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Tilting modules and classes

Definition

A (right R-) module T is tilting provided that

(T1) T has finite projective dimension,

(T2) ExtiR(T , T (κ)) = 0 for each cardinal κ and each i > 0, and

(T3) there exists an exact sequence 0 → R → T0 → · · · → Tr → 0 such
that r < ω, and for each i ≤ r , Ti ∈ Add(T ),
i.e., Ti is a direct summand in a direct sum of copies of T .

If pdR(T ) ≤ n, then T is called n-tilting.
0-tilting modules = projective generators (possibly infinitely generated).

B =
⋂

i>0 KerExtiR(T ,−) is the (right) tilting class induced by T .

A = KerExt1R(−,B) is the left tilting class induced by T .

A tilting module T̃ is equivalent to T in case Add(T ) = Add(T̃ ).
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Basic restriction for the commutative setting

Let R be a commutative ring.

(i) If T is a tilting module of projective dimension > 0, then T is not
finitely generated.

(ii) If T ∈ mod–R and 1 ≤ pdR(T ) = n < ∞, then ExtnR(T , T ) 6= 0.
Hence T fails condition (T2).

Proof of (ii)

All syzygies of T are finitely generated, so pdR(T ) = maxm pdRm
(Tm).

Take m ∈ mSpec(R) such that pdRm
(Tm) = n. Then Tm ∈ mod–Rm and

(ExtnR(T , T ))m ∼= ExtnRm
(Tm, Tm), so w.l.o.g., R is local. Let F be the

minimal free resolution of T . F is given by an iteration of projective
covers, so dk(Fk) ⊆ mFk−1 for each k > 0 where dk is the differential.
As ExtnR(T ,−) is right exact, the epimorphism T → T/mT induces a
surjection ExtnR(T , T ) → ExtnR(T , T/mT ). However, ExtnR(T , T/mT ) ∼=
Ext1R(Ωn−1(T ), T/mT ) ∼= HomR(Fn, T/mT ) 6= 0.
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Tilting abelian groups

Theorem

Let P ⊆ Spec(Z) \ {0}, and Z ⊆ AP ⊆ Q and AP/Z ∼=
⊕

p∈P Zp∞ .

TP = AP ⊕ AP/Z is a tilting abelian group,

BP = {A ∈ Mod–Z | Ap = A for all p ∈ P}.

Each tilting abelian group is equivalent to TP for some P ⊆ Spec(Z) \ {0}.
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Finite type

Theorem

Let T be a tilting module with the induced left and right tilting classes

A and B, respectively.

Then there is a set S consisting of strongly finitely presented modules in

A, such that

B = KerExt1R(S,−).

One can always take S = A ∩ mod–R; in this case A ⊆ lim
−→

S.

Terminology: The set S witnesses the finite type of T .

Abelian groups, cont.

For P ⊆ Spec(Z) \ {0}, we can take SP = {Zp | p ∈ P}.
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Characteristic sequences over commutative rings

A subset P ⊆ Spec(R) is Thomason, if P =
⋃

I∈I V (I ) for a set I
consisting of finitely generated ideals of R.
Here, V (I ) = {p ∈ Spec(R) | I ⊆ p}.

If M ∈ Mod–R and p ∈ Spec(R), then p is vaguely associated to M,
if R/p is contained in the smallest subclass of Mod–R containing M

and closed under submodules and direct limits. Def.: p ∈ Vass(M).

Example: If R is noetherian, then Thomason subsets = upper subsets,
and weakly associated primes = associated primes.

Let R be a commutative ring. A sequence P̄ = (P0, . . . ,Pn−1) of
Thomason subsets of Spec(R) is called characteristic, if

P0 ⊇ P1 ⊇ · · · ⊇ Pn−1, and

Vass(Ω−i (R)) ∩ Pi = ∅ for all i < n.
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Structure of tilting classes over commutative rings

For R commutative and n ≥ 1, there is a bijection between:

characteristic sequences of length n, and

right n–tilting classes in Mod–R.

