Closure properties of lim $\ensuremath{\mathcal{C}}$

Jan Trlifaj, Univerzita Karlova

Homological Methods in Representation Theory Fraueninsel, Germany * In honor of Lidia Angeleri Hügel *

- L.Angeleri Hügel, J. Trlifaj: *Direct limits of modules of finite projective dimension*, in Rings, Modules, Algebras, and Abelian Groups, LNPAM 236, M.Dekker, New York 2004, 27-44.
- L.Positelski, J.Trlifaj: *Closure properties of* lim *C*, arXiv:2110.13105v1, 52 pp.

The class $\varinjlim \mathcal{C}$ - the case of small modules

Let R be a ring, and C be a class of (right R-) modules closed under finite direct sums.

Denote by $\varinjlim C$ the class of all modules that are direct limits of direct systems consisting of modules from C.

Lenzing'83

Assume C consists of finitely presented modules. Then $M \in \varinjlim C$, iff each homomorphism from a finitely presented module to M factorizes through a module in C.

The class $\varinjlim C$ is closed under direct sums, pure submodules, pure extensions, and pure epimorphic images. In particular, $\varinjlim C$ is closed under direct limits, and $\varinjlim C$ is a covering class.

Angeleri-T.'04

Assume C that consists of FP₂ modules, $R \in C$, and C is closed under extensions and direct summands. Let $\mathcal{L} = \varinjlim C$. Then $\mathcal{L} = {}^{\mathsf{T}}(C^{\mathsf{T}})$.

Hence \mathcal{L} is a covering class closed under transfinite extensions (i.e., $\operatorname{Filt}(\mathcal{L}) \subseteq \mathcal{L}$), and \mathcal{L} is κ^+ -deconstructible for $\kappa = \operatorname{card} R + \aleph_0$, i.e., $\mathcal{L} \subseteq \operatorname{Filt}(\mathcal{L}^{\leq \kappa})$. So $\mathcal{L} = \operatorname{Filt}(\mathcal{L}^{\leq \kappa})$.

The class $\varinjlim \mathcal{C}$ - the general case

Proposition

The class $\lim_{\to \infty} C$ is always closed under direct sums.

But $\varinjlim C$ need not be closed under direct summands or pure extensions. In particular, $\varinjlim C$ need not be closed under direct limits:

Examples

- Let R be a commutative von Neumann regular semiartinian ring, and C the class of all finitely generated completely reducible modules. Then C is closed under (pure) extensions, but $\lim_{t \to C} C$ is not.
- [Angeleri-T.'04] Let $R = \mathbb{Z}$ and $M \in Mod-\mathbb{Z}$ be torsion-free, rigid (i.e. $End(M) = \mathbb{Z}$), and of rank r > 1. Then $\varinjlim add(M)$ is not closed under direct summands.

The structure of $\varinjlim \operatorname{add}(M)$

Theorem

Let *M* be a module and S = End(M). Denote by \mathcal{F}_S the class of all flat right *S*-modules. Then

 $\varinjlim \mathsf{add}(M) = \{F \otimes_S M \mid F \in \mathcal{F}_S\}.$

Proof:

- 1. $\varinjlim \operatorname{add}(M) = \varinjlim \operatorname{sum}(M)$.
- 2. Hom_R $(M^m, M^n) \cong M_{n \times m}(S)$.

3. $N = \underset{i \in I}{\lim} M^{n_i}$, iff $N \cong F \otimes_S M$, where $F \in \underset{i \in I}{\lim} S^{n_i}$, that is, $F \in \mathcal{F}_S$.

The structure of $\varinjlim \operatorname{add}(M)$

Corollary

The class $\varinjlim \operatorname{add}(M)$ is deconstructible for each module $M \in \operatorname{Mod} - R$.

However, the class $\varinjlim \operatorname{add}(M)$ need not be closed under extensions even if $\operatorname{add}(M)$ is:

Example

Let $R = \mathbb{Z}_p$ and $M = \mathbb{J}_p$ for a prime p. Then add(M) = sum(M) is closed under extensions in Mod-R.

