New tools of set-theoretic homological algebra and their applications to modules

Jan Trlifaj

Univerzita Karlova, Praha

Workshop on infinite-dimensional representations of finite dimensional algebras

Manchester, September 17th, 2015

Classic structure theory: direct sum decompositions

A class of modules $\mathcal C$ is decomposable, provided that there is a cardinal κ such that each module in $\mathcal C$ is a direct sum of strongly $<\kappa$ -presented modules from $\mathcal C$.

Examples

- 1. (Kaplansky) The class \mathcal{P}_0 of all projective modules is decomposable.
- 2. (Faith-Walker) The class \mathcal{I}_0 of all injective modules is decomposable iff R is a right noetherian ring.
- 3. (Huisgen-Zimmermann) Mod-R is decomposable iff R is a right pure-semisimple ring. In fact, if M is a module such that Prod(M) is decomposable, then M is Σ -pure-injective.

Note: Krull-Schmidt type theorems hold in the cases 2. and 3.

Such examples, however, are rare in general – most classes of modules are not decomposable.

Example

Assume that the ring R is not right perfect, that is, there is a strictly decreasing chain of principal left ideals

$$Ra_0 \supseteq \cdots \supseteq Ra_n \ldots a_0 \supseteq Ra_{n+1}a_n \ldots a_o \supseteq \ldots$$

Then the class \mathcal{F}_0 of all flat modules is not decomposable.

Example

There exist arbitrarily large indecomposable flat abelian groups.

Transfinite extensions

Let $A \subseteq \operatorname{Mod}-R$. A module M is A-filtered (or a transfinite extension of the modules in A), provided that there exists an increasing sequence $(M_{\alpha} \mid \alpha \leq \sigma)$ consisting of submodules of M such that $M_0 = 0$, $M_{\sigma} = M$,

- $M_{\alpha} = \bigcup_{\beta < \alpha} M_{\beta}$ for each limit ordinal $\alpha \leq \sigma$, and
- for each $\alpha < \sigma$, $M_{\alpha+1}/M_{\alpha}$ is isomorphic to an element of A.

Notation: $M \in Filt(A)$. A class A is filtration closed if Filt(A) = A.

Eklof Lemma

 $^{\perp}\mathcal{C} = \mathsf{KerExt}^1_R(-,\mathcal{C})$ is filtration closed for each class of modules \mathcal{C} .

In particular, so are the classes \mathcal{P}_n and \mathcal{F}_n of all modules of projective and flat dimension $\leq n$, for each $n < \omega$.

Deconstructible classes

A class of modules \mathcal{A} is deconstructible, provided there is a cardinal κ such that $\mathcal{A} = \operatorname{Filt}(\mathcal{A}^{<\kappa})$ where $\mathcal{A}^{<\kappa}$ denotes the class of all strongly $<\kappa$ -presented modules from \mathcal{A} .

All decomposable classes closed under direct summands are deconstructible.

For each $n < \omega$, the classes \mathcal{P}_n and \mathcal{F}_n are deconstructible.

[Eklof-T.]

More in general, for each set of modules \mathcal{S} , the class $^{\perp}(\mathcal{S}^{\perp})$ is deconstructible. Here, $\mathcal{S}^{\perp}=\mathsf{KerExt}^1_R(\mathcal{S},-)$.

Approximations for relative homological algebra

A class of modules \mathcal{A} is precovering if for each module M there is $f \in \operatorname{Hom}_R(A, M)$ with $A \in \mathcal{A}$ such that each $f' \in \operatorname{Hom}_R(A', M)$ with $A' \in \mathcal{A}$ factorizes through f:

The map f is an \mathcal{A} -precover of M.

If f is moreover right minimal (that is, f factorizes through itself only by an automorphism of A), then f is an A-cover of M.

If A provides for covers for all modules, then A is called a covering class.

The abundance of approximations

[Enochs]

Each precovering class closed under direct limits is covering.

