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Overview

1. The role of projectivity and injectivity in representation theory

2. Baer Criterion for injectivity, and Faith’s Problem on its dual

3. Shelah’s Uniformization and the vanishing of Ext

4. The algebra of eventually constant sequences

5. Jensen’s Diamond, and the independence of Faith’s Problem of ZFC

6. Further examples in ZFC
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Representable functors

Let R be a ring, Mod–R the category of all (right R-) modules, and
M ∈ Mod–R.

M induces two representable functors from Mod–R to Mod–Z: the
covariant F = HomR(M,−), and the contravariant G = HomR(−,M).

Both these functors are left exact, i.e., given a short exact sequence

0→ A
ν→ B

π→ C → 0

in Mod–R, the sequences

0→ F (A)
F (ν)→ F (B)

F (π)→ F (C )

0→ G (C )
G(π)→ G (B)

G(ν)→ G (A)

are exact in Mod–Z.
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Projective modules

Definition

M is a projective module, if HomR(M,−) is exact. Equivalently, for each
short exact sequence of modules 0→ A→ B

π→ C → 0 and each
f ∈ HomR(M,C ), there is a factorization of f through π:

M

���
�
�

f

  @@@@@@@@

0 // A // B
π // C // 0
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The role of projective modules

Free modules are projective, hence each module M can be presented
as a homomorphic image of a projective module P:
0→ K = Ker(π)→ P

π→ M → 0.

Iterating the presentation, we obtain a projective resolution of M:
· · · → Pn → Pn−1 → · · · → P1 → P0 → M → 0.

Given N ∈ Mod–R, we can apply HomR(−,N) to the resolution
above. The cohomology groups of the resulting complex are denoted
by ExtnR(M,N) (n ≥ 0).

These groups fit in a long exact sequence measuring the
non-exactness of Hom: for 0→ A→ B → C → 0 a short exact
sequence, we obtain the long one:

0→ HomR(C ,N)→ HomR(B,N)→ HomR(A,N)→ Ext1R(C ,N)→

→ Ext1R(B,N)→ Ext1R(A,N)→ Ext2R(C ,N)→ . . .

Jan Trlifaj (MFF UK) Faith’s problem is independent CUNY Logic 5 / 31



Ext and extensions

Let M be a module. Then M is projective, iff Ext1R(M,N) = 0 for all

N ∈ Mod–R. Given a presentation 0→ A
ν→ B → M → 0 of the

module M with B projective, and a module N, we can employ the
long exact sequence above and compute Ext by the formula
Ext1R(M,N) ∼= HomR(A,N)/Im(HomR(ν,N)).

Ext1R(M,N) can equivalently be defined as the group of equivalence
classes of extensions of N by M, i.e., the short exact sequences
0→ N → X → M → 0, with the equivalence is defined by

0 −−−−→ N −−−−→ X −−−−→ M −−−−→ 0∥∥∥ y ∥∥∥
0 −−−−→ N −−−−→ X ′ −−−−→ M −−−−→ 0

Addition is given by the Baer sum, and 0 is the equivalence class of
the split extension 0→ N → N ⊕M → M → 0.
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The dual approach via injective modules

Definition

N is an injective module, if HomR(−,N) is exact. Equivalently, for each
short exact sequence of modules 0→ A

ν→ B → C → 0 and each
f ∈ HomR(A,N), there is a factorization of f through ν:

N

0 // A
ν //

f
??�������
B //

OO�
�
�

C // 0
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The role of injective modules

Each module N is a submodule of an injective module I . Even in a
‘minimal way’, so N has an injective envelope E (M).

By iteration, we obtain a (minimal) injective coresolution of N:
0→ N → I0 → I1 → · · · → In−1 → In → . . . .

Given M ∈ Mod–R, we can apply HomR(M,−) to the coresolution
above. The cohomology groups of the resulting complex give an
alternative way of defining ExtnR(M,N) (n ≥ 0).

N is injective, iff Ext1R(M,N) = 0 for all M ∈ Mod–R. This can be
used to compute Ext via Hom using an injective copresentation of N.
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The Baer Criterion for Injectivity

[Baer 1940]

The injectivity of a module M is equivalent to its R-injectivity,
for any ring R and any module M ∈ Mod–R.

