# Some representation theory arising from set-theoretic homological algebra

Jan Trlifaj

Univerzita Karlova, Praha

Maurice Auslander International Conference

Woods Hole, April 27th, 2016

イロト 人間ト イヨト イヨト

#### I. Decomposition, deconstruction, and their limitations

э

ヘロト 人間 ト 人 ヨト 人 ヨトー

# Classic structure theory: direct sum decompositions

A class of modules C is decomposable, provided that there is a cardinal  $\kappa$  such that each module in C is a direct sum of strongly  $< \kappa$ -presented modules from C.

### [Kaplansky]

1. The class  $\mathcal{P}_0$  of all projective modules is decomposable.

### [Faith-Walker]

2. The class  $\mathcal{I}_0$  of all injective modules is decomposable iff R is a right noetherian ring.

### [Huisgen-Zimmermann]

3. Mod-R is decomposable iff R is a right pure-semisimple ring. In fact, if M is a module such that Prod(M) is decomposable, then M is  $\Sigma$ -pure-injective. Such examples, however, are rare in general – most classes of modules are not decomposable.

#### Example

Assume that the ring R is not right perfect, that is, there is a strictly decreasing chain of principal left ideals

$$Ra_0 \supseteq \cdots \supseteq Ra_n \dots a_0 \supseteq Ra_{n+1}a_n \dots a_o \supseteq \dots$$

Then the class  $\mathcal{F}_0$  of all flat modules is not decomposable.

#### Example

There exist arbitrarily large indecomposable flat abelian groups.

- 4 同 6 4 日 6 4 日 6

### **Transfinite extensions**

Let  $\mathcal{A} \subseteq \text{Mod}-R$ . A module M is  $\mathcal{A}$ -filtered (or a transfinite extension of the modules in  $\mathcal{A}$ ), provided that there exists an increasing sequence  $(M_{\alpha} \mid \alpha \leq \sigma)$  consisting of submodules of M such that  $M_0 = 0$ ,  $M_{\sigma} = M$ , •  $M_{\alpha} = \bigcup_{\beta \leq \alpha} M_{\beta}$  for each limit ordinal  $\alpha \leq \sigma$ , and

• for each  $\alpha < \sigma$ ,  $M_{\alpha+1}/M_{\alpha}$  is isomorphic to an element of A.

Notation:  $M \in Filt(\mathcal{A})$ . A class  $\mathcal{A}$  is filtration closed if  $Filt(\mathcal{A}) = \mathcal{A}$ .

#### Eklof Lemma

 $^{\perp}\mathcal{C} = \text{KerExt}^{1}_{R}(-,\mathcal{C})$  is filtration closed for each class of modules  $\mathcal{C}$ .

In particular, so are the classes  $\mathcal{P}_n$  and  $\mathcal{F}_n$  of all modules of projective and flat dimension  $\leq n$ , for each  $n < \omega$ .

### **Deconstructible classes**

A class of modules  $\mathcal{A}$  is deconstructible, provided there is a cardinal  $\kappa$  such that  $\mathcal{A} = \operatorname{Filt}(\mathcal{A}^{<\kappa})$  where  $\mathcal{A}^{<\kappa}$  denotes the class of all strongly  $< \kappa$ -presented modules from  $\mathcal{A}$ .

All decomposable classes are deconstructible.

For each  $n < \omega$ , the classes  $\mathcal{P}_n$  and  $\mathcal{F}_n$  are deconstructible.

#### [Eklof-T.]

More in general, for each set of modules S, the class  $^{\perp}(S^{\perp})$  is deconstructible. Here,  $S^{\perp} = \text{KerExt}_{R}^{1}(S, -)$ .

イロト 不得下 イヨト イヨト 二日

### Approximations for relative homological algebra

A class of modules  $\mathcal{A}$  is precovering if for each module M there is  $f \in \operatorname{Hom}_R(A, M)$  with  $A \in \mathcal{A}$  such that each  $f' \in \operatorname{Hom}_R(A', M)$  with  $A' \in \mathcal{A}$  factorizes through f:



The map f is an  $\mathcal{A}$ -precover of M.

If f is moreover right minimal (that is, f factorizes through itself only by an automorphism of A), then f is an A-cover of M.

If  $\mathcal{A}$  provides for covers for all modules, then  $\mathcal{A}$  is called a covering class.

# The abundance of approximations

### [Enochs], [Šťovíček]

- All deconstructible classes are precovering.
- All precovering classes closed under direct limits are covering.

