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The class lim−→C - the case of small modules

Let R be a ring, and C be a class of (right R-) modules closed under finite
direct sums.

Denote by lim−→C the class of all modules that are direct limits of direct
systems consisting of modules from C.

Lenzing’83

Assume C consists of finitely presented modules. Then M ∈ lim−→C, iff each
homomorphism from a finitely presented module to M factorizes through a
module in C.

The class lim−→C is closed under direct sums, pure submodules, pure
extensions, and pure epimorphic images. In particular, lim−→C is closed
under direct limits, and lim−→C is a covering class.
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The class lim−→C - the case of small modules

Angeleri-T.’04

Assume C that consists of FP2 modules, R ∈ C, and C is closed under
extensions and direct summands. Let L = lim−→C. Then L = ᵀ(Cᵀ).

Hence L is a covering class closed under transfinite extensions (i.e.,
Filt(L) ⊆ L), and L is κ+-deconstructible for κ = card R + ℵ0,
i.e., L ⊆ Filt(L≤κ). So L = Filt(L≤κ).
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The class lim−→C - the general case

Proposition

The class lim−→C is always closed under direct sums.

But lim−→C need not be closed under direct summands or pure extensions.
In particular, lim−→C need not be closed under direct limits:

Examples

Let R be a commutative von Neumann regular semiartinian ring, and
C the class of all finitely generated completely reducible modules.
Then C is closed under (pure) extensions, but lim−→C is not.

[Angeleri-T.’04] Let R = Z and M ∈ Mod–Z be torsion-free, rigid
(i.e. End(M) = Z), and of rank r > 1. Then lim−→ add(M) is not closed
under direct summands.
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The structure of lim−→ add(M)

Theorem

Let M be a module and S = End(M). Denote by FS the class of all flat
right S-modules. Then

lim−→ add(M) = {F ⊗S M | F ∈ FS}.

Proof:

1. lim−→ add(M) = lim−→ sum(M).

2. HomR(Mm,Mn) ∼= Mn×m(S).

3. N = lim−→i∈I M
ni , iff N ∼= F ⊗S M, where F ∈ lim−→i∈I S

ni , that is,
F ∈ FS .
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The structure of lim−→ add(M)

Corollary

The class lim−→ add(M) is deconstructible for each module M ∈ Mod–R.

However, the class lim−→ add(M) need not be closed under extensions even if
add(M) is:

Example

Let R = Zp and M = Jp for a prime p. Then add(M) = sum(M) is closed
under extensions in Mod–R.

The class lim−→ add(M) (= the class of all torsion-free Jp-modules, but
viewed as Zp-modules) is not extension closed in Mod–R.
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The structure of lim−→ add(M)

The old example revisited

Let R = Z and M be a torsion-free rigid abelian group of rank r > 1.

Then all non-zero groups in lim−→ add(M) are of the form F ⊗S M for
0 6= F ∈ FR , so they are torsion-free of rank ≥ 2. Hence Q /∈ lim−→ add(M).

However, E (M) ∼= Q(r) is a direct limit of a suitable countable direct
system of the form M → M → . . . , whence Q(r) ∈ lim−→ add(M).

So in general, lim−→ add(M) need not be closed under extensions or direct
limits.
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The structure of lim−→Add(M)

Theorem

Let M be a module and S = End(M) be its endomorphism ring endowed
with the finite topology (whose base of neighborhoods of zero is formed by
the annihilators of finitely generated submodules of M). Then M is a
discrete left S-module.

Denote by FS the class of all right S-contramodules that are direct limits
of direct systems of projective right S-contramodules. Then

lim−→Add(M) = {F �S M | F ∈ FS}

where F �S M denotes the contratensor product of the right
S-contramodule F with the discrete left S-module M.

Corollary

The class lim−→Add(M) is deconstructible for each module M ∈ Mod–R.
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Sketch of the proof

1. There is a natural equivalence between the additive categories Add(M)
and PS, where the latter denotes the category of all projective right
S-contramodules (= direct summands of free right S-contramodules).

2. The equivalence above extends to an adjunction (ΨM ,ΦM) beween
Mod–R and Contra–S, where the latter denotes the category of all right
S-contramodules. Here, ΨM = HomR(M,−) and ΦM = −�S M.

3. Being a left adjoint, ΦM preserves direct limits. The proof then
proceeds as in the case of lim−→ add(M).
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Another description of lim−→C

Lemma

Let C be a class of modules closed under arbitrary direct sums. Then lim−→C
coincides with the class of all modules M of the form M = C/K where

C ∈ C,

K ⊆ C , and K is a directed union of a direct system of its
submodules, Ki (i ∈ I ), such that

Ki is a direct summand in C , and C/Ki ∈ C, for each i ∈ I .

Easy proof: Let K be the kernel of the canonical presentation of the
direct limit as a factor of the direct sum. Then K has the form described
above.

In particular, each M ∈ lim−→C is a direct limit of a direct system consisting
of modules from C, and of split epimorphisms.
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lim−→ add(M) versus lim−→Add(M)

For any class of modules D,

lim−→ sum(D) = lim−→ add(D) ⊆ lim−→Add(D) = lim−→ Sum(D) ⊆ Ãdd(D)

where Ãdd(D) is the class of all pure-epimorphic images of the modules in
Add(D).