Definition

M is R-injective, if for each right ideal I , all f ∈ HomR(I ,M) extend to R:

M

0 // I
⊆ //

f
@@��������
R //

OO�
�
�

R/I // 0
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Corollaries for the stucture theory

Definition

Let R be an integral domain. A module M is divisible, if M.r = M for
each 0 6= r ∈ R.
Equivalently, Ext1R(R/rR,M) = 0 for each 0 6= r ∈ R.

Corollaries of Baer’s Criterion

injectivity = divisibility for R a Dedekind domain.

Let R be a right noetherian ring. Then each injective module is
uniquely a direct sum of modules isomorphic to E (R/I ) for some
ideals I of R such that R/I uniform.

(Matlis) Let R be a commutative noetherian ring. Then each
injective module is uniquely a direct sum of modules isomorphic to
E (R/p) for some prime ideals p of R.
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Faith’s Problem

Original formulation

Algebra II - Ring Theory, Springer GMW 191, 1976.
Notes for Chapter 22 on p.175:

Sandomierski [64] showed that over a perfect ring R, that R is a “test module” for

projectivity in a sense dual to the requirement for injectivity of a module M that maps of

submodules of R into M can be lifted to maps of R → M (Baer’s Criterion for Injectivity

3.41 (I, p. 157)). The characterization of all such rings is still an open problem.

Faith’s problem in short

For what rings R does the Dual Baer Criterion hold, i.e.,
when is projectivity equivalent to R-projectivity?
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Notation

Definition

M is R-projective, if for each right ideal I , all f ∈ HomR(M,R/I ) factorize
through πI :

M

���
�
�

f

!!CCCCCCCC

0 // I
⊆ // R

πI // R/I // 0

Equivalently, HomR(M, πI ) is surjective for each right ideal I of R.

Definition

The rings R such that projectivity of a module M ∈ Mod–R is equivalent
to its R-projectivity are called right testing.

Jan Trlifaj (MFF UK) Faith’s problem is independent CUNY Logic 12 / 31



Projectivity relative to a module

Definition

Let M and B be modules. Then M is projective relative to B, or
B-projective, if for each short exact sequence 0→ A→ B

π→ C → 0, all
f ∈ HomR(M,C ) factorize through π:

M

���
�
�

f

  @@@@@@@@

0 // A // B
π // C // 0
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Relative projectivity and finite direct sums

Lemma

Assume that M is Bi -projective for each i < n. Then M is B-projective,
where B =

⊕
i<n Bi .

Proof: By induction on n.

For the inductive step, it suffices to consider the case when B = B0 ⊕ B1.
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We use the following commutative diagram:

0 0 0y y y
0 −−−−→ B0 ∩ K

⊆−−−−→ K −−−−→ ρ(K ) −−−−→ 0

⊆
y ⊆

y ⊆
y

0 −−−−→ B0
⊕−−−−→ B0 ⊕ B1

ρ−−−−→ B1 −−−−→ 0

πB0∩K

y πK

y y
0 −−−−→ B0 + K/K

⊆−−−−→ B0 + B1/K −−−−→ B0 + B1/B0 + K −−−−→ 0y y y
0 0 0.
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R-projectivity for finitely generated modules

Lemma

Assume M ∈ Mod–R is finitely generated. Then M is R-projective, iff M
is projective.

Proof: By the above, R-projectivity implies Rn-projectivity for each n < ω.
Assume M is n-generated. Then the identity map 1M : M → M factorizes
through π in the free presentation of M:

M

���
�
�

1M

!!BBBBBBBB

0 // K // Rn π // M // 0

i.e., the free presentation splits.
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R-projectivity of divisible modules

Lemma

Let R be an integral domain and M be a divisible module. Then M is
R-projective.

Proof: Assume M is divisible and let I be a non-zero ideal of R such that
0 6= HomR(M,R/I ). Then R/I contains a non-zero divisible submodule of
the form J/I for an ideal I ( J ⊆ R. Let 0 6= r ∈ I . The r -divisibility of
J/I yields Jr + I = J, but Jr ⊆ I , a contradiction. So HomR(M,R/I ) = 0
for each non-zero ideal I of R, and M is R-projective.