The right n-tilting class TP corresponding to a characteristic sequence
P̄ = (P0, . . . ,Pn−1), where Pi =

⋃
I∈Ii

V (I ) for each i < n, equals

TP̄ = {M ∈ Mod–R | TorRi (R/I , M) = 0 ∀i < n ∀I ∈ Ii}.

For an n-tilting module T inducing the n-tilting class T , the corresponding
characteristic sequence P̄T = (P0, . . . ,Pn−1) satisfies for each i < n

Pi = {p ∈ Spec(R) | ∃i < k ≤ n : TorRk (E (R/p), T ) 6= 0}.

(Note: the structure of tilting modules is still an open problem ...)
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Quasi-coherent sheaves as representations

Let X be a scheme and R = (R(U) | U ⊆ X , U open affine ) be its
structure sheaf.

A quasi-coherent sheaf M on X can be represented by an assignment

to every affine open subset U ⊆ X , an R(U)-module M(U) of
sections, and

to each pair of open affine subsets V ⊆ U ⊆ X ,
an R(U)-homomorphism fUV : M(U) → M(V ) such that

idR(V ) ⊗ fUV : R(V ) ⊗R(U) M(U) → R(V ) ⊗R(U) M(V ) ∼= M(V )

is an R(V )-isomorphism.

+ compatibility conditions: if W ⊆ V ⊆ U, then fUV fVW = fUW .
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Properties of the representations

Exactness

The functors R(V ) ⊗R(U) − are exact, i.e., the R(U)-modules R(V ) are
flat (in fact, they are “very flat”).

Non-uniqueness of the representations

Not all affine open subsets are needed: a set of them, S, covering both X ,
and all U ∩ V where U, V ∈ S, will do.

The affine case (Grothendieck)

If X = Spec(R) for a commutative ring R, then S = {X} is enough, so

quasi-coherent sheaves on X = R-modules.
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Extending properties from modules to qc-sheaves

Definition

Let P be a property of modules. A qc-sheaf M on a scheme X is
a locally P qc-sheaf provided that for each open affine set U of X ,
M(U) satisfies P as an R(U)-module.

Requirement: Properties studied for qc-sheaves should be “independent
of coordinates”, i.e., for each scheme X , it should be possible to test for
the property using an (arbitrary) open affine covering of X .

Definition

The notion of a locally P qc-sheaf is Zariski local if for each scheme X ,
each open affine covering X =

⋃
V∈S

V of X , and each qc-sheaf M on X ,
if M(V ) satisfies P as R(V )-module for each V ∈ S, then M is a locally
P-qc-sheaf.
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Ascent and descent along flat base changes

Definition

A property of modules P is called an ad-property provided that

if ϕ : R → S is any flat ring homomorphism, then P ascends along ϕ
(i.e., if M satisfies P as R–module, then so does M ⊗R S as
S–module), and

if ϕ : R → S is any faithfully flat ring monomorphism, then P

descends along ϕ (i.e., if M ⊗R S satisfies P as S-module, then so
does M as R–module).
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Sufficient conditions for Zariski locality

Lemma

Let P be an ad-property of modules over commutative rings.

Then the notion of a locally P qc-sheaf is Zariski local.

Affine Communication Lemma (ACL)

A weaker property is sufficient:

(1) P ascends along all localizations ϕ : R → Rf where f ∈ R, and

(2) P descends along all faithfully flat ring monomorphisms of the form
ϕf0,...,fm−1 : R →

∏
j<m Rfj where R =

∑
j<m fjR.
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The basic example: vector bundles

Definition

A qc-sheaf M on a scheme X is an (infinite dimensional) vector bundle,
if M(U) is a projective R(U)-module for each open affine set U of X .

(So vector bundles are exactly the locally projective qc-sheaves.)

Theorem

The notion of a vector bundle is Zariski local.

(Conjectured by Grothendieck in the 1960’s, proved in 1971 by Raynaud
and Gruson, by showing that projectivity is an ad-property.)
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Locally tilting quasi-coherent sheaves

Definition

Let n < ω. A qc-sheaf M on a scheme X is locally n-tilting,
if M(U) is an n-tilting R(U)-module for each open affine set U of X .

