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Let R be a ring and n < ω. A right R-module T is n–tilting provided

(T1) pdR(T ) ≤ n, i.e., there is an Add(R)-resolution of T of length ≤ n.

(T2) ExtiR(T ,T (κ)) = 0 for all 1 ≤ i and all κ, i.e., T is a strong splitter.

(T3) There is a long exact sequence 0 → R → T0 → · · · → Tn → 0 with
Ti ∈ AddT , i.e., there is an Add(T )-coresolution of R of length ≤ n.

Tilting module = n–tilting module for some n < ω. The tilting class
induced by T is T⊥ = {M ∈ Mod-R | ExtiR(T ,M) = 0 for all i ≥ 1}.

A tilting module T is good if (T3) holds with AddT replaced by addT .

The tilting modules T and T ′ are equivalent if T⊥ = (T ′)⊥.

Each tilting module is equivalent to a good one.
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The classic case

T is classical if T ∈ mod–R (i.e., T is strongly finitely presented).

Each classical tilting module is good.

Theorem

Let T be a classical n–tilting module. Then for each i ≤ n there is a
category equivalence

⋂

j≤n,j 6=i

Ker(ExtjR(T ,−))
Exti

R(T ,−)

⇄

Tori

S (−,T )

⋂

j≤n,j 6=i

Ker(TorSj (−,T ))

where S = EndR(T ).
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General i-tilting theorem

Let R be a ring and T be a good n–tilting module. Then for each i ≤ n
there is a category equivalence

⋂

j≤n,j 6=i

Ker(ExtjR(T ,−))
Exti

R(T ,−)

⇄

Tori

S (−,T )

⋂

j≤n,j 6=i

Ker(TorSj (−,T )) ∩ E⊥

where S = EndR(T ), E⊥ = {X ∈ D(S) | HomD(S)(E ,X ) = 0}, and
E is the kernel of the total left derived functor L(−⊗S T ).
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Tilting classes and definability

Let R be a ring, n < ω, and T be a class of modules.

Then T is n–tilting, iff there is a set S consisting of strongly finitely
presented modules of projective dimension ≤ n such that T = S⊥

(i.e., T is of finite type).

In particular, each tilting class is definable, i.e., closed under direct
products, direct limits, and pure submodules.
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the one-dimensional case

Theorem

Let R be a commutative noetherian domain of Krull dimension 1. Then
tilting classes are parametrized by the subsets of mSpec(R).

Given a P ⊆ mSpec(R), the corresponding tilting class is
TP = {M ∈ Mod-R | M · p = M for all p ∈ P}.

This class is induced by the Bass tilting module, i.e., the tilting module
TP = RP ⊕ RP/R where RP =

⋂
q∈mSpec(R)\P Rq and Rq denotes the

localization of R at q.
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where n ≥ 0, and si ∈ R \ P for all i ≤ n, and the empty sequence w = (),
and

G is the submodule of F generated by all (s0, . . . , sn)sn − (s0, . . . , sn−1)
where 0 < n and si ∈ R \ P for all i ≤ n, and by (s)s − w where
s ∈ R \ P.

The module FP is a tilting module of projective dimension ≤ 1, called the
Fuchs tilting module for P.
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Tilting modules over valuation domains

Theorem

Let R be a valuation domain. The Fuchs tilting modules modules FP

where P runs over all prime ideals in R, classify all tilting modules up to
equivalence.

The corresponding tilting classes are

TP = {M ∈ Mod–R | Ms = M for all s ∈ R \ P}.
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Let R be a Prüfer domain with the quotient field Q.
A filter L of non–zero ideals of R is a finitely generated localizing system
provided that

1 L has a basis consisting of finitely generated ideals, and

2 L is multiplicatively closed.

Jan Trlifaj (Univerzita Karlova, Praha) Tilting for commutative rings 10 / 32



A generalization: Localizing systems of ideals

Definition
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A generalization: Localizing systems of ideals

Definition

Let R be a Prüfer domain with the quotient field Q.
A filter L of non–zero ideals of R is a finitely generated localizing system
provided that

1 L has a basis consisting of finitely generated ideals, and

2 L is multiplicatively closed.

Note: Condition (2) can equivalently be requested in the following form:

(3) J ∈ L whenever J is an ideal of R such that there exists I ∈ L with

{r ∈ R | ir ∈ J} ∈ L for all i ∈ I .
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Tilting modules over Prüfer domains

Theorem

Let R be a Prüfer domain. The Salce tilting modules SL where L runs
over all finitely generated localizing systems in R, classify all tilting
modules up to equivalence.