The class $\lim_{M \to \infty} \operatorname{add}(M)$ (= the class of all torsion-free \mathbb{J}_p -modules, but viewed as \mathbb{Z}_p -modules) is not extension closed in $\operatorname{Mod}-R$.

The old example revisited

Let $R = \mathbb{Z}$ and M be a torsion-free rigid abelian group of rank r > 1.

Then all non-zero groups in $\varinjlim \operatorname{add}(M)$ are of the form $F \otimes_S M$ for $0 \neq F \in \mathcal{F}_R$, so they are torsion-free of rank ≥ 2 . Hence $\mathbb{Q} \notin \varinjlim \operatorname{add}(M)$.

However, $E(M) \cong \mathbb{Q}^{(r)}$ is a direct limit of a suitable countable direct system of the form $M \to M \to \ldots$, whence $\mathbb{Q}^{(r)} \in \lim \operatorname{add}(M)$.

So in general, $\varinjlim \operatorname{add}(M)$ need not be closed under extensions or direct limits.

The structure of $\varinjlim \operatorname{Add}(M)$

Theorem

Let M be a module and $\mathfrak{S} = \operatorname{End}(M)$ be its endomorphism ring endowed with the finite topology (whose base of neighborhoods of zero is formed by the annihilators of finitely generated submodules of M). Then M is a discrete left \mathfrak{S} -module.

Denote by $\mathcal{F}_{\mathfrak{S}}$ the class of all right $\mathfrak{S}\text{-contramodules}$ that are direct limits of direct systems of projective right $\mathfrak{S}\text{-contramodules}.$ Then

 $\varinjlim \operatorname{Add}(M) = \{F \odot_{\mathfrak{S}} M \mid F \in \mathcal{F}_{\mathfrak{S}}\}$

where $F \odot_{\mathfrak{S}} M$ denotes the contratensor product of the right \mathfrak{S} -contramodule F with the discrete left \mathfrak{S} -module M.

Corollary

The class $\lim \operatorname{Add}(M)$ is deconstructible for each module $M \in \operatorname{Mod} - R$.

1. There is a natural equivalence between the additive categories Add(M) and $\mathcal{P}_{\mathfrak{S}}$, where the latter denotes the category of all projective right \mathfrak{S} -contramodules (= direct summands of free right \mathfrak{S} -contramodules).

2. The equivalence above extends to an adjunction (Ψ_M, Φ_M) beween Mod-R and $Contra-\mathfrak{S}$, where the latter denotes the category of all right \mathfrak{S} -contramodules. Here, $\Psi_M = Hom_R(M, -)$ and $\Phi_M = - \odot_{\mathfrak{S}} M$.

3. Being a left adjoint, Φ_M preserves direct limits. The proof then proceeds as in the case of $\varinjlim \operatorname{add}(M)$.

Lemma

Let C be a class of modules closed under arbitrary direct sums. Then $\varinjlim C$ coincides with the class of all modules M of the form M = C/K where

- $\mathcal{C}\in\mathcal{C}$,
- K ⊆ C, and K is a directed union of a direct system of its submodules, K_i (i ∈ I), such that
- K_i is a direct summand in C, and $C/K_i \in C$, for each $i \in I$.

Easy proof: Let K be the kernel of the canonical presentation of the direct limit as a factor of the direct sum. Then K has the form described above.

In particular, each $M \in \varinjlim C$ is a direct limit of a direct system consisting of modules from C, and of split epimorphisms.

$\varinjlim \mathbf{add}(M) \text{ versus } \varinjlim \mathbf{Add}(M)$

For any class of modules \mathcal{D}_{r}

 $\varinjlim \mathsf{sum}(\mathcal{D}) = \varinjlim \mathsf{add}(\mathcal{D}) \subseteq \varinjlim \mathsf{Add}(\mathcal{D}) = \varinjlim \mathsf{Sum}(\mathcal{D}) \subseteq \widetilde{\mathsf{Add}(\mathcal{D})}$

where $Add(\mathcal{D})$ is the class of all pure-epimorphic images of the modules in $Add(\mathcal{D})$.