Let 0 ≤ n. A qc-sheaf M on a scheme X is locally left n-tilting (locally
Add-n-tilting), if for each open affine set U of X , there exists an n-tilting
R(U)-module T (U) such that M(U) ∈ AT (U) (M(U) ∈ Add(T (U))).

Problem: Are these three notions Zariski local for each n?

(The latter two are Zariski local for n = 0 by the Theorem of Raynaud and
Gruson above, as they coincide with the notion of a vector bundle.)
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Tilting and flat base change

Ascent-Descent Lemma

Let ϕ : R → S be a flat ring homomorphism of commutative rings, and T

be an n-tilting R-module with the left and right tilting classes A and B,
respectively.

T ′ = T ⊗R S is an n-tilting S-module. So the property of being an
n-tilting module ascends along ϕ.

Let B′ be the right n-tilting class induced by T ′. Then
B′ = B ∩ Mod–S , and for each module N ∈ Mod–R, N ∈ B, iff
N ⊗R S ∈ B′.

If ϕ is a faithfully flat ring monomorphism, then for each M ∈ Mod–R,
M ∈ A, iff M ⊗R S ∈ A′, where A′ is the left n-tilting class induced by T ′.
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Tools: Mittag-Leffler conditions

Definition

An inverse system of modules H = (Hi , hij | i ≤ j ∈ I ) is Mittag-Leffler, if
for each k ∈ I there exists k ≤ j ∈ I , such that Im(hkj) = Im(hki ) for each
j ≤ i ∈ I , that is, the terms of the decreasing chain (Im(hki ) | k ≤ i ∈ I )
of submodules of Hk stabilize.

Let B be a module and M = (Mi , fji | i ≤ j ∈ I ) a direct system of finitely
presented modules. An application of HomR(−, B) yields the induced
inverse system H = (Hi , hij | i ≤ j ∈ I ), where Hi = HomR(Mi , B) and
hij = HomR(fji , B) for all i ≤ j ∈ I .

Let B be a class of modules. A module M is B-stationary, if M is a direct
limit of a direct system M of finitely presented modules so that for each
B ∈ B, the induced inverse system H is Mittag-Leffler.
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Tools: Mittag-Leffler conditions and generalized

dévisage

Lemma

In the setting of the Ascent-Descent Lemma, let S = A ∩ mod–R. Let

C ∈ Mod–R and C ′ = C ⊗R S.

If C ∈ lim
−→

S is countably presented, then C ∈ A, iff C is B-stationary.

Assume that ϕ is faithfully flat, and C ′ ∈ lim
−→

(S ⊗R S) is countably

presented. Then C ∈ lim
−→

S and C is countably presented. Moreover,

the equivalent conditions above are further equivalent to C ′ being

B′-stationary, and hence to C ′ ∈ A′.

If ϕ is faithfully flat, then for each M ∈ Mod–R, M ∈ A, iff M ⊗R S ∈ A′.
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Characteristic sequences and flat base change

Let ϕ : R → S be the faithfully flat ring monomorphism from condition
(2) of the ACL.

If P̄ is a characteristic sequence in Spec(R) corresponding to an
n-tilting module T , then the characteristic sequence in Spec(S)
corresponding to T ′ = T ⊗R S is Q̄P̄ , where for each i < n, Qi is
defined by Qi = {q ∈ Spec(S) | ∃p ∈ Pi : pS ⊆ q}.

Let T ∈ Mod–R be such that T ′ = T ⊗R S is an n-tilting S-module.
Then the characteristic sequence Q̄ in Spec(S) corresponding to T ′ is
of the form Q̄P̄ for some characteristic sequence P̄ in Spec(R).
Hence T satisfies conditions (T1) and (T2).
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Zariski locality

Theorem

The notions of a locally left n-tilting, locally Add-n-tilting, and locally

n-tilting quasi-coherent sheaves are Zariski local for each n ≥ 0.

If R is noetherian, then for each n ≥ 0, the property of being an

n-tilting module is an ad-property.
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