In particular, the class  $^{\perp}(S^{\perp})$  is precovering for any set of modules S. *Note:* If  $R \in S$ , then  $^{\perp}(S^{\perp})$  coincides with the class of all direct summands of S-filtered modules.

#### Flat cover conjecture

 $\mathcal{F}_0$  is covering for any ring R, and so are the classes  $\mathcal{F}_n$  for each n > 0.

```
The classes \mathcal{P}_n (n \ge 0) are precovering. ...
```

3

イロト イポト イヨト イヨト

### **Bass modules**

Let *R* be a ring and *C* be a class of countably presented modules.  $\lim_{\omega} C$  denotes the class of all Bass modules over *C*, that is, the modules *B* that are countable direct limits of modules from *C*. W.l.o.g., such *B* is the direct limit of a chain

$$F_0 \xrightarrow{f_0} F_1 \xrightarrow{f_1} \ldots \xrightarrow{f_{i-1}} F_i \xrightarrow{f_i} F_{i+1} \xrightarrow{f_{i+1}} \ldots$$

with  $F_i \in C$  and  $f_i \in \operatorname{Hom}_R(F_i, F_{i+1})$  for all  $i < \omega$ .

#### The classic Bass module

Let C be the class of all countably generated projective modules. Then the Bass modules coincide with the countably presented flat modules. If R is not right perfect, then a classic instance of such a Bass module B arises when  $F_i = R$  and  $f_i$  is the left multiplication by  $a_i$  ( $i < \omega$ ) where  $Ra_0 \supseteq \cdots \supseteq Ra_n \ldots a_0 \supseteq Ra_{n+1}a_n \ldots a_o \supseteq \ldots$  is strictly decreasing.

# Flat Mittag-Leffler modules

### [Raynaud-Gruson]

A module *M* is flat Mittag-Leffler provided the functor  $M \otimes_R -$  is exact, and for each system of left *R*-modules  $(N_i | i \in I)$ , the canonical map  $M \otimes_R \prod_{i \in I} N_i \to \prod_{i \in I} M \otimes_R N_i$  is monic.

The class of all flat Mittag-Lefler modules is denoted by  $\mathcal{FM}$ .

 $\mathcal{P}_0 \subseteq \mathcal{FM} \subseteq \mathcal{F}_0.$  $\mathcal{FM}$  is filtration closed, and it is closed under pure submodules.

#### [Raynaud-Gruson]

 $M \in \mathcal{FM}$ , iff each countable subset of M is contained in a countably generated projective and pure submodule of M. In particular, all countably generated modules in  $\mathcal{FM}$  are projective.

### Theorem (Angeleri-Šaroch-T.)

Assume that R is not right perfect. Then the class  $\mathcal{FM}$  is not precovering, and hence not deconstructible.

*Idea of proof:* Choose a non-projective Bass module *B* over  $\mathcal{P}_0^{<\omega}$ , and prove that *B* has no  $\mathcal{FM}$ -precover.

The main tool: Tree modules.

II. Tree modules and their applications

э

< ロト < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

### The trees

Let  $\kappa$  be an infinite cardinal, and  $T_{\kappa}$  be the set of all finite sequences of ordinals  $< \kappa$ , so

$$T_{\kappa} = \{\tau : \mathbf{n} \to \kappa \mid \mathbf{n} < \omega\}.$$

Partially ordered by inclusion,  $T_{\kappa}$  is a tree, called the tree on  $\kappa$ .

Let  $Br(T_{\kappa})$  denote the set of all branches of  $T_{\kappa}$ . Each  $\nu \in Br(T_{\kappa})$  can be identified with an  $\omega$ -sequence of ordinals  $< \kappa$ :

$$\mathsf{Br}(T_{\kappa}) = \{\nu : \omega \to \kappa\}.$$

 $|T_{\kappa}| = \kappa$  and  $|Br(T_{\kappa})| = \kappa^{\omega}$ .

Notation:  $\ell(\tau)$  denotes the length of  $\tau$  for each  $\tau \in T_{\kappa}$ .

イロト イポト イヨト イヨト

### Decorating trees by Bass modules

Let 
$$D := \bigoplus_{\tau \in T_{\kappa}} F_{\ell(\tau)}$$
, and  $P := \prod_{\tau \in T_{\kappa}} F_{\ell(\tau)}$ .