The corresponding tilting classes are

TL = {M ∈ Mod–R | MI = M for all I ∈ L}.

Remark: These are exactly the the special preenveloping torsion classes
in Mod–R.
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Let R be a 1–Gorenstein ring. Then tilting classes are parametrized by the
subsets of the set P1 of all prime ideals of height 1.
Given P ⊆ P1, the corresponding tilting class is

TP = {M ∈ Mod-R | Ext1R(E (R/p),M) = 0 for all p ∈ P}.
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subsets of the set P1 of all prime ideals of height 1.
Given P ⊆ P1, the corresponding tilting class is

TP = {M ∈ Mod-R | Ext1R(E (R/p),M) = 0 for all p ∈ P}.

This class is induced by the tilting module TP = RP ⊕
⊕

p∈P E (R/p)
where RP is the subring of Qcl(R) containing R and satisfying
RP/R ∼=

⊕
p∈P E (R/p).
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1–Gorenstein rings

Let R be a 1–Gorenstein ring. Then tilting classes are parametrized by the
subsets of the set P1 of all prime ideals of height 1.
Given P ⊆ P1, the corresponding tilting class is

TP = {M ∈ Mod-R | Ext1R(E (R/p),M) = 0 for all p ∈ P}.

This class is induced by the tilting module TP = RP ⊕
⊕

p∈P E (R/p)
where RP is the subring of Qcl(R) containing R and satisfying
RP/R ∼=

⊕
p∈P E (R/p). The TP is called the Bass tilting module.

Moreover, TP = S⊥
P , where SP = {Fp | p ∈ P}, and Fp is the

Auslander–Buchweitz approximation of R/p.
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The representing tilting modules have been characterized only in the local
case.
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Tilting for regular rings of Krull dimension two

The representing tilting modules have been characterized only in the local
case.

There are of three kinds:

1 ordinary 1–dimensional (= generalized Fuchs tilting modules),

2 ordinary 2–dimensional (obtained by localization), and

3 two exceptional tilting modules Te and Tf .
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Tilting for regular rings of Krull dimension two

The representing tilting modules have been characterized only in the local
case.

There are of three kinds:

1 ordinary 1–dimensional (= generalized Fuchs tilting modules),

2 ordinary 2–dimensional (obtained by localization), and

3 two exceptional tilting modules Te and Tf .

Example

The tilting class I1 is induced by an exceptional tilting module Te such
that Te is countably generated, torsionfree, and pdTe = 1.
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The dual setting

Definition

Let R be a ring and n < ω. A left R–module C is n–cotilting provided

(C1) idR(C ) ≤ n.

(C2) ExtiR(Cκ,C ) = 0 for all 1 ≤ i and all cardinals κ.

(C3) There is an injective cogenerator W and a long exact sequence
0 → Cn → Cn−1 → · · · → C0 → W → 0, with Ci ∈ ProdC .

The class ⊥C = {M ∈ R–Mod | ExtiR(M,C ) = 0 for all i ≥ 1} is the
cotilting class induced by C .

The cotilting modules C and C ′ are equivalent if ⊥C = ⊥C ′.
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Duality: formal versus explicit

The notions of a cotilting and tilting module are formally dual, but there is
also an explicit duality:
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Duality: formal versus explicit

The notions of a cotilting and tilting module are formally dual, but there is
also an explicit duality:

Let R be a ring, n ≥ 0, and T be an n–tilting right R–module. Then the
dual module C = T ∗ = HomZ(T ,Q/Z) is an n–cotilting left R–module.
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dual module C = T ∗ = HomZ(T ,Q/Z) is an n–cotilting left R–module.