Corollary

Q is a countable Z-projective, but not projective, Z-module.
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Perfect versus non-perfect rings

Definition

A ring R is right perfect, if R contains no infinite strictly decreasing chain
of principal left ideals. E.g., each right artinian ring is right perfect.

The positive perfect case [Sandomierski 1964]

Each right perfect ring is right testing.

Some negative non-perfect cases

[Hamsher 1966] If R is commutative and noetherian, then R is
testing, iff R is artinian.

If R is an integral domain, then R is testing, iff R is a field.

[Puninski et. al. 2017] Let R be a semilocal right noetherian ring.
Then R is right testing, iff R is right artinian.
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Ladders and stationary sets

Ladders

Let κ be an uncountable cardinal of cofinality ω and E ⊆ Eω, where
Eω = {α < κ+ | cf(α) = ω}.
A sequence (nα | α ∈ E ) is a ladder system, if for each α ∈ E , nα is a
ladder, i.e., a strictly increasing countable sequence (nα(i) | i < ω)
consisting of non-limit ordinals such that supi<ωnα(i) = α.

Stationary sets

Let κ be a regular uncountable cardinal.

A subset C ⊆ κ is called a club provided that C is closed in κ (i.e.,
sup(D) ∈ C for each subset D ⊆ C such that sup(D) < κ) and C is
unbounded (i.e., sup(C ) = κ).

E ⊆ κ is stationary provided that E ∩ C 6= ∅ for each club C ⊆ κ.

Example: Eω is stationary in κ+.
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Shelah’s Uniformization Principle (UP)

Uniformization of colorings

(UPκ) There exist a stationary set E ⊆ Eω and a ladder system
(nα | α ∈ E ), such that for each cardinal λ < κ and each sequence
(hα | α ∈ E ) of maps (local λ-colorings) from ω to λ there exists a
map (global λ-coloring) f : κ+ → λ, such that for each α ∈ E ,
f (nα(i)) = hα(i) for almost all i < ω.

(UP) UPκ holds for each uncountable cardinal κ of cofinality ω.

Theorem (Eklof-Shelah 1991)

UP is consistent with ZFC + GCH.
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Faith’s problem under Shelah’s uniformization

[T. 1996]

Let R be a non-right perfect ring and κ an uncountable cardinal of
cofinality ω, such that card(R) < κ and UPκ holds. Then there exists
a κ+-generated module Mκ of projective dimension 1 such that
Ext1R(Mκ, I ) = 0 for each right ideal I of R.

[Puninski et al. 2017]

The module Mκ is R-projective, but not projective.

Proof: HomR(Mκ,R)
HomR(Mκ,πI )→ HomR(Mκ,R/I )→ Ext1R(Mκ, I ) = 0 is

an exact sequence. So HomR(Mκ, πI ) is surjective for each right ideal I of
R, and Mκ is R-projective.

Corollary

Assume UP. Then right testing rings coincide with the right perfect ones.
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The construction of the module Mκ

Mκ is defined by a free presentation

(∗) 0→ G
ν→ F → Mκ → 0,

where F =
⊕

α<κ+ Fα, Fα = R(ω) for α ∈ E , and Fα = R otherwise.

Let 1α be the canonical free generator of Fα for α /∈ E , and {1α,i | i < ω}
the canonical free basis of Fα for α ∈ E .

Let R ) Ra0 ) Ra1a0 ) · · · ) Ran...a0 ) Ran+1an...a0 ) . . . be a strictly
decreasing chain of principal left ideals of R.

For α ∈ E and i < ω, we define gα,i = 1να(i)
− 1α,i + 1α,i+1.ai , and

G =
⊕

α∈E ,i<ω gα,iR.

Lemma

The presentation (∗) above is free, but non-split, whence the projective
dimension of Mκ = F/G equals 1.
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The vanishing of Ext1
R(Mκ, I )

Recall that Ext1R(M, I ) = 0, iff HomR(G , I ) = Im(HomR(ν, I )), iff each
homomorphism ϕ ∈ HomR(G , I ) extends to some ψ ∈ HomR(F , I ).

Let λ = card(I ). Then λ < κ, and h defines a local λ-coloring from ω to λ
by hα(i) = ϕ(gα,i ).