Easy facts

- Since $\operatorname{Sum}(\mathcal{D}) \subseteq \varinjlim \operatorname{Sum}(\mathcal{D})$, the equality in the first inclusion holds in case $\varinjlim \operatorname{add}(\mathcal{D})$ is closed under direct limits.
- Equality in the second inclusion just says that $\mathcal{L} = \varinjlim \mathsf{Add}(\mathcal{D})$ is closed under pure-epimorphic images. In this case, \mathcal{L} is a covering class.

Example

Let K be a field, R be the K-algebra of all eventually constant sequences in the K-algebra $Q = K^{\omega}$ of all sequences of elements of K. Then Q is the maximal quotient ring of R, and

$$Mod-Q = \varinjlim \mathsf{add}(Q) = \varinjlim \mathsf{Add}(Q) \subsetneq \widetilde{\mathsf{Add}(Q)} = \mathsf{Gen}(Q_R).$$

Here, Mod-Q is not a full subcategory of Mod-R, and it is not closed under direct summands in Mod-R. Hence, Mod-Q is not closed under direct limits in Mod-R.

Sufficient conditions for equality no. 1

Lemma

Assume that \mathcal{D} consists of small modules (or $\mathcal{D} = \{M\}$ for a self-small module). Then $\varinjlim \operatorname{add}(\mathcal{D}) = \varinjlim \operatorname{Add}(\mathcal{D})$.

Further positive cases

The equality holds when

- \mathcal{D} is a class of injective modules over a right noetherian ring R.
- \$\mathcal{D} = \{T^{-1}R/R\}\$ where R is left noetherian and T is a countable multiplicative set of (some) central elements of R.

• ...

The case of projective modules

Open problem

Let P be a projective module. Does $\lim_{n \to \infty} \operatorname{add}(P) = \lim_{n \to \infty} \operatorname{Add}(P)$?

By the Lemma above, the equality holds when P is a direct sum of finitely generated modules.

 $\begin{array}{l} [\texttt{P}\check{\mathsf{r}}\check{\mathsf{h}\mathsf{o}\mathsf{d}\mathsf{a}}]\\ \mathsf{A}\mathsf{d}\mathsf{d}(P)\subseteq \varinjlim \mathsf{a}\mathsf{d}\mathsf{d}(P) \text{ for each projective module } P.\\ \mathsf{That is,}\, \varinjlim \mathsf{a}\mathsf{d}\mathsf{d}(P) \text{ and } \varinjlim \mathsf{A}\mathsf{d}\mathsf{d}(P) \text{ contain the same projective modules.} \end{array}$

Example: Continuous real functions

Let $R = C_{(0,1)}$ be the ring of all continuous real functions on (0,1). Then each countably generated pure ideal in R is projective. Moreover, pure ideals P of R correspond 1-1 to closed subsets of (0,1) via the mutually inverse assignments

$$\varphi: P \mapsto X = \bigcap_{f \in P} f^{-1}(0)$$

 $\phi: X \mapsto \{f \in R \mid f^{-1}(0) \text{ contains some open neighborhood of } X\}.$

Countably generated projective modules

Let P be a pure ideal in $R = C_{(0,1)}$ which is not finitely generated.

• There is a countable set I such that $P = \bigoplus_{i \in I} P_i$ and

$$\varphi(P_i) = \langle 0, 1 \rangle \setminus O_i,$$

where $\{O_i \mid i \in I\}$ is a set of pairwise disjoint open intervals in (0, 1).

- P is not self-small.
- S = End(P) ≃ ∏_{i∈I} S_i, where S_i = C_{Oi}, the ring of all continuous real functions on O_i.
- $\varinjlim \operatorname{add}(P) = \varinjlim \operatorname{Add}(P) = \{F \in \operatorname{Mod} R \mid F \in \mathcal{F}_S \text{ and } F.P = F\}.$

Kaplansky's example is the particular case of $X = \{0\}$. Here, $P = \psi(X)$ is an indecomposable countably generated projective module, and $S = C_{(0,1)} \supseteq R$.

