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The Jordan–Hölder Theorem

Theorem

Assume M is a module of finite length. Then any two composition series
of M are equivalent, that is, they have the same length and isomorphic
consecutive factors.
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The Jordan–Hölder Theorem

Theorem

Assume M is a module of finite length. Then any two composition series
of M are equivalent, that is, they have the same length and isomorphic
consecutive factors.

Follows by the Schreier–Zassenhaus Lemma (or “Butterfly Lemma”)

Lemma

Let M be a module. Any two finite chains of submodules

0 = M0 ⊆ M1 ⊆ · · · ⊆ Mm = M and 0 = N0 ⊆ N1 ⊆ · · · ⊆ Nn = M

have equivalent refinements.
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Transfinite extensions

Definition

Let R be a ring, C a class of modules, and M a module. A chain of
submodules of M, M = (Mα | α ≤ σ), is a C–filtration of M of length σ
provided that

Mα ⊆ Mα+1, and Mα+1/Mα is isomorphic to an element of C for
each α < σ,

M0 = 0, Mσ = M, and

Mα =
⋃

β<α Mβ for each limit ordinal α ≤ σ.
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Transfinite extensions

Definition

Let R be a ring, C a class of modules, and M a module. A chain of
submodules of M, M = (Mα | α ≤ σ), is a C–filtration of M of length σ
provided that

Mα ⊆ Mα+1, and Mα+1/Mα is isomorphic to an element of C for
each α < σ,

M0 = 0, Mσ = M, and

Mα =
⋃

β<α Mβ for each limit ordinal α ≤ σ.

A module M possesing a C–filtration is called C–filtered,
or a transfinite extension of the modules in C.

If σ < ω, then M is called finitely C–filtered.
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Examples

If C = simp-R , then C–filtered = semiartinian,
and finitely C–filtered = of finite length.

If C = {R}, then C–filtered = free.
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Examples

If C = simp-R , then C–filtered = semiartinian,
and finitely C–filtered = of finite length.

If C = {R}, then C–filtered = free.

C–filtered modules include all

extensions of modules in C,

direct sums of modules in C.

Notation: M ∈ Filt(C).

C is filtration closed provided that C = Filt(C).
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Roots of Ext

Definition

Let R be a ring and C a class of modules.
Then C is a class of roots of Ext provided C has the form C = ⊥B for a
class of modules B, where

⊥B = KerExt1R (−,B) = {M | Ext1R (M,B) = 0 for all B ∈ B}.

Similarly, we define ⊥∞B =
⋂

i≥1 KerExtiR (−,B).
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Roots of Ext

Definition

Let R be a ring and C a class of modules.
Then C is a class of roots of Ext provided C has the form C = ⊥B for a
class of modules B, where

⊥B = KerExt1R (−,B) = {M | Ext1R (M,B) = 0 for all B ∈ B}.

Similarly, we define ⊥∞B =
⋂

i≥1 KerExtiR (−,B).

Eklof Lemma

If C is a class of roots of Ext, then C = Filt(C).

Example

Let R be a ring. Then Pn and Fn for all n < ω, are classes of roots of Ext.
Let R be an Iwanaga–Gorenstein ring. Then GP and GF are classes of
roots of Ext.
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Deconstructible classes

Let κ be a cardinal and A a class of modules.
We denote by A<κ the class of all < κ–presented modules in A.

Definition (Eklof’2006)

Let R be a ring and A a class of modules.

Let κ be a cardinal. Then A is a κ–deconstructible provided that
A ⊆ Filt(A<κ).

A is deconstructible provided A is κ–deconstructible for some infinite
cardinal κ.
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Deconstructible classes

Let κ be a cardinal and A a class of modules.
We denote by A<κ the class of all < κ–presented modules in A.

Definition (Eklof’2006)

Let R be a ring and A a class of modules.

Let κ be a cardinal. Then A is a κ–deconstructible provided that
A ⊆ Filt(A<κ).

A is deconstructible provided A is κ–deconstructible for some infinite
cardinal κ.

Example

Let R be a ring. Then the classes Pn and Fn for all n < ω, are
deconstructible.

Let R be an Iwanaga–Gorenstein ring. Then the classes GP and GF
are deconstructible.
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Deconstructible classes of roots of Ext

Lemma

Let A be a class of modules. Then the following are equivalent:

1 A = Filt(S) for a set of modules S.

2 A is a deconstructible class closed under transfinite extensions.

Lemma

Let A be a deconstructible class of modules. Then the following are
equivalent:

1 A is a class of roots of Ext.

2 P0 ⊆ A, and A is closed under direct summands and transfinite
extensions.

The latter implication (1) =⇒ (2) holds for any class A by the Eklof
Lemma, but the reverse one fails in general.
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Expanding a single C–filtration into a large family

Hill Lemma (Hill’81, ...)
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Expanding a single C–filtration into a large family

Hill Lemma (Hill’81, ...)

Let R be a ring, M a module, κ a regular infinite cardinal, and C a class of
< κ–presented modules. Let M = (Mα | α ≤ σ) be a C–filtration of M.
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Expanding a single C–filtration into a large family

Hill Lemma (Hill’81, ...)

Let R be a ring, M a module, κ a regular infinite cardinal, and C a class of
< κ–presented modules. Let M = (Mα | α ≤ σ) be a C–filtration of M.

Then there exists a family H consisting of submodules of M such that

(H1) M ⊆ H.

(H2) H is closed under arbitrary sums and intersections.

(H3) P/N has a C–filtration, for all N ⊆ P in H.

(H4) If N ∈ H and S is a subset of M of cardinality < κ, then there
is P ∈ H such that N ∪ S ⊆ P and P/N is < κ–presented.
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Idea of the proof (Hill’81)

For each α < σ, take an arbitrary < κ–generated submodule Aα of Mα+1

such that Mα+1 = Mα + Aα.

Notice that Mα =
∑

α<σ Aα.
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Idea of the proof (Hill’81)

For each α < σ, take an arbitrary < κ–generated submodule Aα of Mα+1

such that Mα+1 = Mα + Aα.

Notice that Mα =
∑

α<σ Aα.

A subset S ⊆ σ is called closed in case each α ∈ S satisfies

Mα ∩ Aα ⊆
∑

β<α,β∈S

Mβ.

Define H = {
∑

α∈S Aα | S closed }.
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Idea of the proof (Hill’81)

For each α < σ, take an arbitrary < κ–generated submodule Aα of Mα+1

such that Mα+1 = Mα + Aα.

Notice that Mα =
∑

α<σ Aα.

A subset S ⊆ σ is called closed in case each α ