Very flat and locally very flat modules

New Pathways between Group Theory and Model Theory

A conference in memory of Rüdiger Göbel

Mülheim, February 3rd, 2016

Jan Trlifaj (Univerzita Karlova, Praha)

- 4 同 6 4 日 6 4 日 6

Rüdiger Göbel (1940 — 2014)

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・

I. The background: Classic structure theory of modules, and its limitations

通 ト イヨ ト イヨト

Direct sum decompositions

A class of modules C is decomposable, provided that there is a cardinal κ such that each module in C is a direct sum of strongly $< \kappa$ -presented modules from C.

Examples

1. (Kaplansky) The class \mathcal{P}_0 of all projective modules is decomposable.

2. (Faith-Walker) The class \mathcal{I}_0 of all injective modules is decomposable iff R is a right noetherian ring.

3. (Huisgen-Zimmermann) Mod-R is decomposable iff R is a right pure-semisimple ring. In fact, if M is a module such that Prod(M) is decomposable, then M is Σ -pure-injective.

Note: Krull-Schmidt type theorems hold in the cases 2. and 3. (Rüdiger's Memorial) Very flat and locally very flat modules Such examples, however, are rare in general – most classes of (large) modules are not decomposable.

Example

Assume that the ring R is not right perfect, that is, there is a strictly decreasing chain of principal left ideals

$$Ra_0 \supseteq \cdots \supseteq Ra_n \dots a_0 \supseteq Ra_{n+1}a_n \dots a_o \supseteq \dots$$

Then the class \mathcal{F}_0 of all flat modules is not decomposable.

Example

There exist arbitrarily large indecomposable flat (= torsion-free) abelian groups.

イロト イポト イヨト イヨト

Transfinite extensions

Let $\mathcal{A} \subseteq \text{Mod-}R$. A module M is \mathcal{A} -filtered (or a transfinite extension of the modules in \mathcal{A}), provided that there exists an increasing sequence $(M_{\alpha} \mid \alpha \leq \sigma)$ consisting of submodules of M such that $M_0 = 0$, $M_{\sigma} = M$, • $M_{\alpha} = \bigcup_{\beta < \alpha} M_{\beta}$ for each limit ordinal $\alpha \leq \sigma$, and

• for each $\alpha < \sigma$, $M_{\alpha+1}/M_{\alpha}$ is isomorphic to an element of \mathcal{A} .

Notation: $M \in Filt(\mathcal{A})$. A class \mathcal{A} is filtration closed if $Filt(\mathcal{A}) = \mathcal{A}$.

Eklof's Lemma

 ${}^{\perp}\mathcal{C} := \operatorname{KerExt}_{R}^{1}(-,\mathcal{C})$ is filtration closed for each class of modules \mathcal{C} .

In particular, so are the classes \mathcal{P}_n and \mathcal{F}_n of all modules of projective and flat dimension $\leq n$, for each $n < \omega$.

Deconstructible classes

[Eklof]

A class of modules \mathcal{A} is deconstructible, provided there is a cardinal κ such that $\mathcal{A} = \operatorname{Filt}(\mathcal{A}^{<\kappa})$ where $\mathcal{A}^{<\kappa}$ denotes the class of all strongly $< \kappa$ -presented modules from \mathcal{A} .

All decomposable classes closed under direct summands are deconstructible.

For each $n < \omega$, the classes \mathcal{P}_n and \mathcal{F}_n are deconstructible.

[Eklof-T.]

More in general, for each set of modules S, the class $^{\perp}(S^{\perp})$ is deconstructible. Here, $S^{\perp} := \text{KerExt}^{1}_{R}(S, -)$.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

Approximations for relative homological algebra

A class of modules \mathcal{A} is precovering if for each module M there is $f \in \operatorname{Hom}_R(A, M)$ with $A \in \mathcal{A}$ such that each $f' \in \operatorname{Hom}_R(A', M)$ with $A' \in \mathcal{A}$ factorizes through f:

The map f is an \mathcal{A} -precover of M.

If f is moreover right minimal (that is, f factorizes through itself only by an automorphism of A), then f is an A-cover of M.

If \mathcal{A} provides for covers for all modules, then \mathcal{A} is called a covering class. Dually, \mathcal{A} -(pre)envelopes and enveloping classes of modules are defined.