The tilting right R–modules T and T ′ are equivalent, iff the dual modules
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Duality: formal versus explicit

The notions of a cotilting and tilting module are formally dual, but there is
also an explicit duality:

Let R be a ring, n ≥ 0, and T be an n–tilting right R–module. Then the
dual module C = T ∗ = HomZ(T ,Q/Z) is an n–cotilting left R–module.

The tilting right R–modules T and T ′ are equivalent, iff the dual modules
T ∗ and (T ′)∗ are equivalent cotilting left R–modules.

Moreover, if S is a set consisting of strongly finitely presented modules of
projective dimension ≤ n such that T⊥ = S⊥ is the tilting class induced
by T , then

⊥T ∗ = S⊺ = {N ∈ R –Mod | TorRi (S ,N) = 0 for all i ≥ 1 and S ∈ S}

is the cotilting class induced by T ∗.
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Cofinite type

The cotilting modules and classes of the form T ∗ and ⊥T ∗, respectively,
are called of cofinite type.
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Cofinite type

The cotilting modules and classes of the form T ∗ and ⊥T ∗, respectively,
are called of cofinite type.

The map T 7→ T ∗ induces a bijection between equivalence classes of
tilting modules on the one hand, and equivalence classes of cotilting
modules of cofinite type on the other hand.
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Cofinite type

The cotilting modules and classes of the form T ∗ and ⊥T ∗, respectively,
are called of cofinite type.

The map T 7→ T ∗ induces a bijection between equivalence classes of
tilting modules on the one hand, and equivalence classes of cotilting
modules of cofinite type on the other hand.

Similarly, the maps
T 7→ (⊥T ∩ mod-R)⊺

and
C 7→ (⊺C ∩ mod-R)⊥

provide for a 1–1 correspondence between tilting classes, and cotilting
classes of cofinite type.
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Valuation domains and cofinite type

Theorem

Let R be a valuation domain. Then all cotilting classes are of cofinite
type, iff R is strongly discrete (that is, R has no non–zero idempotent
prime ideals).
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Valuation domains and cofinite type

Theorem

Let R be a valuation domain. Then all cotilting classes are of cofinite
type, iff R is strongly discrete (that is, R has no non–zero idempotent
prime ideals).

Example

Let R be a maximal valuation domain with an idempotent maximal ideal
m. Then the class of all modules M whose torsion part is annihilated by m

is 1–cotilting, but not of cofinite type.
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The role of associated primes in the noetherian setting

A subset P ⊆ Spec(R) is closed under generalization provided that (P,⊆)
is a lower subset in (Spec(R),⊆).
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The role of associated primes in the noetherian setting

A subset P ⊆ Spec(R) is closed under generalization provided that (P,⊆)
is a lower subset in (Spec(R),⊆).

Theorem (The structure of 1–cotilting classes)

Let R be a commutative noetherian ring. Then there is a 1–1
correspondence between

1 the 1–cotilting classes C in Mod-R, and

2 the subsets P of Spec(R) containing Ass(R) and closed under
generalization.
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The role of associated primes in the noetherian setting

A subset P ⊆ Spec(R) is closed under generalization provided that (P,⊆)
is a lower subset in (Spec(R),⊆).

Theorem (The structure of 1–cotilting classes)

Let R be a commutative noetherian ring. Then there is a 1–1
correspondence between

1 the 1–cotilting classes C in Mod-R, and

2 the subsets P of Spec(R) containing Ass(R) and closed under
generalization.

It is given by the inverse assignments C 7→ Ass(C) and
P 7→ {M ∈ Mod-R | Ass(M) ⊆ P}.
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The Auslander–Bridger transpose

Let C ∈ mod–R and P1
f
→ P0 → C → 0 be a projective presentation of C .

