an exact sequence

0 →M −→ I
π
−→ F → 0,

where I is injective. By assumption, there is a special A-precover ρ of F

0 → B −→ A
ρ
−→ F → 0.

Consider the pullback of π and ρ:

0 0




y





y

M M




y





y

0 −−−−→ B −−−−→ P −−−−→ I −−−−→ 0
∥

∥

∥

γ





y

π





y

0 −−−−→ B −−−−→ A
ρ

−−−−→ F −−−−→ 0




y





y

0 0.

Since B, I ∈ B, also P ∈ B. So the left-hand vertical exact sequence is a special
B-preenvelope of M .

(b) implies (a): by a dual argument.

5. The abundance of complete cotorsion pairs

The following theorem, showing that complete cotorsion pairs are abundant,
was originally proved in [7]. Similar arguments have been used in homotopy theory
since Quillen’s fundamental work [15] under the name of small object argument. The
proof presented here is a more categorical modification of the one in [7], coming
from [1]:

Theorem 5.1. (Completeness of cotorsion pairs generated by sets) Let S be a set
of modules.

(a) Let M be a module. Then there is a short exact sequence

0 →M →֒ P → N → 0,

where P ∈ S⊥ and N is S-filtered.
In particular, M →֒ P is a special S⊥-preenvelope of M .

(b) The cotorsion pair (⊥(S⊥),S⊥) is complete.

Proof. (a) Put X =
⊕

S∈S S. Then X⊥ = S⊥. So w.l.o.g., we assume that S
consists of a single module S.

Let 0 → K
µ
−→ F −→ S → 0 be a short exact sequence with F a free module. Let

λ be an infinite regular cardinal, such that K is < λ-generated.
By induction we define an increasing chain (Pα | α < λ) as follows:

First let P0 = M . For α < λ, choose the index set Iα = HomR(K,Pα). We define
µα as the direct sum of |Iα| copies of the homomorphism µ, i.e.

µα := µ(Iα) ∈ HomR(K(Iα), F (Iα)).

Then µα is a monomorphism, and Cokerµα is isomorphic to a direct sum of
copies of S. Let ϕα ∈ HomR(K(Iα), Pα) be the canonical morphism. Note that
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for each η ∈ Iα there are canonical embeddings νη ∈ HomR(K,K(Iα)) and ν′η ∈

HomR(F, F (Iα)), such that η = ϕανη and ν′ηµ = µανη.
Now Pα+1 is defined via the pushout of µα and ϕα:

K(Iα) µα
−−−−→ F (Iα)

ϕα





y

ψα





y

Pα
⊆

−−−−→ Pα+1.

If α ≤ λ is a limit ordinal, we put Pα =
⋃

β<α Pβ , so the chain is continuous.

Put P =
⋃

α<λ Pα.

We will prove that ν : M →֒ P is a special S⊥-preenvelope of M .
First we prove that P ∈ S⊥. Since F is projective, we are left to show that any
ϕ ∈ HomR(K,P ) factors through µ:

Since K is < λ-generated, there are an index α < λ and η ∈ Iα, such that ϕ(k) =
η(k) for all k ∈ K. The pushout square gives ψαµα = σαϕα, where σα denotes the
inclusion of Pα into Pα+1. Altogether we have ψαν

′
ηµ = ψαµανη = σαϕανη = σαη.

It follows that ϕ = ψ′µ, where ψ′ ∈ HomR(F, P ) is defined by ψ′(f) = ψαν
′
η(f) for

all f ∈ F . This proves that P ∈ S⊥.
It remains to prove that N = P/M ∈ ⊥(S⊥). By construction, N is the union

of the continuous chain (Nα | α < λ), where Nα = Pα/M .
Since Pα+1/Pα is isomorphic to a direct sum of copies of S by the pushout

construction, so is Nα+1/Nα ∼= Pα+1/Pα. Since S ∈ ⊥(S⊥), Lemma 1.2 shows that
N ∈ ⊥(S⊥).

(b) follows by part (a) (cf. Lemma 4.4).

Any cotorsion pair generated by a set of modules S is also generated by the
single module M =

⊕

S∈S S. So the following corollary of Theorem 5.1 provides a
characterization of the (complete) cotorsion pairs generated by sets of modules:

Corollary 5.2. Let M be a module. Denote by CM the class of all modules C, such
that there is an exact sequence 0 → F −→ C −→ G → 0, where F is free and G is
{M}-filtered. Let C = (A,B) be a cotorsion pair. The following are equivalent

(a) C is generated by M (that is, B = M⊥).
(b) A consists of all direct summands of elements of CM (and for each A ∈ A,

there are C ∈ CM and B ∈ KC, such that A⊕B ∼= C).

Proof. (a) implies (b): by assumption, B = M⊥. Take A ∈ A, and let 0 →

N
µ
−→ F −→ A→ 0 be a short exact sequence with F free. By Theorem 5.1 (a), there

is a special B-preenvelope, ν : N →֒ B of N , such that G = B/N is {M}-filtered.
Let (Gα | α ≤ λ) be an {M}-filtration of G. Consider the pushout of µ and ν:
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0 0




y





y

0 −−−−→ N
µ

−−−−→ F −−−−→ A −−−−→ 0

ν





y





y

∥

∥

∥

0 −−−−→ B −−−−→ C −−−−→ A −−−−→ 0




y

π





y

G G




y





y

0 0.

The second column gives C ∈ CM . The second row splits since B ∈ B and A ∈ A,
so A⊕B ∼= C. Finally, since F,G ∈ A, we have C ∈ A, so B ∈ KC.

(b) implies (a): by Lemma 1.2, M⊥ = A⊥ = B.

Corollary 5.3. Let S be a set of modules containing R. Then the class ⊥(S⊥)
consists of all direct summands of S-filtered modules.