Countably generated pure ideals in commutative rings

Theorem

Let *R* be a commutative ring and *P* a countably generated pure ideal in *R* (= trace ideal of a countably generated projective module). Let S = End(P). Then *P* is projective, and

 $\varinjlim \mathsf{add}(P) = \varinjlim \mathsf{Add}(P) = \{F \in \mathrm{Mod}_{-R} \mid F \in \mathcal{F}_S, F.P = F\} = \widetilde{\mathsf{Add}(P)}$

is a covering class.

The tilting case, and more ...

[Šaroch'18], [Angeleri-Šaroch-T.'18]

Let $\mathfrak{C}=(\mathcal{A},\mathcal{B})$ be a cotorsion pair such that \mathcal{B} is closed under direct limits. Then

• B is a definable class.

•
$$\operatorname{Ker}(\mathfrak{C}) = \mathcal{A} \cap \mathcal{B} = \operatorname{Add}(K)$$
 for a module K .

•
$$\operatorname{Add}(K) = \widetilde{\mathcal{A}} \cap \mathcal{B}.$$

•
$$\widetilde{\mathcal{A}} = \varinjlim(\widetilde{\mathcal{A}}^{\leq \omega}).$$

Tilting as a special case: \mathfrak{C} is tilting (that is, $\mathcal{B} = \mathcal{T}^{\perp_{\infty}}$ for a tilting module \mathcal{T}), iff moreover \mathfrak{C} is hereditary, and \mathcal{A} consists of modules of bounded projective dimension.

If \mathfrak{C} is tilting, then we can take K = T, and T determines \mathfrak{C} . In this case even $\widetilde{\mathcal{A}} = \varinjlim(\widetilde{\mathcal{A}}^{<\omega}) = \varinjlim \mathcal{A}^{<\omega}$.

Let *R* be a regular local ring of Krull dimension 2. Let *S* be the set of all ideals of *R*. Let $\mathcal{A} = \text{Filt}(\mathcal{S})$ and $\mathcal{B} = \mathcal{I}_1$.

Then $\mathfrak{C} = (\mathcal{A}, \mathcal{B})$ is a tilting cotorsion pair induced by a countably generated 1-tilting module T.

 $\mathcal{A} = \varinjlim \mathcal{A}^{<\omega}$. However, the definable class \mathcal{B} contains no finitely generated modules, and the same is true of the class $\text{Ker}(\mathfrak{C}) = \text{Add}(T)$.

Let C be a countably presented module in Add(K).

Then there exist a countably presented module $D \in Add(K)$ such that $C \oplus D$ is a countable direct limit of modules from Add(K).

In particular, if $\varinjlim \operatorname{Add}(K)$ is closed under direct summands, then $C \in \varinjlim \operatorname{Add}(K)$.

Assume that either R is countable, or K is a direct sum of countably generated modules.

Then $\widetilde{\operatorname{Add}(K)} = \varinjlim \widetilde{\operatorname{Add}(K)}^{\leq \omega}$.

Theorem

Assume that the class $\varinjlim \operatorname{Add}(K)$ is closed under direct limits and either R is countable, or K is a direct sum of countably generated modules. Then $\varinjlim \operatorname{Add}(K) = \operatorname{Add}(K)$ is a covering class.

Further references

- L. Angeleri Hügel, J. Šaroch, J. Trlifaj, Approximations and Mittag-Leffler conditions - the applications, Israel J. Math. 226(2018), 757-780.
- S. Bazzoni, L. Positselski, J. Šťovíček, Projective covers of flat contramodules, Int. Math. Res. Not. IMRN (2021), DOI:10.1093/imrn/rnab202.
- L. Positselski, J. Šťovíček, *The tilting-cotilting correspondence*, Int. Math. Res. Not. 2021, 189-274.
- J. Šaroch *Approximations and Mittag-Leffler conditions the tools*, Israel J. Math. 226(2018), 737-756.

- G. De Marco, *Projectivity of pure ideals*, Rend. Sem. Mat. Univ. Padova 68(1983), 423-430.
- W. Wm. McGovern, G. Puninski, P. Rothmaler, *When every projective module is a direct sum of finitely generated modules*, J. Algebra 315(2007), 454-481.
- D. Herbera, P. Příhoda, *Reconstructing projective modules from its trace ideal*, J. Algebra 416(2014), 25-57.