Test sets for factorization properties of modules

Jan Trlifaj, Univerzita Karlova, Praha

Algebra Day * In honor of Riccardo Colpi's 60th birthday ***

Department of Statistical Sciences, University of Padova

I. Baer Criterion, and testing for (generalized) injectivity

Testing for injectivity

Baer's Criterion '1940

Injectivity coincides with R-injectivity for any ring R and any module M.

M is *R*-injective, if for each right ideal *I*, all $h \in \text{Hom}_R(I, M)$ extend to *R*:

$$0 \longrightarrow I \xrightarrow{h \xrightarrow{f_i}} R \xrightarrow{R} R/I \longrightarrow 0$$

Equivalently: $Ext_R^1(R/I, M) = 0$ for each right ideal I of R.

So $\{f_I \mid I \in \mathfrak{I}\}$ is a test set for \mathcal{I}_0 consisting of monomorphisms: *M* is injective, iff $\operatorname{Hom}_R(f_I, M)$ is surjective for each $I \in \mathfrak{I}$. One morphism suffices: *M* is injective, iff $\operatorname{Hom}_R(\bigoplus_{I \in \mathfrak{I}} f_I, M)$ is surjective.

Testing for generalized injectivity

Right-hand classes of cotorsion pairs

Let $(\mathcal{A}, \mathcal{B})$ be a cotorsion pair in Mod-*R* generated by a set \mathcal{S} , i.e., $\mathcal{B} = \mathcal{S}^{\perp}$ for a set $\mathcal{S} \subseteq \mathcal{A}$. For each $A \in \mathcal{S}$, let $0 \to K_A \xrightarrow{f_A} P_A \to A \to 0$ be a projective presentation of A. Then $M \in \mathcal{B}$, iff $\operatorname{Hom}_R(\bigoplus_{A \in \mathcal{S}} f_A, M)$ is surjective. That is, $\{f_A \mid A \in \mathcal{S}\}$ is

a test set for \mathcal{B} consisting of monomorphisms.

Corollary

There are test sets of monomorphisms for the properties of being

- a module of injective dimension $\leq n$ (for each fixed $n < \omega$),
- a cotorsion module (in the sense of Enochs, Matlis, and Warfield).

There is a test set of pure monomorphisms for the property of being a pure-injective module.

R-**projectivity**

M is *R*-projective, if for each right ideal *I*, all $h \in \text{Hom}_R(M, R/I)$ factorize through π_I :

$$0 \longrightarrow I \xrightarrow{\subseteq} R \xrightarrow{\chi} R/I \longrightarrow 0$$

If $\operatorname{Ext}^1_R(M, I) = 0$ for each right ideal I of R, then M is R-projective. The converse holds when R is right self-injective, but not in general.

The Dual Baer Criterion (DBC for short) holds for a ring R, in case projectivity coincides with R-projectivity for any module M.

Faith' Problem '1976

For what kind of rings R does DBC hold?

Partial positive answers

- For any ring *R*, projectivity = *R*-projectivity for any finitely generated module *M*, i.e., **DBC holds for all finitely generated modules over any ring**.
- Sandomierski'1964, Ketkar-Vanaja'1981:
 DBC holds for all modules over any right perfect ring.
- Let K be a skew-field, κ an infinite cardinal, and R the endomorphism ring of a κ-dimensional left vector space over K. Then DBC holds for all ≤ κ-generated modules.

In particular, if R is right perfect, then there is always a test set of epimorphisms for $\mathcal{P}_0 \{g_j \mid j \in J\}$: M is projective, iff $\operatorname{Hom}_R(M, g_j)$ is surjective for each $j \in J$. Again, one morphism suffices: M is projective, iff $\operatorname{Hom}_R(M, \prod_{j \in J} g_j)$ is surjective.