Proof. By Corollary 5.2 and Lemma 1.2.

In general, we cannot omit the term “direct summands” in Corollary 5.3. For
example, if S = {R}, then ⊥(S⊥) = P0 is the class of all projective modules, while
S-filtered modules coincide with the free modules. There is, however, a way of
getting rid of the direct summands, as we will see in the following section.

6. Kaplansky theorem for cotorsion pairs

By Corollary 5.3, if C = (A,B) is a cotorsion pair generated by a set C containing
R, then A coincides with the class of all direct summands of C-filtered modules.
Our next goal is to remove the term “direct summands” from this characterization
of A on the account of replacing the set C by a suitable small subset of A.
We will make use of the following application of Theorem 2.8:

Lemma 6.1. Let κ be an uncountable regular cardinal and C be a class of < κ-
presented modules. Denote by A the class of all direct summands of C-filtered
modules, and by A<κ the subclass of all < κ-presented modules from A.

Then every module in A is A<κ-filtered.

Proof. Let K ∈ A, so there is a C-filtered module M , such that M = K ⊕ L
for some L ⊆ M . Denote by πK : M → K and πL : M → L the corresponding
projections. Let F be the family of submodules of M , as in Theorem 2.8. We
proceed in two steps:

Step I: By induction, we construct a continuous chain, (Nα | α ≤ τ), of submodules
of M , such that Nτ = M and

(a) Nα ∈ F ,
(b) Nα = πK(Nα) + πL(Nα), and
(c) Nα+1/Nα ∈ (Mod-R)<κ,
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for each α < τ .
First N0 = 0, and Nβ =

⋃

α<β Nα for all limit ordinals β ≤ τ . Suppose we

have Nα $ M , and we wish to construct Nα+1. Take x ∈ M \ Nα; by property
(H4), there is Q0 ∈ F , such that Nα ∪ {x} ⊆ Q0 and Q0/Nα ∈ (Mod-R)<κ. Let
X0 be a subset of Q0 of cardinality < κ, such that the set {x + Nα | x ∈ X0}
generates Q0/Nα. Put Z0 = πK(Q0) ⊕ πL(Q0). Clearly Q0/Nα ⊆ Z0/Nα. Since
πK(Nα), πL(Nα) ⊆ Nα, the module Z0/Nα is generated by the set

{x+Nα | x ∈ πK(X0) ∪ πL(X0)}.

Thus we can find Q1 ∈ F , such that Z0 ⊆ Q1 and Q1/Nα ∈ (Mod-R)<κ. Similarly,
we infer that Z1/Nα is < κ-generated for Z1 = πK(Q1) ⊕ πL(Q1) and find Q2 ∈ F
with Z1 ⊆ Q2 and Q2/Nα ∈ (Mod-R)<κ. In this way we obtain a chain Q0 ⊆ Q1 ⊆
. . . , such that for all i < ω: Qi ∈ F , Qi/Nα ∈ (Mod-R)<κ and πK(Qi) + πL(Qi) ⊆
Qi+1. It is easy to see that Nα+1 =

⋃

i<ω Qi satisfies the properties (a)-(c).

Step II: by condition (b), we have

πK(Nα+1) +Nα = πK(Nα+1) ⊕ πL(Nα)

and similarly for L. Hence

(πK(Nα+1) +Nα) ∩ (πL(Nα+1) +Nα)

= (πK(Nα+1) ⊕ πL(Nα)) ∩ (πL(Nα+1) ⊕ πK(Nα))

=
(

πK(Nα+1) ∩ (πL(Nα+1) ⊕ πK(Nα))
)

⊕ πL(Nα)

= πK(Nα) ⊕ πL(Nα) = Nα

and
Nα+1/Nα = (πK(Nα+1) +Nα)/Nα ⊕ (πL(Nα+1) +Nα)/Nα.

By condition (a), Nα+1/Nα is C-filtered. Since

(πK(Nα+1) +Nα)/Nα ∼= πK(Nα+1)/πK(Nα),

πK(Nα+1)/πK(Nα) is isomorphic to a direct summand of a C-filtered module, we
infer that πK(Nα+1)/πK(Nα) ∈ A. Since the class of all < κ-presented modules is
closed under direct summands, (c) yields that πK(Nα+1)/πK(Nα) is < κ-presented.
So (πK(Nα) | α ≤ τ) is the desired A<κ-filtration of K = πK(Nτ ).

We can now state the main result of this section:

Theorem 6.2. (Kaplansky theorem for cotorsion pairs) Let R be a ring, κ an
uncountable regular cardinal and C = (A,B) a cotorsion pair of R-modules. Then
the following conditions are equivalent:

(a) C is generated by a class C, such that C consists of < κ-presented modules.
(b) Every module in A is D-filtered, where D is the class of all < κ-presented

modules in A.

Proof. (a) =⇒ (b). W.l.o.g., C is a set and R ∈ C. By Corollary 5.3, A
consists of all direct summands of C-filtered modules. So statement (b) follows by
Lemma 6.1.

(b) =⇒ (a). By the Eklof Lemma 1.2, every A-filtered module is again in A.
Thus (b) implies that C is generated by the class D.

The name of Theorem 6.2 above comes from the fact that its application to the
cotorsion pair (P0,Mod-R) generated by R yields (for κ = ℵ1) the following classic
theorem on the structure of projective modules due to Kaplansky [13]:

Corollary 6.3. Every projective module over an arbitrary ring is a direct sum of
countably generated projective modules.
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Remark 6.4. The latter application also shows that in general it is not possible to
extend Theorem 6.2 to the case of κ = ℵ0. Namely, there exist rings R which admit
countably generated projective modules that are not direct sums of finitely gener-
ated projective ones. (For example, following Kaplansky, consider the commutative
ring R of all continuous real-valued functions on [0, 1] and its ideal P consisting
of all functions f ∈ R vanishing on some interval [0, ǫ(f)], where ǫ(f) ∈ (0, 1).
Then P is countably generated and projective, but it is not a direct sum of finitely
generated projective modules, see [14, §2B]).