For  $\nu \in Br(T_{\kappa})$ ,  $i < \omega$ , and  $x \in F_i$ , we define  $x_{\nu i} \in P$  by

 $\pi_{\nu \upharpoonright i}(x_{\nu i}) = x,$ 

$$\pi_{\nu \upharpoonright j}(x_{\nu i}) = g_{j-1} \dots g_i(x) \text{ for each } i < j < \omega,$$

 $\pi_{\tau}(x_{\nu i}) = 0$  otherwise,

where  $\pi_{\tau} \in \operatorname{Hom}_{R}(P, F_{\ell(\tau)})$  denotes the  $\tau$ th projection for each  $\tau \in T_{\kappa}$ .

Let  $X_{\nu i} := \{x_{\nu i} \mid x \in F_i\}$ . Then  $X_{\nu i}$  is a submodule of P isomorphic to  $F_i$ .

Jan Trlifaj (Univerzita Karlova, Praha)

イロト イポト イヨト イヨト 二日

### The tree modules

Let 
$$X_{\nu} := \sum_{i < \omega} X_{\nu i}$$
, and  $\mathbf{G} := \sum_{\nu \in \mathsf{Br}(\mathcal{T}_{\kappa})} X_{\nu}$ .

#### Basic properties

•  $D \subseteq G \subseteq P$ .

• There is a 'tree module' exact sequence

$$0 \to D \to G \to B^{(\mathsf{Br}(\tau_{\kappa}))} \to 0.$$

• *G* is a flat Mittag-Leffler module.

э

(人間) トイヨト イヨト

### **Proof of the Theorem**

Assume there exists a  $\mathcal{FM}$ -precover  $f : F \to B$  of the classic Bass module B. Let K = Ker(f), so we have an exact sequence

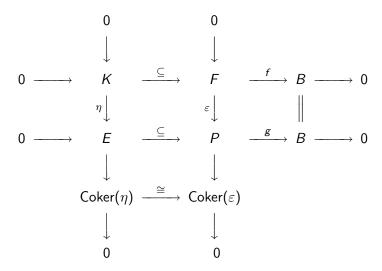
$$0 \to K \hookrightarrow F \xrightarrow{f} B \to 0.$$

Let  $\kappa$  be an infinite cardinal such that  $|R| \leq \kappa$  and  $|K| \leq 2^{\kappa} = \kappa^{\omega}$ . Consider the 'tree module' exact sequence

$$0 \to D \hookrightarrow G \to B^{(2^{\kappa})} \to 0$$

so  $G \in \mathcal{FM}$  and D is a free module of rank  $\kappa$ . Clearly,  $G \in \mathcal{P}_1$ . Let  $\eta : K \to E$  be a  $\{G\}^{\perp}$ -preenvelope of K with a  $\{G\}$ -filtered cokernel.

Consider the pushout



Then  $P \in \mathcal{FM}$ . Since f is an  $\mathcal{FM}$ -precover, there exists  $h : P \to F$  such that fh = g. Then  $f = g\varepsilon = fh\varepsilon$ , whence K + Im(h) = F. Let  $h' = h \upharpoonright E$ . Then  $h' : E \to K$  and  $\text{Im}(h') = K \cap \text{Im}(h)$ .

Consider the restricted exact sequence

$$0 \longrightarrow \operatorname{Im}(h') \xrightarrow{\subseteq} \operatorname{Im}(h) \xrightarrow{f \upharpoonright \operatorname{Im}(h)} B \longrightarrow 0$$

As  $E \in G^{\perp}$  and  $G \in \mathcal{P}_1$ , also  $\mathsf{Im}(h') \in G^{\perp}$ .

Applying  $\text{Hom}_{R}(-, \text{Im}(h'))$  to the 'tree-module' exact sequence above, we obtain the exact sequence

$$\operatorname{Hom}_R(D,\operatorname{Im}(h')) \to \operatorname{Ext}^1_R(B,\operatorname{Im}(h'))^{2^{\kappa}} \to 0$$

where the first term has cardinality only  $\leq |K|^\kappa \leq 2^\kappa$  , so the second term must be zero.

This yields  $Im(h') \in B^{\perp}$ . Then  $f \upharpoonright Im(h)$  splits, and so does the  $\mathcal{FM}$ -precover f, a contradiction with  $B \notin \mathcal{FM}$ .