Left-hand classes of cotorsion pairs

Let $(\mathcal{A}, \mathcal{B})$ be a cotorsion pair in Mod-*R* cogenerated by a set \mathcal{S} , i.e., $\mathcal{A} = {}^{\perp}\mathcal{S}$ for a set $\mathcal{S} \subseteq \mathcal{B}$. For each $B \in \mathcal{S}$, let $0 \to B \to I_B \xrightarrow{g_B} F_B \to 0$ be an injective copresentation of *B*. Then $M \in \mathcal{A}$, iff $\operatorname{Hom}_R(M, \prod_{B \in \mathcal{S}} g_B)$ is surjective. That is, $\{g_B \mid B \in \mathcal{S}\}$ is a test set for \mathcal{A} consisting of epimorphisms.

Corollary

There is a test set of epimorphisms for the property of being a module of weak dimension $\leq n$ (for each fixed $n < \omega$).

Let R be a Dedekind domain and $\mathfrak{C} = (\mathcal{A}, \mathcal{B})$ be a cotorsion pair in $\operatorname{Mod} - R$.

- Assume $\mathcal{F}_0 \subseteq \mathcal{A}$. Then \mathcal{A} is a cotilting class, and there is a test set of epimorphisms for \mathcal{A} .
- Eklof-Shelah-T.'2004: Assume *F*₀ ⊈ *A*, Assume moreover that *R* has countable spectrum, and 𝔅 is generated by a set. Then it is consistent with ZFC + GCH that there is no test set of epimorphisms for *A* of the form above. That is, 𝔅 is not cogenerated by a set.

Partial negative solutions to Faith's Problem in ZFC

- Hamsher'1967: If R is a commutative noetherian, but not artinian, ring then there exists a countably generated R-projective module which is not projective.
 So DBC fails for countably generated modules.
- Puninski et al.'2017: If *R* is a semilocal right noetherian ring. Then DBC holds, iff *R* is right artinian.

II. Existence/non-existence of sets of epimorphisms testing for projectivity

Assume Shelah's Uniformization Principle.

Let κ be an uncountable cardinal of cofinality ω . Then for each non-right perfect ring R of cardinality $\leq \kappa$ there exists a κ^+ -generated module M of projective dimension 1 such that $\operatorname{Ext}^1_R(M, N) = 0$ for each module N of cardinality $< \kappa$.

Corollary

- It is consistent with ZFC + GCH that there is no test set of epimorphisms for \mathcal{P}_0 over any non-right perfect ring R.
- In particular, it is consistent with ZFC + GCH that DBC fails for each non-right perfect ring *R*.

- Are the consistency results above actually provable in ZFC?
- If not, what is the border line between those non-right perfect rings, for which there is no test set of epimophisms for \mathcal{P}_0 in ZFC, and those, for which the existence of such set is independent of ZFC?
- What is the border line between those non-right perfect rings, for which DBC fails in ZFC, and those, for which it is independent of ZFC?

A positive consistency result

Assume the Axiom of Constructibility.

Let R be a non-right perfect ring, $\kappa = 2^{\text{card}(R)}$, F be the free module of rank κ , and M be a module of finite projective dimension.

Then M is projective, iff $\operatorname{Ext}_{R}^{i}(M, F) = 0$ for all i > 0.

Corollary

- It is consistent with ZFC + GCH that there is a test set of epimorphisms for \mathcal{P}_0 over any ring of finite global dimension.
- The assertion 'For each non-right perfect ring of finite global dimension, there exists a test set of epimorphisms for \mathcal{P}_0 ' is independent of ZFC + GCH.

Further positive consistency results

Flatness can always be expressed by vanishing of Ext, in ZFC. So we have

Corollary

Let *R* be a ring such that each flat module has finite projective dimension. Then the existence of test set of epimorphisms for \mathcal{P}_0 is consistent with ZFC + GCH.

Corollary

The existence of test set of epimorphisms for P_0 is independent of ZFC + GCH whenever R is a ring which is either

- *n*-lwanaga-Gorenstein, for n > 0, or
- commutative noetherian with $0 < \operatorname{Kdim}(R) < \infty$, or
- almost perfect, but not perfect.