The global λ-coloring f : κ+ → λ provided by (UPκ) can be used to define
ψ ∈ HomR(F , I ) so that ϕ = ψ � G , i.e., prove that Ext1R(Mκ, I ) = 0.

Remark: The global coloring f coincides with each of the local colorings
hα almost everywhere, while we need ψ to restrict to ϕ everywhere.
This can be fixed using the extra space provided by Fα (recall that for
α ∈ E , Fα has rank ℵ0 rather than 1).
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Jensen’s functions

Let κ be a regular uncountable cardinal.

Let A be a set of cardinality ≤ κ. An increasing continuous chain,
A = (Aα | α < κ), consisting of subsets of A of cardinality < κ, such
that A0 = 0 and A =

⋃
α<κ Aα, is called a κ-filtration of the set A.

Let E be a stationary subset of κ. Let A and B be sets of cardinality
≤ κ. Let A and B be κ-filtrations of A and B, respectively. For each
α < κ, let cα : Aα → Bα be a map. Then (cα | α < κ) are
Jensen-functions provided that for each map c : A→ B, the set
E (c) = {α ∈ E | c � Aα = cα} is stationary in κ.

Theorem (Jensen 1972)

Assume Gödel’s Axiom of Constructibility (V = L). Let κ be a regular
uncountable cardinal, E ⊆ κ a stationary subset of κ, and A and B sets of
cardinality ≤ κ. Let A and B be κ-filtrations of A and B, respectively.
Then there exist Jensen-functions (cα | α < κ).
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The algebra of eventually constant sequences

Let K be a field. Denote by E(K ) the unital K -subalgebra of Kω

generated by K (ω). In other words, E(K ) is the subalgebra of Kω

consisting of all eventually constant sequences in Kω.

Basic properties

Let R = E(K ).

R is a commutative von Neumann regular hereditary semiartinian ring
of Loewy length 2 with Soc(R) = K (ω).

R is not perfect.

A module M is R-projective, if each f ∈ HomR(M,Soc(R)) factors
through the canonical projection π : R → R/Soc(R).

If M ∈ Mod–R is countably generated, then M is R-projective, iff M
is projective.
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Faith’s problem under V = L

Theorem (T. 2017)

Assume V = L. Let K be a field of cardinality ≤ 2ω, and R = E(K ).
Then R is right testing.
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Sketch of proof

Let M be an R-projective module and κ be the minimal number of
R-generators of M. The proof is by induction on κ:

If κ ≤ ℵ0, then we use the last basic property above.

If κ is regular and uncountable, then M can be expressed as the union of a
continuous chain of its < κ-generated submodules M = (Mα | α < κ).
W.l.o.g., we can assume that if Mβ/Mα is not R-projective, then
Mα+1/Mα is not R-projective, too. Using Jensen-functions, one proves
that the set E = {α < κ | Mα+1/Mα is not R-projective } is not
stationary in κ. Then we can select a continuous subchain M′ of M such
that M ′α+1/M ′α is R-projective for each α < κ. By the inductive premise,
M ′α+1/M ′α is projective, and hence M ′α+1 = M ′α ⊕ Pα for a < κ-generated
projective module Pα. Then M = M ′0 ⊕

⊕
α<κ Pα is projective.

If κ is singular, we use a version of Shelah’s Compactness Theorem pro
projective modules.
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Faith’s problem is independent of ZFC + GCH

The statement ‘There exists a right testing, but non-right perfect ring’ is
independent of ZFC + GCH.

Proof: Assuming UP, we get that each right testing ring is right perfect,
but V = L implies that the non-right perfect ring of all eventually constant
sequences E(K ) is right testing.

Jan Trlifaj (MFF UK) Faith’s problem is independent CUNY Logic 28 / 31



Further examples

Example 1

Let R be an infinite direct product of skew-fields. Then all R-projective
modules are non-singular, and the Dual Baer Criterion holds for all
countably generated modules.

Example 2

Let R be a von Neumann regular right self-injective ring which is purely
infinite (e.g., R is the endomorphism ring of any infinite dimensional right
vector space over a skew-field). Then the Dual Baer Criterion holds for all
≤ 2ℵ0-presented modules of projective dimension ≤ 1.
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