7. Minimal approximations

In Section 5, we have proved that almost all cotorsion pairs are complete, so they
provide for approximations. In some cases minimal approximations exist, that is,
the cotorsion pairs are perfect in the sense of the following definition:

Definition 7.1. Let R be a ring and C = (A,B) be a cotorsion pair.

(i) C is called perfect, provided that A is a covering class and B is an enveloping
class.

(ii) C is called closed, provided that A = lim
−→

A, that is, the class A is closed
under forming direct limits in Mod–R.

The term “perfect” comes from the classical result of Bass characterizing right
perfect rings by the property that the cotorsion pair P0 = (P0,Mod–R) is perfect
(cf. [2]).

Clearly, any perfect cotorsion pair is complete. The converse fails in general: for
example, P0 is complete for any ring.

In order to prove the existence of minimal approximations, we will often use the
following version of a result due to Enochs and Xu [20, §2.2]:

Theorem 7.2. Let R be a ring and M be a module. Let C be a class of mod-
ules closed under extensions and direct limits. Assume that M has a special C⊥-
preenvelope ν with Coker ν ∈ C. Then M has a C⊥-envelope.

Proof. By an ad hoc notation, we will call an exact sequence 0 → M −→
F −→ C → 0 with C ∈ C an Ext-generator, provided that for each exact se-
quence 0 → M −→ F ′ −→ C′ → 0 with C′ ∈ C there exist f ∈ HomR(F ′, F )
and g ∈ HomR(C′, C), such that the diagram

0 −−−−→ M −−−−→ F ′ −−−−→ C′ −−−−→ 0
∥

∥

∥

f





y

g





y

0 −−−−→ M −−−−→ F −−−−→ C −−−−→ 0
is commutative. By assumption, there exists an Ext-generator with the middle
term F ∈ C⊥. The proof is divided into three steps:

Lemma 7.3. Assume 0 → M −→ F −→ C → 0 is an Ext-generator. Then there
exist an Ext-generator 0 →M −→ F ′ −→ C′ → 0 and a commutative diagram

0 −−−−→ M −−−−→ F −−−−→ C −−−−→ 0
∥

∥

∥

f





y

g





y

0 −−−−→ M −−−−→ F ′ −−−−→ C′ −−−−→ 0,

such that Ker(f) = Ker(f ′f) in any commutative diagram whose rows are Ext-
generators:
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0 −−−−→ M −−−−→ F −−−−→ C −−−−→ 0
∥

∥

∥

f





y

g





y

0 −−−−→ M −−−−→ F ′ −−−−→ C′ −−−−→ 0
∥

∥

∥
f ′





y
g′





y

0 −−−−→ M −−−−→ F ′′ −−−−→ C′′ −−−−→ 0.

Proof. Assume that the assertion does not hold. By induction, we will construct
a direct system of Ext-generators indexed by ordinals as follows:
First let the second row be the same as the first one, that is, put F ′ = F0 = F ,
C′ = C0 = C, f = idF and g = idC . Then there exist F1 = F ′′, C1 = C′′, f10 = f ′

and g10 = g′, such that the diagram above commutes, its rows are Ext-generators
and Ker f10 ) Ker f = 0.

Assume that the Ext-generator 0 → M −→ Fα −→ Cα → 0 is defined together
with fαβ ∈ HomR(Fβ , Fα) and gαβ ∈ HomR(Cβ , Cα) for all β ≤ α. Then there
exist Fα+1, Cα+1 ∈ C, fα+1,α and gα+1,α, such that the diagram

0 −−−−→ M −−−−→ Fα −−−−→ Cα −−−−→ 0
∥

∥

∥

fα+1,α





y

gα+1,α





y

0 −−−−→ M −−−−→ Fα+1 −−−−→ Cα+1 −−−−→ 0

commutes, its rows are Ext-generators and Ker fα+1,0 ) Ker fα0, where fα+1,β =
fα+1,αfαβ and gα+1,β = gα+1,αgαβ for all β ≤ α.

If α is a limit ordinal, put Fα = lim
−→β<α

Fβ and Cα = lim
−→β<α

Cβ . Consider

the direct limit 0 → M −→ Fα −→ Cα → 0 of the Ext-generators 0 → M −→
Fβ −→ Cβ → 0, (β < α). Since C is closed under direct limits, we have Cα ∈ C.
Since 0 → M −→ Fβ −→ Cβ → 0 is an Ext-generator for (some) β < α, also
0 → M −→ Fα −→ Cα → 0 is an Ext-generator.

Put fαβ = lim
−→β≤β′<α

fβ′β and gαβ = lim
−→β≤β′<α

gβ′β for all β < α. Then

Ker(fα0) ⊇ Ker(fβ0), and hence Ker(fα0) ) Ker(fβ0), for each β < α.
By induction, for each ordinal α we obtain a strictly increasing chain (Ker fβ0 |

β < α), consisting of submodules of F , a contradiction.

Lemma 7.4. Assume 0 → M −→ F −→ C → 0 is an Ext-generator. Then there
exist an Ext-generator 0 →M −→ F ′ −→ C′ → 0 and a commutative diagram

0 −−−−→ M −−−−→ F −−−−→ C −−−−→ 0
∥

∥

∥

f





y

g





y

0 −−−−→ M −−−−→ F ′ −−−−→ C′ −−−−→ 0,

such that Ker(f ′) = 0 in any commutative diagram whose rows are Ext-generators:

0 −−−−→ M −−−−→ F ′ −−−−→ C′ −−−−→ 0
∥

∥

∥
f ′





y
g′





y

0 −−−−→ M −−−−→ F ′′ −−−−→ C′′ −−−−→ 0.