Recall: By Hamsher'1967, DBC fails in ZFC already for all hereditary (= Dedekind) domains. Let's explore other hereditary rings \dots

III. Transfinite extensions of simple artinian rings

Semiartinian rings

- A ring *R* is right semiartinian, if *R* is the last term of the right Loewy sequence of *R*, i.e., there are an ordinal σ and a strictly increasing sequence $(S_{\alpha} \mid \alpha \leq \sigma + 1)$, such that $S_0 = 0$, $S_{\alpha+1}/S_{\alpha} = \text{Soc}(R/S_{\alpha})$ for all $\alpha \leq \sigma$, $S_{\alpha} = \bigcup_{\beta < \alpha} S_{\beta}$ for all limit ordinals $\alpha \leq \sigma$, and $S_{\sigma+1} = R$.
- *R* is von Neumann regular, if all (right *R*-) modules are flat.
- R has right primitive factors artinian (has right pfa for short) in case R/P is right artinian for each right primitive ideal P of R.

Let R be a regular ring.

- *R* is right semiartinian, iff it is left semiartinian, and the right and left Loewy sequences of *R* coincide.
- *R* has right pfa, iff it has left pfa, iff all homogenous completely reducible (left or right) modules are injective.

Structure of semiartinian regular rings with pfa

Let R be a right semiartinian ring and $(S_{\alpha} \mid \alpha \leq \sigma + 1)$ be the right Loewy sequence of R with $\sigma \geq 1$. The following conditions are equivalent:

• *R* is regular with pfa.

• for each $\alpha \leq \sigma$ there are a cardinal λ_{α} , positive integers $n_{\alpha\beta}$ ($\beta < \lambda_{\alpha}$) and skew-fields $K_{\alpha\beta}$ ($\beta < \lambda_{\alpha}$) such that $S_{\alpha+1}/S_{\alpha} \cong \bigoplus_{\beta < \lambda_{\alpha}} M_{n_{\alpha\beta}}(K_{\alpha\beta})$, as rings without unit. Moreover, λ_{α} is infinite iff $\alpha < \sigma$. The pre-image of $M_{n_{\alpha\beta}}(K_{\alpha\beta})$ in this isomorphism coincides with the β th homogenous component of Soc(R/S_{α}), and it is finitely generated as right R/S_{α} -module for all $\beta < \lambda_{\alpha}$.

 $P_{\alpha\beta} :=$ a representative of simple modules in the β th homogenous component of $S_{\alpha+1}/S_{\alpha}$. $Zg(R) := \{P_{\alpha\beta} \mid \alpha \leq \sigma, \beta < \lambda_{\alpha}\}$ is a set of representatives of all simple modules, and also the Ziegler spectrum of R. The Cantor-Bendixson rank of Zg(R) is σ .

Transfinite extensions of simple artinian rings

$\mathbf{R}/\mathbf{S}_{\sigma}$	$M_{n_{\sigma0}}(K_{\sigma0})\oplus$	 $\oplus M_{n_{\sigma,\lambda_{\sigma}-1}}(K_{\sigma,\lambda_{\sigma}-1})$	
${\sf S}_{lpha+1}/{\sf S}_{lpha}$	$M_{n_{lpha0}}(K_{lpha0}) \oplus$	 $\oplus M_{n_{lphaeta}}(K_{lphaeta}) \oplus$	$\beta < \lambda_{\alpha}$
S_2/S_1	$M_{n_{10}}(K_{10}) \oplus$	 $\oplus M_{n_{1eta}}(K_{1eta}) \oplus$	$\beta < \lambda_1$
$S_1 = Soc(R)$	$M_{n_{00}}(K_{00})\oplus$	 $\oplus M_{n_{0\beta}}(K_{0\beta}) \oplus$	$\beta < \lambda_0$

 $\sigma + 1 =$ Loewy length of R (at least 2).

 $\lambda_{\alpha} =$ **number of homogenous components** of the α th layer of R ($\alpha \leq \sigma$). Infinite except for $\alpha = \sigma$.