(Rüdiger's Memorial)

Very flat and locally very flat modules

The abundance of approximations

[Enochs], [Šťovíček]

- Each precovering class closed under direct limits is covering.
- All deconstructible classes are precovering.

In particular, the class $^{\perp}(S^{\perp})$ is precovering for any set of modules S. *Note:* If $R \in S$, then $^{\perp}(S^{\perp})$ coincides with the class of all direct summands of S-filtered modules.

Flat Cover Conjecture

 \mathcal{F}_0 is deconstructible, and hence covering for any ring R (and so are the classes \mathcal{F}_n for each n > 0).

The classes \mathcal{P}_n $(n \ge 0)$ are precovering. . . .

イロト イポト イヨト イヨト

Bass modules

Let *R* be a ring and \mathcal{F} be a class of countably presented modules. $\lim_{B \to \omega} \mathcal{F}$ denotes the class of all Bass modules over \mathcal{F} , that is, the modules *B* that are countable direct limits of modules from \mathcal{F} . W.l.o.g., such *B* is the direct limit of a chain

$$F_0 \xrightarrow{f_0} F_1 \xrightarrow{f_1} \ldots \xrightarrow{f_{i-1}} F_i \xrightarrow{f_i} F_{i+1} \xrightarrow{f_{i+1}} \ldots$$

with $F_i \in \mathcal{F}$ and $f_i \in \operatorname{Hom}_R(F_i, F_{i+1})$ for all $i < \omega$.

The classic Bass module

Let \mathcal{F} be the class of all finitely generated projective modules. Then the Bass modules coincide with the countably presented flat modules. If R is not right perfect, then a classic Bass module B arises when $F_i = R$ and f_i is the left multiplication by a_i ($i < \omega$) where $Ra_0 \supseteq \cdots \supseteq Ra_n \ldots a_0 \supseteq Ra_{n+1}a_n \ldots a_o \supseteq \ldots$ is strictly decreasing. *Note:* B has projective dimension 1.

Flat Mittag-Leffler modules

[Raynaud-Gruson]

A module M is flat Mittag-Leffler provided the functor $M \otimes_R -$ is exact, and for each system of left R-modules $(N_i \mid i \in I)$, the canonical map $M \otimes_R \prod_{i \in I} N_i \to \prod_{i \in I} M \otimes_R N_i$ is monic. The class of all flat Mittag-Lefler modules is denoted by \mathcal{FM} .

$$\begin{split} \mathcal{P}_0 \subseteq \mathcal{FM} \subseteq \mathcal{F}_0. \\ \mathcal{FM} \text{ is filtration closed and closed under pure submodules.} \end{split}$$

 $M \in \mathcal{FM}$, iff each countable subset of M is contained in a countably generated projective and pure submodule of M. In particular, all countably generated modules in \mathcal{FM} are projective.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

Flat Mittag-Leffler modules and approximations

[Angeleri-Šaroch-T.]

Assume that R is not right perfect. Let B be a non-projective classic Bass module. Then B has no \mathcal{FM} -precover.

In particular, the class $\mathcal{F}\mathcal{M}$ is not precovering, hence it is not deconstructible.

Locally free modules

Let $\ensuremath{\mathcal{C}}$ be a class of countably presented modules.

A module *M* is locally *C*-free provided there exists a set $S \subseteq C$ consisting of submodules of *M* such that

- ullet each countable subset of M is contained in a module from \mathcal{S} , and
- \mathcal{S} is closed under unions of countable chains.

[Herbera-T.]

Flat Mittag-Leffler = locally C-free, where C is the class of all countably presented projective modules.

一日、

Cotorsion pairs and approximations

[Salce]

A pair of classes $(\mathcal{A}, \mathcal{B})$ is a complete cotorsion pair in Mod-R if

•
$$\mathcal{A} = {}^{\perp}\mathcal{B}$$
 and $\mathcal{B} = \mathcal{A}^{\perp}$, and

for each module M there is an exact sequence 0 → B → A → M → 0 with A ∈ A and B ∈ B (so in particular, A is a precovering class).

Salce's Lemma

In the setting above, for each module N there is an exact sequence $0 \rightarrow N \rightarrow B \rightarrow A \rightarrow 0$ with $A \in \mathcal{A}$ and $B \in \mathcal{B}$ (so in particular, \mathcal{B} is a preenveloping class).