The transpose of C , denoted by Tr(C ), is the cokernel of f +, where
(−)+ = HomR(−,R).
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Let C ∈ mod–R and P1
f
→ P0 → C → 0 be a projective presentation of C .

The transpose of C , denoted by Tr(C ), is the cokernel of f +, where
(−)+ = HomR(−,R).
That is, we have an exact sequence

P+
0

f +

→ P+
1 → Tr(C ) → 0.

Jan Trlifaj (Univerzita Karlova, Praha) Tilting for commutative rings 20 / 32



The Auslander–Bridger transpose

Let C ∈ mod–R and P1
f
→ P0 → C → 0 be a projective presentation of C .

The transpose of C , denoted by Tr(C ), is the cokernel of f +, where
(−)+ = HomR(−,R).
That is, we have an exact sequence

P+
0

f +

→ P+
1 → Tr(C ) → 0.

Tr(C ) is uniquely determined up to adding or splitting off a projective
summand.
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The Auslander–Bridger transpose

Let C ∈ mod–R and P1
f
→ P0 → C → 0 be a projective presentation of C .

The transpose of C , denoted by Tr(C ), is the cokernel of f +, where
(−)+ = HomR(−,R).
That is, we have an exact sequence

P+
0

f +

→ P+
1 → Tr(C ) → 0.

Tr(C ) is uniquely determined up to adding or splitting off a projective
summand.

Lemma

Let p ∈ Spec(R) be such that Ass(R) ∩ V (p) = ∅. Then

(i) pdR(Tr(R/p)) ≤ 1;

(ii) HomR(R/p,−) and TorR1 (Tr(R/p),−) are isomorphic functors.
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A classification of 1–tilting classes

Corollary

Let R be a commutative noetherian ring. Then all 1–cotilting classes are
of cofinite type, so there is a bijection between 1–tilting classes and the
subsets P of Spec(R) containing Ass(R) and closed under generalization.
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A classification of 1–tilting classes

Corollary

Let R be a commutative noetherian ring. Then all 1–cotilting classes are
of cofinite type, so there is a bijection between 1–tilting classes and the
subsets P of Spec(R) containing Ass(R) and closed under generalization.
For such P, the corresponding 1–tilting class is

T =
⋂

q∈Spec(R)\P

Tr(R/q)⊥.
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Characteristic sequences

Definition

Let R be a commutative noetherian ring. A sequence P = (P0, . . . ,Pn−1)
of subsets of Spec(R) is called characteristic provided that

(i) Pi is closed under generalization for all i < n,

(ii) P0 ⊆ P1 ⊆ · · · ⊆ Pn−1, and

(iii) Ass(Ω−i (R)) ⊆ Pi for all i < n.
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Characteristic sequences

Definition

Let R be a commutative noetherian ring. A sequence P = (P0, . . . ,Pn−1)
of subsets of Spec(R) is called characteristic provided that

(i) Pi is closed under generalization for all i < n,

(ii) P0 ⊆ P1 ⊆ · · · ⊆ Pn−1, and

(iii) Ass(Ω−i (R)) ⊆ Pi for all i < n.

For each characteristic sequence P, we define the class of modules

CP = {M ∈ Mod-R | Ass(Ω−i (M)) ⊆ Pi for all i < n}
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A classification of n–cotilting classes

Theorem

Let R be a commutative noetherian ring, n ≥ 1, and P = (P0, . . . ,Pn−1)
be a characteristic sequence.
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A classification of n–cotilting classes

Theorem

Let R be a commutative noetherian ring, n ≥ 1, and P = (P0, . . . ,Pn−1)
be a characteristic sequence. Then CP is an n–cotilting class,
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A classification of n–cotilting classes

Theorem

Let R be a commutative noetherian ring, n ≥ 1, and P = (P0, . . . ,Pn−1)
be a characteristic sequence. Then CP is an n–cotilting class, and the
assignments

C 7→ (Ass(C0), . . . ,Ass(Cn−1))

and
P = (P0, . . . ,Pn−1) 7→ CP

are inverse bijections.
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A classification of n–cotilting classes

Theorem

Let R be a commutative noetherian ring, n ≥ 1, and P = (P0, . . . ,Pn−1)
be a characteristic sequence. Then CP is an n–cotilting class, and the
assignments

C 7→ (Ass(C0), . . . ,Ass(Cn−1))

and
P = (P0, . . . ,Pn−1) 7→ CP

are inverse bijections.