Proof. By induction on n < ω, we infer from Lemma 7.3 that there is a count-
able direct system D of Ext-generators 0 → M −→ Fn −→ Cn → 0 with homomor-
phisms fn+1,n ∈ HomR(Fn, Fn+1), gn+1,n ∈ HomR(Cn, Cn+1), such that the 0-th
term of D is the given Ext-generator 0 →M −→ F −→ C → 0,
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0 −−−−→ M −−−−→ Fn −−−−→ Cn −−−−→ 0
∥

∥

∥

fn+1,n





y

gn+1,n





y

0 −−−−→ M −−−−→ Fn+1 −−−−→ Cn+1 −−−−→ 0

is commutative, and for each commutative diagram whose rows are Ext-generators

0 −−−−→ M −−−−→ Fn+1 −−−−→ Cn+1 −−−−→ 0
∥

∥

∥
f̄





y

ḡ





y

0 −−−−→ M −−−−→ F̄ −−−−→ C̄ −−−−→ 0

we have Ker(fn+1,n) = Ker(f̄ fn+1,n).
Consider the direct limit 0 → M −→ F ′ −→ C′ → 0 of D, so F ′ = lim

−→n<ω
Fn

and C′ = lim
−→n<ω

Cn. Since C is closed under direct limits, we have C′ ∈ C, and

0 → M −→ F ′ −→ C′ → 0 is an Ext-generator. It is easy to check that this generator
has the required injectivity property.

Lemma 7.5. Let 0 → M
ν
−→ F ′ π

−→ C′ → 0 be the Ext-generator constructed in
Lemma 7.4. Then ν : M → F ′ is a C⊥-envelope of M .

Proof. First we prove that in each commutative diagram

0 −−−−→ M −−−−→ F ′ −−−−→ C′ −−−−→ 0
∥

∥

∥
f ′





y
g′





y

0 −−−−→ M −−−−→ F ′ −−−−→ C′ −−−−→ 0

f ′ is an automorphism.
Assume this is not true. By induction, we construct a direct system of Ext-

generators, 0 → M −→ Fα −→ Cα → 0, indexed by ordinals, with injective, but not
surjective, homomorphisms fαβ ∈ HomR(Fβ , Fα) (β < α). In view of Lemma 7.4,
we take

0 →M −→ Fα −→ Cα → 0 = 0 →M
ν
−→ F ′ π

−→ C′ → 0

in case α = 0 or α non-limit and Fα = lim
−→

Fβ and Cα = lim
−→

Cβ , if α is a limit

ordinal. Then for each non-limit ordinal α (Im fαβ | β non-limit, β < α) is a
strictly increasing sequence of submodules of F ′, a contradiction.

It remains to prove that F ′ ∈ C⊥. Consider an exact sequence 0 → F ′ µ
−→ X −→

C → 0, where C ∈ C. We will prove that this sequence splits.
Consider the pushout of π and µ:

0 0




y





y

0 −−−−→ M
ν

−−−−→ F ′ π
−−−−→ C′ −−−−→ 0

∥

∥

∥

µ





y





y

0 −−−−→ M −−−−→ X −−−−→ P −−−−→ 0




y





y

C C




y





y

0 0.



16 JAN TRLIFAJ

Since C is closed under extensions, we have P ∈ C. Since 0 → M
ν
−→ F ′ π

−→ C′ → 0
is an Ext-generator, we also have a commutative diagram

0 −−−−→ M −−−−→ X −−−−→ P −−−−→ 0
∥

∥

∥
µ′





y





y

0 −−−−→ M
ν

−−−−→ F ′ π
−−−−→ C′ −−−−→ 0.

By the first part of the proof, µ′µ is an automorphism of F ′. It follows that

0 → F ′ µ
−→ X −→ C → 0 splits.

Theorem 7.6. Let R be a ring, M be a module and C be a class of modules closed
under direct limits. Assume that M has a C-precover. Then M has a C-cover.

Proof. The proof is by a construction of precovers with additional injectivity
properties. The three steps are analogous to Lemmas 7.3 - 7.5.

Corollary 7.7. Let C = (A,B) be a complete and closed cotorsion pair. Then C is
perfect.

Proof. By Theorems 7.2 and 7.6.

The case of n = 0 in the following Corollary is the Flat Cover Conjecture proved
in [5]:

Corollary 7.8. Let R be a ring and n ≥ 0. Then there is a perfect cotorsion pair
Cn = (Fn,Gn) where Fn denotes the class of all modules of flat dimension ≤ n.

In particular, the class F0 of all flat modules is covering.

Proof. Let κ = |R|+ℵ0 and let Cn denote the class of all ≤ κ-presented modules
from Fn. Using purification, we see that Fn = Filt(Cn), so (Fn)⊥ = (Cn)⊥ by the
Eklof Lemma. By Theorem 5.1, Cn is complete. Since Fn is closed under direct
limits, Corollary 7.7 applies.

8. C-socle sequences and Filt(C)-precovers

It is well-known that if R is a right semiartinian ring, then all modules are
semiartinian, and each module has a socle sequence. There is obviously no bound
on the lengths of transfinite composition series of modules, but the length of the
socle sequence of any module M (called the Loewy length of M) is bounded, the
bound being the Loewy length of R.