[Enochs], [Šťovíček]

All deconstructible classes are precovering.

In particular, the class $^{\perp}(S^{\perp})$ is precovering for any set of modules S. *Note:* If $R \in \mathcal{S}$, then $^{\perp}(\mathcal{S}^{\perp})$ coincides with the class of all direct summands of S-filtered modules.

Flat cover conjecture

 \mathcal{F}_0 is covering for any ring R, and so are the classes \mathcal{F}_n for each n > 0.

The classes \mathcal{P}_n $(n \geq 0)$ are precovering. ... Jan Trlifaj (Univerzita Karlova, Praha)

Bass modules

Let R be a ring and \mathcal{F} be a class of finitely presented modules. $\varinjlim_{B} \mathcal{F}$ denotes the class of all Bass modules over \mathcal{F} , that is, the modules B that are countable direct limits of modules from \mathcal{F} . W.l.o.g., such B is the direct limit of a chain

$$F_0 \xrightarrow{f_0} F_1 \xrightarrow{f_1} \dots \xrightarrow{f_{i-1}} F_i \xrightarrow{f_i} F_{i+1} \xrightarrow{f_{i+1}} \dots$$

with $F_i \in \mathcal{F}$ and $f_i \in \operatorname{Hom}_R(F_i, F_{i+1})$ for all $i < \omega$.

The classic Bass module

Let \mathcal{F} be the class of all finitely generated projective modules. Then the Bass modules coincide with the countably presented flat modules. If R is not right perfect, then a classic instance of such a Bass module B arises when $F_i = R$ and f_i is the left multiplication by a_i ($i < \omega$) where $Ra_0 \supsetneq \cdots \supsetneq Ra_n \ldots a_0 \supsetneq Ra_{n+1}a_n \ldots a_o \supsetneq \ldots$ is strictly decreasing.

Flat Mittag-Leffler modules

[Raynaud-Gruson]

A module M is flat Mittag-Leffler provided the functor $M \otimes_R -$ is exact, and for each system of left R-modules $(N_i \mid i \in I)$, the canonical map $M \otimes_R \prod_{i \in I} N_i \to \prod_{i \in I} M \otimes_R N_i$ is monic.

The class of all flat Mittag-Lefler modules is denoted by \mathcal{FM} .

$$\mathcal{P}_0\subseteq\mathcal{FM}\subseteq\mathcal{F}_0.$$

 ${\cal FM}$ is filtration closed and closed under pure submodules.

 $M \in \mathcal{FM}$, iff each countable subset of M is contained in a countably generated projective and pure submodule of M. In particular, all countably generated modules in \mathcal{FM} are projective.

Flat Mittag-Leffler modules and approximations

Theorem

Assume that R is not right perfect. Then the class \mathcal{FM} is not precovering, and hence not deconstructible.

Idea of proof: Choose a non-projective Bass module B over $\mathcal{P}_0^{<\omega}$, and prove that B has no \mathcal{FM} -precover.

The main tool: Tree modules.

The trees

Let κ be an infinite cardinal, and T_{κ} be the set of all finite sequences of ordinals $< \kappa$, so

$$T_{\kappa} = \{ \tau : n \to \kappa \mid n < \omega \}.$$

Partially ordered by inclusion, T_{κ} is a tree, called the tree on κ .

Let $\operatorname{Br}(T_{\kappa})$ denote the set of all branches of T_{κ} . Each $\nu \in \operatorname{Br}(T_{\kappa})$ can be identified with an ω -sequence of ordinals $< \kappa$:

$$Br(T_{\kappa}) = \{\nu : \omega \to \kappa\}.$$

$$|T_{\kappa}| = \kappa$$
 and $|Br(T_{\kappa})| = \kappa^{\omega}$.

Notation: $\ell(\tau)$ denotes the length of τ for each $\tau \in T_{\kappa}$.