< 回 > < 回 > < 回 >

[Angeleri-Šaroch-T.] - The general version

Let $\mathfrak{C} = (\mathcal{A}, \mathcal{B})$ be a cotorsion pair such that $\varinjlim \mathcal{B} = \mathcal{B}$. Then

- C is complete.
- Let C be the class of all countably presented modules from A, and let \mathcal{L} the class of all locally C-free modules.

Then \mathcal{L} is precovering, iff all Bass modules over \mathcal{C} are contained in \mathcal{C} , iff $\lim \mathcal{A} = \mathcal{A}$.

Note: For the cotorsion pair (\mathcal{P}_0 , Mod-R), we recover the result on flat Mittag-Leffler modules above (the '0-tilting' case). Other cases include *n*-tilting cotorsion pairs, etc.

[Šaroch's Lemma]

Let C be any class of countably presented modules, and \mathcal{L} the class of all locally C-free modules. Let B be any Bass module over C such that B is not a direct summand in a module from \mathcal{L} . Then B has no \mathcal{L} -precover.

II. Motivation from algebraic geometry

A (10) F (10)

.∋...>

Quasi-coherent sheaves as representations

Let X be a scheme and \mathcal{O}_X its structure sheaf.

[Enochs-Estrada]

A quasi-coherent sheaf Q on X can be represented by an assignment

- to every affine open subscheme $U \subseteq X$, an $\mathcal{O}_X(U)$ -module Q(U) of sections, and
- to each pair of embedded affine open subschemes $V \subseteq U \subseteq X$, an $\mathcal{O}_X(U)$ -homomorphism $f_{UV} : Q(U) \to Q(V)$ such that

 $\mathrm{id}_{\mathcal{O}_X(V)} \otimes f_{UV} : \mathcal{O}_X(V) \otimes_{\mathcal{O}_X(U)} Q(U) \to \mathcal{O}_X(V) \otimes_{\mathcal{O}_X(U)} Q(V) \cong Q(V)$

is an $\mathcal{O}_X(V)$ -isomorphism.

+ compatibility conditions for the f_{UV} .

Notation: Qcoh(X) = the category of all quasi-coherent sheaves on X.

ヘロト 人間 とくほ とくほ とう

Properties of the representations

Exactness

The functors $\mathcal{O}_X(V) \otimes_{\mathcal{O}_X(U)} -$ are exact, i.e., the $\mathcal{O}_X(U)$ -modules $\mathcal{O}_X(V)$ are flat.

The affine case [Grothendieck]

If $X = \operatorname{Spec}(R)$ for a commutative ring R, then $\operatorname{Qcoh}(X) \simeq \operatorname{Mod} R$.

Non-uniqueness of the representations

Not all affine open subschemes are needed: a set of them, S, covering both X, and all $U \cap V$ where $U, V \in S$, will do.

- 4 同 6 4 日 6 4 日 6

Extending properties of modules to quasi-coherent sheaves

Examples

If each module of sections is

- projective,
- (restricted) flat Mittag-Leffler,
- flat,

then the quasi-coherent sheaf Q is called

- an infinite dimensional vector bundle,
- (restricted) Drinfeld vector bundle,
- flat quasi-coherent sheaf.

[Raynaud-Gruson], [Estrada-Guil-T.]

The notions above are local, i.e., independent of the representation (choice of the affine open covering S of the scheme X).

Computing cohomology of quasi-coherent sheaves

Hovey's Strategy

- Complete cotorsion pairs of modules (or qc-sheaves on schemes) give rise to complete cotorsion pairs for complexes of modules (qc-sheaves),
- these in turn yield model category structures on the categories of complexes,
- and hence ways of computing sheaf cohomology (= morphisms in the corresponding unbounded derived categories of qc-sheaves).

- 4 週 ト - 4 三 ト - 4 三 ト

The dual setting: contraherent cosheaves

Definition (Positselski)

Let X be a scheme and \mathcal{O}_X its structure sheaf.