Lemma

Let R be a ring and C be an n–cotilting module with the induced class C.
For each i ≤ n, let Ci = ⊥Ω−i (C ).
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A classification of n–cotilting classes

Theorem

Let R be a commutative noetherian ring, n ≥ 1, and P = (P0, . . . ,Pn−1)
be a characteristic sequence. Then CP is an n–cotilting class, and the
assignments

C 7→ (Ass(C0), . . . ,Ass(Cn−1))

and
P = (P0, . . . ,Pn−1) 7→ CP

are inverse bijections.

Lemma

Let R be a ring and C be an n–cotilting module with the induced class C.
For each i ≤ n, let Ci = ⊥Ω−i (C ). Then Ci is an (n − i )–cotilting class.
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The transpose revisited

Lemma

Let p ∈ Spec(R) and n ≥ 1 such that Ass(Ω−i (R)) ∩ V (p) = ∅ for each
i < n. Then

(i) pdR(Tr(R/p)) ≤ n.

(ii) Extn−1
R (R/p,−) and TorR1 (Tr(Ω(n−1)(R/p)),−) are isomorphic

functors.

(iii) Ext1R(Tr(Ω(n−1)(R/p)),−) and TorRn−1(R/p,−) are isomorphic
functors.
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Complete classification for commutative noetherian rings

Theorem

Let n ≥ 1. Then there are bijections between:

(i) the characteristic sequences in Spec(R),

(ii) n–tilting classes T ,

(iii) n–cotilting classes C.
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Complete classification for commutative noetherian rings

Theorem

Let n ≥ 1. Then there are bijections between:

(i) the characteristic sequences in Spec(R),

(ii) n–tilting classes T ,

(iii) n–cotilting classes C.

A characteristic sequence (P0, . . . ,Pn−1) corresponds to the n–tilting class

T ={M ∈ Mod–R | TorRi (R/p,M) = 0∀i < n ∀p /∈ Pi} =

{M ∈ Mod–R | Ext1R(Tr(Ω(i)(R/p)),M) = 0∀i < n ∀p /∈ Pi},
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Complete classification for commutative noetherian rings

Theorem

Let n ≥ 1. Then there are bijections between:

(i) the characteristic sequences in Spec(R),

(ii) n–tilting classes T ,

(iii) n–cotilting classes C.

A characteristic sequence (P0, . . . ,Pn−1) corresponds to the n–tilting class

T ={M ∈ Mod–R | TorRi (R/p,M) = 0∀i < n ∀p /∈ Pi} =

{M ∈ Mod–R | Ext1R(Tr(Ω(i)(R/p)),M) = 0∀i < n ∀p /∈ Pi},

and the n–cotilting class

C ={M ∈ Mod–R | ExtiR(R/p,M) = 0∀i < n ∀p /∈ Pi} =

{M ∈ Mod–R | TorR1 (Tr(Ωi (R/p)),M) = 0∀i < n ∀p /∈ Pi}.
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Minimal cotilting modules

Definition

A cotilting module C is minimal provided that C is a direct summand in
each cotilting module equivalent to C .
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Minimal cotilting modules

Definition

A cotilting module C is minimal provided that C is a direct summand in
each cotilting module equivalent to C .

Lemma (uniqueness)

If C and C ′ are minimal cotilting modules such that C is equivalent to C ′,
then C ∼= C ′.
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Minimal cotilting modules

Definition

A cotilting module C is minimal provided that C is a direct summand in
each cotilting module equivalent to C .

Lemma (uniqueness)

If C and C ′ are minimal cotilting modules such that C is equivalent to C ′,
then C ∼= C ′.

Example

Let R be a commutative noetherian ring and C =
⊕

m∈mSpec(R) E (R/m).