Decorating trees by Bass modules

Let
$$D:=\bigoplus_{\tau\in T_\kappa}F_{\ell(\tau)}$$
, and $P:=\prod_{\tau\in T_\kappa}F_{\ell(\tau)}$.

For $\nu \in Br(T_{\kappa})$, $i < \omega$, and $x \in F_i$, we define $x_{\nu i} \in P$ by

$$\pi_{\nu \uparrow i}(x_{\nu i}) = x,$$

$$\pi_{\nu \mid j}(x_{\nu i}) = g_{j-1} \dots g_i(x)$$
 for each $i < j < \omega$,

$$\pi_{\tau}(x_{\nu i}) = 0$$
 otherwise,

where $\pi_{\tau} \in \operatorname{Hom}_{R}(P, F_{\ell(\tau)})$ denotes the τ th projection for each $\tau \in T_{\kappa}$.

Let $X_{\nu i} := \{x_{\nu i} \mid x \in F_i\}$. Then $X_{\nu i}$ is a submodule of P isomorphic to F_i .

The tree modules

Let
$$X_{\nu} := \sum_{i < \omega} X_{\nu i}$$
, and $G := \sum_{\nu \in \mathsf{Br}(\mathcal{T}_{\kappa})} X_{\nu}$.

Basic properties

- $D \subseteq G \subseteq P$.
- There is a 'tree module' exact sequence

$$0\to D\to G\to B^{(\mathsf{Br}(T_\kappa))}\to 0.$$

• G is a flat Mittag-Leffler module.

Proof of the Theorem

Assume there exists a \mathcal{FM} -precover $f: F \to B$ of the classic Bass module B. Let $K = \mathrm{Ker}(f)$, so we have an exact sequence

$$0 \to K \hookrightarrow F \xrightarrow{f} B \to 0.$$

Let κ be an infinite cardinal such that $|R| \leq \kappa$ and $|K| \leq 2^{\kappa} = \kappa^{\omega}$.

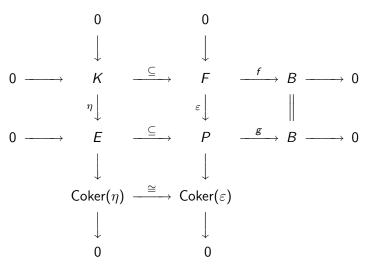
Consider the 'tree module' exact sequence

$$0 \to D \hookrightarrow G \to B^{(2^{\kappa})} \to 0$$
,

so $G \in \mathcal{FM}$ and D is a free module of rank κ . Clearly, $G \in \mathcal{P}_1$.

Let $\eta: K \to E$ be a $\{G\}^{\perp}$ -preenvelope of K with a $\{G\}$ -filtered cokernel.

Consider the pushout



Then $P \in \mathcal{FM}$. Since f is an \mathcal{FM} -precover, there exists $h: P \to F$ such that fh = g. Then $f = g\varepsilon = fh\varepsilon$, whence K + Im(h) = F. Let $h' = h \upharpoonright E$. Then $h': E \to K$ and $\text{Im}(h') = K \cap \text{Im}(h)$.

Consider the restricted exact sequence

$$0 \longrightarrow \operatorname{Im}(h') \stackrel{\subseteq}{\longrightarrow} \operatorname{Im}(h) \xrightarrow{f \upharpoonright \operatorname{Im}(h)} B \longrightarrow 0.$$

As $E \in G^{\perp}$ and $G \in \mathcal{P}_1$, also $Im(h') \in G^{\perp}$.

Applying $\operatorname{Hom}_R(-,\operatorname{Im}(h'))$ to the 'tree-module' exact sequence above, we obtain the exact sequence

$$\operatorname{\mathsf{Hom}}_R(D,\operatorname{\mathsf{Im}}(h')) o \operatorname{\mathsf{Ext}}^1_R(B,\operatorname{\mathsf{Im}}(h'))^{2^\kappa} o 0$$

where the first term has cardinality $\leq |\mathcal{K}|^{\kappa} \leq 2^{\kappa}$, so the second term must be zero.