▲日▼ ▲冊▼ ▲ヨ▼ ▲ヨ▼ ヨー つぬる

### Lemma (Šaroch)

Let C be a class of countably presented modules, and  $\mathcal{L}$  the class of all 'locally C-free' modules.

Let B be a Bass module over C such that B is not a direct summand in a module from  $\mathcal{L}$ .

Then B has no *L*-precover.

#### III. A generalization via tilting theory

э

イロト イポト イヨト イヨト

# Large tilting modules

- T is a (large) tilting module provided that
  - T has finite projective dimension,
  - $\operatorname{Ext}^{i}_{R}(T, T^{(\kappa)}) = 0$  for each cardinal  $\kappa$ , and
  - there exists an exact sequence 0 → R → T<sub>0</sub> → · · · → T<sub>r</sub> → 0 such that r < ω, and for each i < r, T<sub>i</sub> ∈ Add(T), i.e., T<sub>i</sub> is a direct summand of a (possibly infinite) direct sum of copies of T.

$$\mathcal{B} = \{T\}^{\perp_{\infty}} = \bigcap_{1 < i} \operatorname{KerExt}_{R}^{i}(T, -) \text{ the right tilting class of } T.$$
  
 
$$\mathcal{A} = {}^{\perp}\mathcal{B} \text{ the left tilting class of } T.$$

- $\mathcal{A} \cap \mathcal{B} = \operatorname{Add}(T)$ .
- Right tilting classes coincide with the classes of finite type, that is, they have the form S<sup>⊥</sup> where S is a set of strongly finitely presented modules of bounded projective dimension.

•  $\mathcal{A} = \mathsf{Filt}(\mathcal{A}^{\leq \omega})$ , hence  $\mathcal{A}$  is precovering. Moreover,  $\mathcal{A} \subseteq \varinjlim \mathcal{A}^{<\omega}$ . Jan Trilfaj (Univerzita Karlova, Praha) Set-theoretic homological algebra

# $\Sigma\text{-pure split tilting modules}$

A module M is  $\Sigma$ -pure split provided that each pure embedding  $N' \hookrightarrow N$  with  $N \in Add(M)$  splits.

### [Angeleri-T.]

A tilting module  $\mathcal{T}$  is  $\Sigma$ -pure split, iff  $\mathcal{A} = \varinjlim \mathcal{A}^{<\omega}$ , iff  $\mathcal{A}$  closed under direct limits.

#### Examples

Let T = R. Then T is a tilting module of projective dimension 0, and T is  $\Sigma$ -pure split iff R is a right perfect ring.

Each  $\Sigma$ -pure injective tilting module is  $\Sigma$ -pure split. Each finitely generated tilting module over any artin algebra is  $\Sigma$ -pure injective.

# Locally *T*-free modules

Let R be a ring and T a tilting module.

A module M is locally T-free provided that M possesses a set  $\mathcal{H}$  of submodules such that

- $\mathcal{H} \subseteq \mathcal{A}^{\leq \omega}$ ,
- each countable subset of M is contained in an element of  $\mathcal{H}$ ,
- $\mathcal{H}$  is closed under unions of countable chains.

Let  $\mathcal{L}$  denote the class of all locally T-free modules.

*Note:* If *M* is countably generated, then *M* is locally *T*-free, iff  $M \in \mathcal{A}^{\leq \omega}$ .

イロト 不得 とくまとう まし

For any ring R and any tilting module T, we have

 $\mathcal{A} \subseteq \mathcal{L} \subseteq \varinjlim \mathcal{A}^{<\omega}.$ 

#### The 0-dimensional case

Let R be an arbitrary ring and T = R. Then

$$\mathcal{A} = \mathcal{P}_0 \subseteq \mathcal{L} = \mathcal{F}\mathcal{M} \subseteq \varinjlim \mathcal{A}^{<\omega} = \mathcal{F}_0.$$

イロト 不得 トイヨト イヨト

# Locally T-free modules and approximations

#### Theorem

Let R be a ring and T be a tilting module. Then TFAE:

- *L* is (pre)covering.
- **2**  $\mathcal{L}$  is deconstructible.
- **3** T is  $\Sigma$ -pure split.

*Note:* The theorem on flat Mittag-Leffler modules stated earlier is just the particular case of T = R.

・ 何 ト ・ ヨ ト ・ ヨ ト

### The role of Bass modules, and Enochs' Conjecture

#### Theorem

 $\mathcal{L}$  is (pre)covering, iff  $\mathcal{A}$  is closed under direct limits, iff  $B \in \mathcal{A}$  for each Bass module B over  $\mathcal{A}^{<\omega}$  (i.e.,  $\lim_{\omega \to \omega} (\mathcal{A}^{<\omega}) \subseteq \mathcal{A}$ ).