Easy facts

Since Sum(D) ⊆ lim−→ sum(D), the equality in the first inclusion holds
in case lim−→ add(D) is closed under direct limits.

Equality in the second inclusion just says that L = lim−→Add(D) is
closed under pure-epimorphic images. In this case, L is a covering
class.

Jan Trlifaj (MFF UK) Closure properties of lim C October 8, 2021 12 / 24



Failure of equality no. 2

Example

Let K be a field, R be the K -algebra of all eventually constant sequences
in the K -algebra Q = Kω of all sequences of elements of K . Then Q is
the maximal quotient ring of R, and

Mod–Q = lim−→ add(Q) = lim−→Add(Q) ( Ãdd(Q) = Gen(QR).

Here, Mod–Q is not a full subcategory of Mod–R, and it is not closed
under direct summands in Mod–R.
Hence, Mod–Q is not closed under direct limits in Mod–R.
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Sufficient conditions for equality no. 1

Lemma

Assume that D consists of small modules (or D = {M} for a self-small
module). Then lim−→ add(D) = lim−→Add(D).

Further positive cases

The equality holds when

D is a class of injective modules over a right noetherian ring R.

D = {T−1R/R} where R is left noetherian and T is a countable
multiplicative set of (some) central elements of R.

...
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The case of projective modules

Open problem

Let P be a projective module. Does lim−→ add(P) = lim−→Add(P)?

By the Lemma above, the equality holds when P is a direct sum of finitely
generated modules.

[Př́ıhoda]

Add(P) ⊆ lim−→ add(P) for each projective module P.
That is, lim−→ add(P) and lim−→Add(P) contain the same projective modules.
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Countably generated projective modules

Example: Continuous real functions

Let R = C〈0,1〉 be the ring of all continuous real functions on 〈0, 1〉.
Then each countably generated pure ideal in R is projective.
Moreover, pure ideals P of R correspond 1-1 to closed subsets of 〈0, 1〉
via the mutually inverse assignments

ϕ : P 7→ X =
⋂
f ∈P

f −1(0)

φ : X 7→ {f ∈ R | f −1(0) contains some open neighborhood of X}.
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Countably generated projective modules

Let P be a pure ideal in R = C〈0,1〉 which is not finitely generated.

There is a countable set I such that P =
⊕

i∈I Pi and

ϕ(Pi ) = 〈0, 1〉 \ Oi ,

where {Oi | i ∈ I} is a set of pairwise disjoint open intervals in 〈0, 1〉.
P is not self-small.

S = End(P) ∼=
∏

i∈I Si , where Si = COi
, the ring of all continuous

real functions on Oi .

lim−→ add(P) = lim−→Add(P) = {F ∈ Mod–R | F ∈ FS and F .P = F}.

Kaplansky’s example is the particular case of X = {0}. Here, P = ψ(X ) is
an indecomposable countably generated projective module, and
S = C(0,1〉 ) R.
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Countably generated pure ideals in commutative
rings

Theorem

Let R be a commutative ring and P a countably generated pure ideal in R
(= trace ideal of a countably generated projective module).
Let S = End(P). Then P is projective, and

lim−→ add(P) = lim−→Add(P) = {F ∈ Mod–R | F ∈ FS , F .P = F} = Ãdd(P)

is a covering class.
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The tilting case, and more ...

[Šaroch’18], [Angeleri-Šaroch-T.’18]

Let C = (A,B) be a cotorsion pair such that B is closed under direct
limits. Then

B is a definable class.

Ker(C) = A ∩ B = Add(K ) for a module K .

Ãdd(K ) = Ã ∩ B.

Ã = lim−→(Ã≤ω).

Tilting as a special case: C is tilting (that is, B = T⊥∞ for a tilting
module T ), iff moreover C is hereditary, and A consists of modules of
bounded projective dimension.

If C is tilting, then we can take K = T , and T determines C. In this case
even Ã = lim−→(Ã<ω) = lim−→A

<ω.
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A 1-tilting example

Let R be a regular local ring of Krull dimension 2. Let S be the set of all
ideals of R. Let A = Filt(S) and B = I1.

Then C = (A,B) is a tilting cotorsion pair induced by a countably
generated 1-tilting module T .

Ã = lim−→A
<ω. However, the definable class B contains no finitely

generated modules, and the same is true of the class Ker(C) = Add(T ).
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Countably presented modules

Let C be a countably presented module in Ãdd(K ).

Then there exist a countably presented module D ∈ Add(K ) such that
C ⊕ D is a countable direct limit of modules from Add(K ).

In particular, if lim−→Add(K ) is closed under direct summands, then
C ∈ lim−→Add(K ).
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lim−→Add(K ) versus Ãdd(K )

Assume that either R is countable, or K is a direct sum of countably
generated modules.

Then Ãdd(K ) = lim−→ Ãdd(K )
≤ω

.

Theorem

Assume that the class lim−→Add(K ) is closed under direct limits and either
R is countable, or K is a direct sum of countably generated modules.

Then lim−→Add(K ) = Ãdd(K ) is a covering class.
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