Semiartinian modules coincide with the C-filtered modules for C = simpR. Thus
a question arises of whether these well-known facts can be extended to arbitrary
C-filtered modules. We are going to present a positive answer: if each module in C
is < κ-presented, then each C-filtered module has a C-socle sequence of length ≤ κ.
As a consequence, we will prove that the class Filt(C) is precovering. These two
remarkable results are due to Enochs [8] and Šťov́ıček [17].

We start with the definition of a C-socle sequence of a module.

Definition 8.1. Let R be a ring, M be a module, and C be a class of modules.
A continuous chain N = (Nβ | β ≤ τ) of submodules of M is called a C-socle
sequence of M , provided that Nτ = M , and Nβ+1/Nβ is isomorphic to a direct
sum of elements of C for each β < τ . The ordinal τ is called the length of the
C-socle sequence N .
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It is easy to see that a module M possesses a C-socle sequence, if and only if M is
C-filtered. In fact, each C-filtration of M is also its C-socle sequence. So unlike socle
sequences, the C-socle sequences are not unique in general. But the key property is
the same: C-socle sequences are shorter than C-filtrations in general; moreover, if C
consists of modules of bounded presentation, then each C-filtered module possesses
a C-socle sequence of bounded length. Such C-socle sequence can be extracted from
the family F constructed in the Hill Lemma:

Theorem 8.2. (C-socle sequence length bound) Let R be a ring, κ be an infinite
regular cardinal, and C be a class of < κ-presented modules. Let M be C-filtered
module. Then M has a C-socle sequence of length ≤ κ.

Proof. Let M = (Mα | α ≤ σ) be a C-filtration of M , and (Aα | α < σ) a
family of < κ-generated submodules of M , such that Mα+1 = Mα + Aα for each
α < σ. Let F = {M(S) | S a closed subset of σ} be the family of submodules of
M from Theorem 2.8.

Let α < σ. By Proposition 2.6, and by (the proof of) property (H4) in Theorem
2.8, there is a least closed subset Sα of σ, such that Sα has cardinality < κ, and
α ∈ Sα ⊆ α+ 1 (that is, α is the greatest element of Sα).

Putting sup(∅) = 0, we define the C-socle level function ℓ : σ → κ by induction
on α < σ by the formula ℓ(α) = sup{ℓ(γ) + 1 | α 6= γ ∈ Sα}.

Notice that ℓ(α) = 0 is equivalent to Sα = {α} and hence to Mα+1 = Mα ⊕Aα.
For each β ≤ κ, let Tβ = {γ < σ | ℓ(γ) < β} and Nβ = M(Tβ). We will prove

that N = (Nβ | β ≤ κ) is a C-socle sequence of M .
First, we claim that Tβ is closed, hence Nβ ∈ F , for each β ≤ κ. This will follow

once we prove that Tβ =
⋃

γ<σ,ℓ(γ)<β Sγ . However, if γ ∈ Tβ then ℓ(γ) < β, and

clearly γ ∈ Sγ . Conversely, assume that α ∈ Sγ for some γ < σ, ℓ(γ) < β. If α = γ,
then α ∈ Tβ. Otherwise α < γ, so ℓ(α) + 1 ≤ ℓ(γ) < β and α ∈ Tβ, and the claim
is proved.

Clearly N is a continuous chain of submodules of N , and N = Nκ. It remains
to show that for each β < κ, Nβ+1/Nβ ∼=

⊕

γ∈Tβ+1\Tβ
M̄γ , where M̄γ is isomorphic

to some element of C for each γ ∈ Tβ+1 \ Tβ.
We define M̄γ = (M(Tβ) +Aγ)/M(Tβ). Then

M̄γ = M(Tβ ∪ Sγ)/M(Tβ) ∼= M(Sγ)/(M(Sγ) ∩M(Tβ)) = M(Sγ)/M(Sγ ∩ Tβ) =

= M(Sγ)/M(Sγ ∩ γ) ∼= Aγ/(Aγ ∩M(Sγ ∩ γ)) = Aγ/(Aγ ∩Mγ) ∼= Mγ+1/Mγ ,

because γ ∈ Sγ and Sγ is closed. However, Mγ+1/Mγ is isomorphic to an element
of C as M is a C-filtration of M .

Clearly, Nβ+1/Nβ ∼=
∑

γ∈Tβ+1\Tβ
M̄γ .

So it remains to prove that M̄γ ∩
∑

γ 6=δ∈Tβ+1\Tβ
M̄δ = 0, or equivalently,

(M(Tβ) +Aγ) ∩ (M(Tβ) +
∑

γ 6=δ∈Tβ+1\Tβ

Aδ) = M(Tβ).

We have M(Tβ) + Aγ = M(Tβ ∪ Sγ), and M(Tβ) +
∑

γ 6=δ∈Tβ+1\Tβ
Aδ = M(Tβ ∪

⋃

γ 6=δ∈Tβ+1
Sδ). Moreover,

M(Tβ ∪ Sγ) ∩ M(Tβ ∪
⋃

γ 6=δ∈Tβ+1

Sδ) = M(Tβ ∪ (Sγ ∩
⋃

γ 6=δ∈Tβ+1

Sδ)) = M(Tβ),

because by the definition of the function ℓ, Sγ ∩ Sδ ⊆ Tβ for all γ 6= δ ∈ Tβ+1.

In order to prove that Filt(C) is a precovering class for each set of modules C,
we will need some preparation.
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We start with two lemmas of independent interest. The first one deals with
extensions of big direct sums by small modules.

Lemma 8.3. Let κ and λ be infinite cardinals, and R be a λ-noetherian ring. Let C
be a class of ≤ κ-presented modules, M be a ≤ λ-generated module, and τ = κ+λ.

Then for each short exact sequence 0 →
⊕

i∈I Ci ⊆ N
π
→ M → 0 with Ci ∈ C

for all i ∈ I, there exists a subset J ⊆ I of cardinality ≤ λ, and a ≤ τ-generated
submodule P of N , such that

⊕

j∈J Cj ⊆ P and N = P ⊕
⊕

i∈I\J Ci.