Then C is a minimal 0-cotilting module (= minimal injective cogenerator).
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Iterated injective covers

Definition

Let R be commutative noetherian, and P = (P0, . . . ,Pn−1) be a
characteristic sequence. Define P−1 = ∅ and Pn = Spec(R).
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Iterated injective covers

Definition

Let R be commutative noetherian, and P = (P0, . . . ,Pn−1) be a
characteristic sequence. Define P−1 = ∅ and Pn = Spec(R).

For each i < n, let I(Pi ) be the class of all injective modules I with
Ass(I ) ⊆ Pi .
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Iterated injective covers

Definition

Let R be commutative noetherian, and P = (P0, . . . ,Pn−1) be a
characteristic sequence. Define P−1 = ∅ and Pn = Spec(R).

For each i < n, let I(Pi ) be the class of all injective modules I with
Ass(I ) ⊆ Pi .

For each i < n and each non-empty subset S ⊆ Pi \ Pi−1, let
ES =

⊕
p∈S E (R/p) and consider the long exact sequence

0 → CS → E0
ϕ0
→ E1

ϕ1
→ . . .

ϕi−2
→ Ei−1

ϕi−1
→ ES → 0
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Iterated injective covers

Definition

Let R be commutative noetherian, and P = (P0, . . . ,Pn−1) be a
characteristic sequence. Define P−1 = ∅ and Pn = Spec(R).

For each i < n, let I(Pi ) be the class of all injective modules I with
Ass(I ) ⊆ Pi .

For each i < n and each non-empty subset S ⊆ Pi \ Pi−1, let
ES =

⊕
p∈S E (R/p) and consider the long exact sequence

0 → CS → E0
ϕ0
→ E1

ϕ1
→ . . .

ϕi−2
→ Ei−1

ϕi−1
→ ES → 0

such that ϕi−1 is a I(Pi−1)-cover of ES , and for each 0 < j < i − 1,
ϕj = µj ◦ ψj , where µj is the inclusion of Kj = Ker(ϕj+1) into Ej+1, and
ψj : Ej → Kj is a I(Pj)-cover.
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The structure of minimal cotilting modules

Theorem
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The structure of minimal cotilting modules

Theorem

Let R be a commutative noetherian ring. Let P = (P0, . . . ,Pn−1) be a
characteristic sequence and C be the corresponding n-cotilting class.

There is a minimal n-cotilting module C inducing C.

Moreover, C ∼= CS0 ⊕ · · · ⊕ CSn
where Si is the set of all maximal elements

in Pi \ Pi−1, for all i ≤ n.
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Denote by Mm the Rm-module HomR(Rm,M); it is called the
colocalization of M at m.

Theorem

Let R be a commutative noetherian ring, n < ω, and C be an n-cotilting
R-module.
Then for each m ∈ mSpec(R), Cm is an n-cotilting Rm-module, and
D =

∏
m∈mSpec(R) Cm is an n-cotilting R-module equivalent to C.

Moreover, (Cm | m ∈ mSpec(R)) is a compatible family of n-cotilting
modules, and cotilting R-modules correspond 1-1 to such compatible
families.
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Tilting and localization

Theorem

Let R be a commutative ring, n < ω, and T be an n-tilting R-module.
Then for each m ∈ mSpec(R), Tm is an n-tilting Rm-module.

Remark

If R is moreover noetherian, then (Tm | m ∈ mSpec(R)) is a compatible
family of n-tilting modules. Tilting R-modules correspond 1-1 to such
compatible families.
However, there is no simple way to recover T from the compatible family
(Tm | m ∈ mSpec(R)). !!!
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A research outlook

1. Describe the structure of tilting modules over commutative noetherian
rings.

Known only in very particular cases: for one dimensional rings (the Bass
tilting modules), and for regular local rings of Krull dimension two.
However, the two dimensional (global) regular case is open.

2. Describe the structure of tilting and cotilting modules over Matlis
domains.

The APD and Prüfer cases are done.
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