A contraherent cosheaf P on X can be represented by an assignment

- to every affine open subscheme U ⊆ X, of an O_X(U)-module P(U) of cosections, and
- to each pair of embedded affine open subschemes $V \subseteq U \subseteq X$, an $\mathcal{O}_X(U)$ -homomorphism $g_{VU} : P(V) \to P(U)$ such that

 $\operatorname{Hom}_{\mathcal{O}_X(U)}(\mathcal{O}_X(V), g_{VU}) : P(V) \to \operatorname{Hom}_{\mathcal{O}_X(U)}(\mathcal{O}_X(V), P(U))$

is an $\mathcal{O}_X(V)$ -isomorphism.

+ compatibility conditions for the g_{VU} .

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ ○臣

A drawback, and a remedy

The drawback

The $\mathcal{O}_X(U)$ -module $\mathcal{O}_X(V)$ is only flat, but not projective in general, so the Hom-functor above is not exact.

The remedy

Exactness is forced by an extra condition on the contraherent cosheaf P:

$$\mathsf{Ext}^{1}_{\mathcal{O}_{X}(U)}(\mathcal{O}_{X}(V), P(U)) = 0.$$

Moreover, the $\mathcal{O}_X(U)$ -modules $\mathcal{O}_X(V)$ are very flat ...

(4 回) (4 \Pi) (4 \Pi)

Very flat modules

Definition

Let $\mathcal{L} = \{R[s^{-1}] \mid s \in R\}$, where $R[s^{-1}]$ denotes the localization of R at the multiplicative set $\{1, s, s^2, ...\}$.

 $\mathcal{CA} := \mathcal{L}^{\perp}$ is the class of all contraadjusted modules, and

 $\mathcal{VF} := {}^{\perp}(\mathcal{L}^{\perp})$ the class of all very flat modules.

Lemma (Positselski)

Let $R \to S$ be a homomorphism of commutative rings such that the induced morphism of affine schemes $Spec(S) \to Spec(R)$ is an open embedding. Then S is a very flat R-module.

イロト 不得下 イヨト イヨト 三日

Basic properties

- $\mathcal{P}_0 \subseteq \mathcal{VF} \subseteq \mathcal{F}_0 \cap \mathcal{P}_1$.
- $(\mathcal{VF}, \mathcal{CA})$ is a complete cotorsion pair.
- $\mathcal{VF} = \operatorname{Filt}(\mathcal{VF}^{\leq \omega}).$

Definition

Denote by \mathcal{LV} the class of all locally very flat modules, i.e., the C-free modules where $\mathcal{C} = \mathcal{VF}^{\leq \omega}$.

Since $\mathcal{P}_0 \subseteq \mathcal{VF}$, we have $\mathcal{FM} \subseteq \mathcal{LV} \subseteq \mathcal{F}_0$. Also $\mathcal{EC} \subseteq \mathcal{CA}$. If *R* is a domain, then $\mathcal{DI} \subseteq \mathcal{CA}$.

< 回 > < 回 > < 回 >

Example: the case of Dedekind domains

Lemma (Slávik-T.)

Let R be a Dedekind domain and M be a module.

- VF = Filt(T), where T = the set of all submodules of the modules in S.
- If *M* is a non-zero module of finite rank, then $M \in \mathcal{VF}$, iff there exists $0 \neq s \in R$ such that $M \otimes_R R[s^{-1}]$ is a non-zero projective $R[s^{-1}]$ -module.
- ('Pontryagin Criterion') M ∈ LV, iff each finite subset of M is contained in a countably generated very flat pure submodule of M, iff each finite rank submodule of M is very flat.

The only-if part of the second claim holds whenever R is a commutative ring whose classical quotient ring is artinian (e.g., a domain).
Let R be a noetherian domain, M a very flat of finite rank n, and F its free submodule of rank n, then the module M/F has only finitely many associated primes of height 1.

Locally very flat modules and precovers

Theorem (Slávik-T.)

Let *R* be a noetherian domain. Then the following conditions are equivalent:

- Spec(R) is finite,
- \mathcal{LV} is a precovering class,
- \mathcal{VF} is a covering class,
- CA is an enveloping class.

In this case, R has Krull dimension 1.

References

1. L.Angeleri Hügel, J.Šaroch, J.T.: *Approximations and Mittag-Leffler conditions*, preprint (2014).

2. L.Positselski: Contraherent cosheaves, preprint, arXiv:1209.2995v5.

3. A.Slávik, J.T.: *Very flat, locally very flat, and contraadjusted modules,* preprint, arXiv:1601.00783v1.