Proof. By assumption, there is a subset {nα | α < λ} of N , such that π(N ′) =
M , where N ′ =

∑

α<λ nαR.
Since R is λ-noetherian, the module N ′ ∩

⊕

i∈I Ci is ≤ λ-generated. So there is
a subset J ⊆ I of cardinality ≤ λ, such that N ′ ∩

⊕

i∈I Ci ⊆
⊕

j∈J Cj .

Let P = N ′ +
⊕

j∈J Cj . Then P is ≤ τ -generated, and P ∩
⊕

i∈I\J Ci = 0,

because N ′ ∩
⊕

i∈I Ci ⊆
⊕

j∈J Cj . Finally, P +
⊕

i∈I\J Ci = N , because π(N ′) =

M .

Put in other terms, Lemma 8.3 says that the extension

0 →
⊕

i∈I

Ci ⊆ N
π
→M → 0

decomposes into the direct sum of the extensions 0 →
⊕

j∈J Cj ⊆ P
π↾P
→ M → 0

and 0 →
⊕

i∈I\J Ci →
⊕

i∈I\J Ci → 0 → 0.

In the next lemma, the roles of M and
⊕

i∈I Ci are swapped, so we are concerned
with extensions of small modules by big direct sums.

Lemma 8.4. Let R be a ring, and κ and λ be infinite cardinals ≥ |R|. Let C be
a class of ≤ κ-presented modules, M be a module with |M | ≤ λ, and τ = λκ + ρ,
where ρ = supC∈C,M ′⊆M

∣

∣Ext1R(C,M ′)
∣

∣.

Then, for each short exact sequence 0 → M ⊆ N
π
→

⊕

i∈I Ci → 0 with Ci ∈
C for all i ∈ I, there exists a subset J ⊆ I of cardinality ≤ τ , such that P =
π−1(

⊕

j∈J Cj) is a direct summand of N containing M , with a complement P ′

isomorphic to
⊕

i∈I\J Ci.

Proof. By the assumption, C has a representative set of elements S of cardinal-
ity ≤ 2κ.

For each i ∈ I and c ∈ Ci, we fix nc,i ∈ N , such that π(nc,i) = c. Let Ni =
∑

c∈Ci
nc,iR. Then M + Ni = π−1(Ci). Let ∼ be the equivalence relation on

I defined by i ∼ j, whenever Ni ∩ M = Nj ∩ M and there is an isomorphism
ϕij : Nj → Ni, such that ϕij ↾ Nj ∩M = id.

Let J ⊆ I be a set of representatives for ∼ and let j ∈ J . Then there is a unique

C ∈ S, such that there exists an isomorphism Cj
ψj

→ C.
Let i ∼ j. Then there is a commutative diagram with exact rows

0 −−−−→ Nj ∩M −−−−→ Nj
π↾Nj

−−−−→ Cj −−−−→ 0
∥

∥

∥

ϕij





y

ϕ̄ij





y

0 −−−−→ Ni ∩M −−−−→ Ni
π↾Ni

−−−−→ Ci −−−−→ 0,
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where ϕ̄ij is an isomorphism. Let ψi = ψj(ϕ̄ij)
−1. Then also the following diagram

is commutative and has exact rows

0 −−−−→ Nj ∩M −−−−→ Nj
ψjπ↾Nj

−−−−−→ C −−−−→ 0
∥

∥

∥

ϕij





y

∥

∥

∥

0 −−−−→ Ni ∩M −−−−→ Ni
ψiπ↾Ni
−−−−−→ C −−−−→ 0,

that is, the upper and lower rows of the diagram are equivalent extensions of Nj∩M
by C.

We claim that |J | ≤ τ . Indeed, for i ∈ I, let t(i) = (Ni∩M,C, Ēi), where C is the
unique element of S satisfying C ∼= Ci = (Ni +M)/M , and Ēi ∈ Ext1R(C,Ni ∩M)

is the equivalence class of the extension 0 → Ni ∩M → Ni
ψiπ↾Ni
→ C → 0. By

the above, if i ∈ I and j ∈ J , then i ∼ j, if and only if t(i) = t(j). Moreover,
|Ni ∩M | ≤ κ for all i ∈ I, and the claim follows by the definition of τ .

Let P = M +
∑

j∈J Nj , and P ′ =
∑

j∈J

∑

i∼j,i6=j

∑

c∈Cj
(idNj

− ϕij)(nc,j)R.

Then P = π−1(
⊕

j∈J Cj), and P + P ′ ⊇ Ni for each i ∈ I \ J , because ϕij is

surjective, so P + P ′ = N .
It remains to prove that P ∩ P ′ = 0. If x ∈ P ′, then x has the form

x =
∑

j∈J

∑

i∼j,i6=j

∑

c∈Cj

(idNj
− ϕij)(nc,jrc,i,j)

and π(x) =
∑

j∈J

∑

i∼j,i6=j

∑

c∈Cj
(c − ϕ̄ij(c))rc,i,j . If, moreover, x ∈ P , then

π(x) ∈
⊕

j∈J Cj , and hence
∑

j∈J

∑

i∼j,i6=j

∑

c∈Cj

ϕ̄ij(c)rc,i,j =
∑

j∈J

∑

i∼j,i6=j

ϕ̄ij(
∑

c

c.rc,i,j) = 0.