This yields $Im(h') \in B^{\perp}$. Then $f \upharpoonright Im(h)$ splits, and so does the \mathcal{FM} -precover f, a contradiction with $B \notin \mathcal{FM}$.

The role of the Bass modules

[Šaroch]

Let $\mathcal C$ be a class of countably presented modules, and $\mathcal L$ the class of all locally $\mathcal C$ -free modules.

Let B be a Bass module over C such that B is not a direct summand in a module from L.

Then B has no \mathcal{L} -precover.

A generalization via tilting theory

T is a (large) tilting module provided that

- T has finite projective dimension,
- $\operatorname{Ext}_R^i(T,T^{(\kappa)})=0$ for each cardinal κ , and
- there exists an exact sequence $0 \to R \to T_0 \to \cdots \to T_r \to 0$ such that $r < \omega$, and for each i < r, $T_i \in Add(T)$, i.e., T_i is a direct summand of a (possibly infinite) direct sum of copies of T.

$$\mathcal{B} = \{T\}^{\perp_{\infty}} = \bigcap_{1 < i} \operatorname{KerExt}_{R}^{i}(T, -)$$
 the right tilting class of T . $\mathcal{A} = {}^{\perp}\mathcal{B}$ the left tilting class of T .

- $A \cap B = Add(T)$.
- Right tilting classes coincide with the classes of finite type, that is, they have the form \mathcal{S}^{\perp} where \mathcal{S} is a set of strongly finitely presented modules of bounded projective dimension.

• $\mathcal{A} = \mathsf{Filt}(\mathcal{A}^{\leq \omega})$, hence \mathcal{A} is precovering. Moreover, $\mathcal{A} \subseteq \varinjlim \mathcal{A}^{<\omega}$.

Jan Trlifaj (Univerzita Karlova, Praha)

Set-theoretic homological algebra

Σ -pure split tilting modules

A module M is Σ -pure split provided that each pure embedding $N' \hookrightarrow N$ with $N \in Add(M)$ splits.

A tilting module T is Σ -pure split, iff $A = \varinjlim A^{<\omega}$, iff A closed under direct limits.

Examples

injective.

Let T=R. Then T is a tilting module of projective dimension 0, and T is Σ -pure split iff R is a right perfect ring.

Each Σ -pure injective tilting module is Σ -pure split. Each finitely generated tilting module over any artin algebra is Σ -pure

Locally *T*-free modules

Let R be a ring and T a tilting module.

A module M is locally T-free provided that M possesses a set $\mathcal H$ of submodules such that

- $\mathcal{H} \subseteq \mathcal{A}^{\leq \omega}$,
- ullet each countable subset of M is contained in an element of \mathcal{H} ,
- ullet ${\cal H}$ is closed under unions of countable chains.

Let \mathcal{L} denote the class of all locally T-free modules.

Note: If M is countably generated, then M is locally T-free, iff $M \in \mathcal{A}^{\leq \omega}$.

Locally *T*-free modules

For any ring R and any tilting module T, we have

$$A \subseteq L \subseteq \underline{\lim} A^{<\omega}$$
.

Example

Let R be an arbitrary ring and T = R. Then

$$\mathcal{A}=\mathcal{P}_0\subseteq\mathcal{L}=\mathcal{FM}\subseteq\varliminf\mathcal{A}^{<\omega}=\mathcal{F}_0.$$

Locally T-free modules and approximations

Theorem

Let R be a ring and T be a tilting module. Then TFAE:

- ① \mathcal{L} is (pre)covering.
- 2 L is deconstructible.
- 3 T is Σ-pure split.

Note: The theorem on flat Mittag-Leffler modules stated earlier is just the particular case of T = R.