 $n_{\alpha\beta} = (\text{finite})$ dimension of β th homogenous component in α th layer.

 $\mathcal{K}_{\alpha\beta} =$ endomorphism skew-field of a simple module in β th homogenous component of the α th layer ($\alpha \leq \sigma$, $\beta < \lambda_{\alpha}$).

The hereditary setting

Lemma

If *R* has countable Loewy length and the α th layer of the socle sequence of *R* is countably generated for each $0 < \alpha < \sigma$, then *R* is hereditary. In particular, *R* is always hereditary in case it has Loewy length 2.

The simplest example

The K-algebra of all eventually constant sequences in K^{ω} over a field K.

Further hereditary examples

R is a hereditary *K*-subalgebra of K^{κ} of Loewy length n + 1.

The simplest non-hereditary example

R is a *K*-subalgebra in K^{ω} of Loewy length 3. (The second socle S_2 is not projective.)

IV. Dual Baer Criterion for small transfinite extensions

A weaker version of *R*-projectivity

R = semiartinian regular ring with pfa of Loewy length $\sigma + 1$, M a module.

Consider the following conditions:

- M is R-projective.
- ② For each 0 < α ≤ σ, each homomorphism f : M → S_{α+1}/S_α factorizes through the projection π_α : S_{α+1} → S_{α+1}/S_α.
- *M* is weakly *R*-projective, i.e., each homomorphism $f : M \to S_{\alpha+1}/S_{\alpha}$ with a finitely generated image factorizes through the projection π_{α} .

Then $1 \Longrightarrow 2 \Longrightarrow 3$. If σ is finite, then $1 \Longleftrightarrow 2$.

- If σ is finite, then all countably generated weakly *R*-projective modules are projective.
- Weakly *R*-projective modules are closed under submodules.
- S₂ from the simplest non-hereditary example above is weakly *R*-projective, but not *R*-projective.

Let R be a semiartinian regular ring with pfa. Then R is small, if R is of finite Loewy length, has countably generated consecutive Loewy factors, and card(R) $\leq 2^{\omega}$. Note: A small ring is hereditary.

A consistency result

Assume the Axiom of Constructibility. Let R be small. Then the notions of a projective, R-projective, and weakly R-projective module coincide. In particular, DBC holds for all modules.

An independence result

Let R be small. Then the validity of DBC is independent of ZFC + GCH.

R.Baer, Abelian groups that are direct summands of every containing abelian group, Bull. AMS 46(1940), 800-806.

F.Sandomierski, Relative Injectivity and Projectivity, Penn State U. 1964.

R.M.Hamsher, *Commutative rings over which every module has a maximal submodule*, Proc. AMS **18**(1967), 1133-1137.

F.W.Anderson, K.R.Fuller, *Rings and Categories of Modules*, LNM 13, Springer-Verlag, N.Y. 1974.

C.Faith, Algebra II. Ring Theory, GMW 191, Springer-Verlag, Berlin 1976.

References II

P.C.Eklof, S.Shelah, On Whitehead modules, J. Algebra 142(1991), 492-510.

J.Trlifaj, Whitehead test modules, Trans. AMS 348(1996), 1521-1554.

P.C.Eklof, S.Shelah, J.Trlifaj, *On the cogeneration of cotorsion pairs*, J. Algebra 277(2004), 572-578.

J.Šťovíček, J.Trlifaj, *All tilting modules are of countable type*, Bull. LMS 39(2007), 121-132.

H.Alhilali, Y.Ibrahim, G.Puninski, M.Yousif, *When R is a testing module for projectivity?*, J. Algebra 484(2017), 198-206.

J.Trlifaj, *Faith's problem on R-projectivity is undecidable*, Proc. AMS 147(2019), 497-504.

J.Trlifaj, The dual Baer criterion for non-perfect rings, arXiv:1901.01442v2.

J.Šaroch, J.Trlifaj, Test sets for factorization properties of modules, manuscript.

Riccardo, thanks for all, and happy birthday to you!