Since ϕ̄ij is an isomorphism, we infer that π(
∑

c∈Cj
nc,jrc,i,j) =

∑

c∈Cj
c.rc,i,j = 0,

and
∑

c∈Cj
nc,jrc,i,j ∈M ∩Nj for all i ∼ j and i 6= j. We conclude that

x =
∑

j∈J

∑

i∼j,i6=j

(idNj
− ϕij)(

∑

c∈Cj

nc,jrc,i,j) = 0,

because ϕij ↾ (Nj ∩M) = idNj
for all i ∼ j and i 6= j.

Lemma 8.4 just says that the extension 0 →M ⊆ N
π
→

⊕

i∈I Ci → 0 decomposes

into the direct sum of the extensions 0 → M ⊆ P
π↾P
→

⊕

j∈J Cj → 0 and 0 → 0 →

P ′ →
⊕

i∈I\J Ci → 0.

The following lemma builds Filt(C)-approximations gradually, by induction on
the length of a C-socle sequence.

Lemma 8.5. Let κ be an infinite cardinal and C a class of ≤ κ-presented modules.
Then for each module T there is a sequence ((Sα, fα) | α ≤ κ+) with the following
properties:

(a) (Sβ | β ≤ γ) is a C-socle sequence of Sγ for each γ ≤ κ+.
(b) fγ ∈ HomR(Sγ , T ) for each γ ≤ κ+. The morphisms fγ (γ ≤ κ+) are

compatible, that is, fγ ↾ Sβ = fβ for all β < γ ≤ κ+.
(c) Let γ ≤ κ+, X be a module possessing a C-socle sequence (Xβ | β ≤ γ),

and hγ ∈ HomR(X,T ). Then there exists gγ ∈ HomR(X,Sγ) such that
gγ ↾ Xβ ∈ HomR(Xβ , Sβ) for each β < γ, and hγ = fγgγ.

Moreover, if γ ≤ κ+ is a non-limit ordinal and there exists a homomor-
phism g ∈ HomR(Xγ−1, Sγ−1) such that g ↾ Xβ ∈ HomR(Xβ , Sβ) for all
β < γ, and hγ ↾ Xγ−1 = fγ−1(g ↾ Sγ−1), then the map gγ above can be
chosen so that gγ ↾ Xγ−1 = g.
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Proof. Let T be an arbitrary module. By induction on α ≤ κ+, we will con-
struct a sequence ((Sβ , fβ) | β ≤ α) so that conditions (a)-(c) hold for each γ ≤ α.
For α = 0 we let S0 = 0 and f0 = 0.

Assume α ≥ 0 and the sequence ((Sβ , fβ) | β ≤ α) has been constructed. We
have to define the pair (Sα+1, fα+1) so that Sα ⊆ Sα+1, Sα+1/Sα is a direct sum
of copies of elements of C, fα+1 ∈ HomR(Sα+1, T ), fα+1 ↾ Sα = fα, and condition
(c) holds for γ = α+ 1.

Let S be a representative set of elements of C, E =
⊕

u∈HomR(Cu,T ),Cu∈S Cu, and

v ∈ HomR(E, T ) be the canonical map (i.e., v ↾ Cu = u). Then each homomorphism
from a direct sum of copies of elements of C to T factors through v.

Let τ = λκ + ρ, where λ = ℵ0 + |Sα|+R, and ρ = supC∈S,M ′⊆Sα

∣

∣Ext1R(C,M ′)
∣

∣.
Also, let Eγ : 0 → Sα ⊆ Pγ → Dγ → 0 (γ < ρ) be a representative set of all
equivalence classes of extensions of Sα by direct sums of ≤ τ elements of S. For
each γ < ρ, we define Hγ = {f ∈ HomR(Pγ , T ) | f ↾ Sα = fα}. Consider the
pushout

0 −−−−→
⊕

γ<ρ S
(Hγ)
α

⊆
−−−−→

⊕

γ<ρ P
(Hγ)
γ −−−−→

⊕

γ<ρD
(Hγ )
γ −−−−→ 0

Φ





y

η





y

∥

∥

∥

0 −−−−→ Sα
⊆

−−−−→ S′
α −−−−→

⊕

γ<ρD
(Hγ )
γ −−−−→ 0,

where Φ :
⊕

γ<ρ S
(Hγ)
α → Sα is the summation map. Let c :

⊕

γ<ρ P
(Hγ)
γ → T be

the canonical map. Then c ↾
⊕

γ<ρ S
(Hγ)
α = fαΦ, so the pushout property yields

f ′
α ∈ HomR(S′

α, T ) such that f ′
α ↾ Sα = fα and f ′

αη = c.

We define Sα+1 = S′
α⊕E, and fα+1 = f ′

α⊕v. Clearly, Sα+1/Sα ∼=
⊕

γ<ρD
(Hγ)
γ ⊕

E, and fα+1 ↾ Sα = f ′
α ↾ Sα = fα.

Now, letX be an arbitrary module possessing a C-socle sequence (Xβ | β ≤ α+1),
and hα+1 ∈ HomR(X,T ).

There is a short exact sequence 0 → Xα ⊆ X → D → 0, where D is a
direct sum of modules from S. By the inductive premise for (c), there exists
gα ∈ HomR(Xα, Sα) such that gα ↾ Xβ ∈ HomR(Xβ , Sβ) for each β ≤ α, and
hα+1 ↾ Xα = fαgα. Moreover, if g is given as in the second paragraph of (c) for
γ = α+ 1, then we can choose gα = g. Consider the pushout

0 −−−−→ Xα
⊆

−−−−→ X −−−−→ D −−−−→ 0

gα





y

zα





y

∥

∥

∥

0 −−−−→ Sα
⊆

−−−−→ N −−−−→ D −−−−→ 0.

By the pushout property, there is yα ∈ HomR(N,T ) such that yα ↾ Sα = fα and
hα+1 = yαzα.