The role of Bass modules, and Enochs' Conjecture

Theorem

 \mathcal{L} is (pre)covering, iff \mathcal{A} is closed under direct limits, iff $B \in \mathcal{A}$ for each Bass module B over $\mathcal{A}^{<\omega}$ (i.e., $\varprojlim_{\omega} (\mathcal{A}^{<\omega}) \subseteq \mathcal{A}$).

Enochs' Conjecture

Let $\mathcal C$ be a class of modules. Then $\mathcal C$ is covering, iff $\mathcal C$ is precovering and closed under direct limits.

Corollary

Enochs' Conjecture holds for all left tilting classes of modules.

A finite dimensional example

Let R be an indecomposable hereditary finite dimensional algebra of infinite representation type.

Then there is a partition of ind-R into three sets:

 $q \, \dots \,$ the indecomposable preinjective modules

 ${\it p}$... the indecomposable preprojective modules

t ... the regular modules (the rest).

Then p^{\perp} is a right tilting class (and $M \in p^{\perp}$, iff M has no non-zero direct summands from p).

The tilting module T inducing p^{\perp} is called the Lukas tilting module.

The left tilting class of T is the class of all Baer modules.

The locally T-free modules are called locally Baer modules.

Non-precovering classes of locally Baer modules

Theorem

- The class of all Baer modules coincides with Filt(p).
- The Lukas tilting module T is countably generated, but has no finite dimensional direct summands, and it is not Σ -pure split. So $\mathcal L$ is not precovering (and hence not deconstructible).

The Bass modules behind the scene

The relevant Bass modules can be obtained as unions of the chains

$$P_0 \stackrel{f_0}{\hookrightarrow} P_1 \stackrel{f_1}{\hookrightarrow} \dots \stackrel{f_{i-1}}{\hookrightarrow} P_i \stackrel{f_i}{\hookrightarrow} P_{i+1} \stackrel{f_{i+1}}{\hookrightarrow} \dots$$

such that all the P_i are preprojective (i.e., in add(p)), but the cokernels of all the f_i are regular (i.e., in add(t)).

Almost split maps and sequences

Definition

Let R be a ring and N a non-projective module. An epimorphism of modules $f:M\to N$ is right almost split, if f is not split, and if $g:P\to N$ is not a split epimorphism in $\mathrm{Mod}{-}R$, then g factorizes through f.

Dually, we define a left almost split monomorphism $f': N' \to M'$ for N' non-injective.

A short exact sequence of modules $0 \to N' \xrightarrow{f'} M \xrightarrow{f} N \to 0$ is almost split, if it does not split, f is a right almost split epimorphism, and f' is a left almost split monomorphism.

Theorem (Auslander)

Let N is an (indecomposable) finitely presented non-projective module with local endomorphism ring. Then there always exists a right almost split epimorphism $f: M \to N$.

Auslander's problem and generalized tree modules

Auslander'1975

Are there further cases where a right almost split epimorphism ending in a non-projective module ${\it N}$ exists?

A negative answer has recently been given using (generalized) tree modules:

Theorem (Šaroch'2015)

Let R be a ring and N be a non-projective module. TFAE:

- **1** Then there exists a right almost split epimorphism $f: M \to N$.
- ② N is finitely presented and its endomorphism ring is local.

Corollary

Let R be a ring and $0 \to N' \to M \to N \to 0$ an almost split sequence in Mod-R. Then N is finitely presented with local endomorphism ring, and N' is pure-injective.

References

- 1. L.Angeleri Hügel, J.Šaroch, J.Trlifaj: "Approximations and Mittag-Leffler conditions", preprint (2015).
- 2. R.Göbel, J.Trlifaj: "Approximations and Endomorphism Algebras of Modules", 2nd rev. ext. ed., GEM 41, W. de Gruyter, Berlin 2012.
- 3. J. Šaroch, "On the non-existence of right almost split maps", preprint, arXiv: 1504.01631v3.
- 4. A.Slávik, J.Trlifaj: "Approximations and locally free modules", Bull. London Math. Soc. 46(2014), 76-90.