#### Enochs' Conjecture

Let C be a class of modules. Then C is covering, iff C is precovering and closed under direct limits.

#### Corollary

The Enochs' Conjecture holds for all left tilting classes of modules.

イロト 人間ト イヨト イヨト

# A finite dimensional example

Let R be an indecomposable hereditary finite dimensional algebra of infinite representation type.

Then there is a partition of ind-R into three sets:

- $q \dots$  the indecomposable preinjective modules
- *p* ... the indecomposable preprojective modules
- $t \dots$  the regular modules (the rest).

Then  $p^{\perp}$  is a right tilting class (and  $M \in p^{\perp}$ , iff M has no non-zero direct summands from p).

The tilting module T inducing  $p^{\perp}$  is called the Lukas tilting module. The left tilting class of T is the class of all Baer modules. The locally T-free modules are called locally Baer modules.

イロト 不得 トイヨト イヨト

### Non-precovering classes of locally Baer modules

#### Theorem

- The class of all Baer modules coincides with Filt(p).
- The Lukas tilting module T is countably generated, but has no finite dimensional direct summands, and it is not Σ-pure split.
  So the class L is not precovering (and hence not deconstructible).

#### The Bass modules behind the scene

The relevant Bass modules can be obtained as unions of the chains

$$P_0 \stackrel{f_0}{\hookrightarrow} P_1 \stackrel{f_1}{\hookrightarrow} \dots \stackrel{f_{i-1}}{\hookrightarrow} P_i \stackrel{f_i}{\hookrightarrow} P_{i+1} \stackrel{f_{i+1}}{\hookrightarrow} \dots$$

such that all the  $P_i$  are preprojective (i.e., in add(p)), but the cokernels of all the  $f_i$  are regular (i.e., in add(t)).

(日) (同) (三) (三)

#### IV. Tree modules and the Auslander problem

э

< ロト < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

# Almost split maps and sequences

#### Definition

Let *R* be a ring and *N* be a module. A morphism of modules  $f : M \to N$  is right almost split, provided that the following are equivalent for each morphism  $g : P \to N$ :

- g factorizes through f,
- g is not a split epimorphism.

Dually, left almost split morphisms  $f': N' \rightarrow M'$  are defined.

A short exact sequence of modules  $0 \rightarrow N' \xrightarrow{f'} M \xrightarrow{f} N \rightarrow 0$  is almost split, if f and f' are right and left almost split morphisms, respectively.

### Theorem (Auslander)

Let N be an (indecomposable) finitely presented module with local endomorphism ring. Then there exists a right almost split morphism  $f: M \rightarrow N$ . If N is not projective, then there even exists an almost split sequence as above. Jan Trlifaj (Univerzita Karlova, Praha) Set-theoretic homological algebra 30

# Auslander's problem and generalized tree modules

### Auslander'1975, in Proc. 2nd Conf. Univ. Oklahoma

Are there further examples of right almost split morphisms in Mod-R?

A negative answer has recently been given using (generalized) tree modules:

### Theorem (Šaroch'2015)

Let R be a ring and N be a module. TFAE:

- **()** There exists a right almost split morphism  $f: M \to N$ .
- **2** *N* is finitely presented, and its endomorphism ring is local.

#### Corollary

Let R be a ring and  $0 \rightarrow P \rightarrow M \rightarrow N \rightarrow 0$  be an almost split sequence in Mod-R. Then N is finitely presented with local endomorphism ring, and P is pure-injective.

1. L.Angeleri Hügel, J.Šaroch, J.Trlifaj:

"Approximations and Mittag-Leffler conditions", preprint (2014), available at https://www.researchgate.net/publication/280494406 Approximations and Mittag-Leffler conditions.

2. R.Göbel, J.Trlifaj: "Approximations and Endomorphism Algebras of Modules", 2nd rev. ext. ed., GEM 41, W. de Gruyter, Berlin 2012.

3. J. Šaroch, "On the non-existence of right almost split maps", preprint (2015), available at arXiv: 1504.01631v4.

4. A.Slávik, J.Trlifaj: "Approximations and locally free modules", Bull. London Math. Soc. 46(2014), 76-90.

イロト イポト イヨト イヨト 二日