We can apply Lemma 8.4 to the bottom short exact sequence (so M = Sα, and
λ and τ are as above), and obtain a decomposition N = P ⊕ P ′, where Sα ⊆ P ,
|P | ≤ τ , and both P/Sα and P ′ are isomorphic to direct sums of elements of S.

It remains to construct gα+1 ∈ HomR(X,Sα+1) so that gα+1 ↾ Xα = gα and
hα+1 = fα+1gα+1.

Since v is the canonical map, yα ↾ P ′ factors through it, that is, there exists
w ∈ HomR(P ′, E) such that yα ↾ P ′ = vw.

In order to factor yα ↾ P , we note that yα ↾ Sα = fα, and let δ be the index
corresponding to the extension 0 → Sα → P → P/Sα → 0 and to yα ↾ P ∈

HomR(P, T ). Let µδ : P →
⊕

γ<ρ P
(Hγ)
γ be the corresponding split embedding.

We define gα+1 = (ηµδ ⊕ w)zα ∈ HomR(X,Sα+1).
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Then gα+1 ↾ Xα = Φµδgα = gα. Moreover,

fα+1gα+1 = (f ′
α ⊕ v)(ηµδ ⊕ w)zα = (cµδ ⊕ yα ↾ P ′)zα = yαzα = hα+1.

Finally, if α is a limit ordinal, we define Sα =
⋃

β<α Sβ and fα =
⋃

β<α fβ. Then

(a) and (b) clearly hold also for γ = α.
Assume X and hα are given as in (c) (for γ = α). Using the second paragraph

of (c) by induction on γ < α, we can define a compatible system of morphisms gβ
(β < α) such that gβ ∈ HomR(Xβ , Sβ) and hα ↾ Xβ = fβgβ for each β < α. Let
gα =

⋃

β<α gβ . Then hα = fαgα, so (c) holds also for γ = α.

Theorem 8.6. (Filt(C) is a precovering class) Let R be a ring, κ be an infinite
cardinal, and C be a class of ≤ κ-presented modules. Let α ≤ κ+, and let Socα(C)
denote the class of all modules possessing a C-socle sequence of length ≤ α.

Then Socα(C) is a precovering class, and so are the classes Filt(C) and D =
Add(Filt(C)).

Proof. Let T be a module, and Sα and fα be as in Lemma 8.5. Consider
X ∈ Socα(C) and h ∈ HomR(X,T ). Let (Xβ | β ≤ α) be a C-socle sequence of X .
By Lemma 8.5(c), there exists gα ∈ HomR(X,Sα) such that h = fαgα. So fα is a
Socα(C)-precover of T .

In particular, for α = κ+ we infer from Theorem 8.2 that the class Filt(C) =
Socκ+(C) is precovering. The final claim follows from the easy observation that
each Filt(C)-precover is also a D-precover.

Remark 8.7. If, moreover, R ∈ C, then the class D is even special precovering
by Theorem 5.1 and Corollary 5.3. Also, by Theorem 6.2, if κ is a regular infinite
cardinal, C consists of < κ-presented modules, and (A,B) is the cotorsion pair
generated by C, then Filt(A<κ) = A is a special precovering class.

Assume that C is a precovering class such that each C-precover is surjective (e.g.,
C contains all free modules). Then by an iteration of precovers, of a module M ,
of the kernel of a C-precover of M , etc., we obtain a C-resolution of M . In the
classic particular case when C is the class of all projective modules, this is just the
projective resolution of M .

As in the classic case, the general C-resolutions are not unique, but one can use
them to define uniquely the relative cohomology groups, and derive the long exact
sequence for them as in the classic case (see e.g. [9]).

In fact, most classes used to define relative cohomology groups are even decon-
structible:

Definition 8.8. A class of modules C is deconstructible provided there exists a
cardinal κ such that C = Filt(D), where D is the class of all ≤ κ-presented modules
from C.

Corollary 8.9. Each deconstructible class of modules is precovering.

Remark 8.10. For example, for each n ≥ 0, the class Pn of all modules of projec-
tive dimension ≤ n, as well as the class Fn of all modules of flat dimension ≤ n,
are deconstructible (in fact, all these classes are special precovering, cf. Corollary
7.8 and [10, §8.1]). However, the class of all ℵ1-projective modules is not decon-
structible for any non-right perfect ring, [11].
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Open problem. Let R be a ring and C be a covering class of modules. Is C
closed under direct limits? In particular, is every perfect cotorsion pair closed?
(Cf. Corollary 7.7.)

References

[1] S. T. Aldrich, E. Enochs, O. Jenda, L. Oyonarte, Envelopes and covers by modules of

finite injective and projective dimensions, J. Algebra 242 (2001), 447 – 459.
[2] D. W. Anderson, K. R. Fuller, Rings and Categories of Modules, 2nd Edition, Graduate

Texts in Math. 13, Springer Vlg., New York 1992.
[3] M. Auslander, I. Reiten, Applications of contravariantly finite subcategories, Adv. Math.

86 (1991), 111 – 152.
[4] M. Auslander, S. Smalø, Preprojective modules over artin algebras, J. Algebra 66 (1980),

61 – 122.
[5] L. Bican, R. El Bashir, E. Enochs, All modules have flat covers, Bull. London Math. Soc.

33 (2001), 385 – 390.
[6] P. C. Eklof, Homological algebra and set theory, Trans. Amer. Math. Soc. 227 (1977),

207 – 225.
[7] P. C. Eklof, J. Trlifaj, How to make Ext vanish, Bull. London Math. Soc. 33 (2001), 41

– 51.
[8] E. Enochs, Shortening filtrations, Sci. China Math. 55 (2012), 687 – 693.

[9] E. Enochs, O. Jenda, Relative Homological Algebra, Vol. 1, 2nd ed., W. de Gruyter,
Berlin 2011.
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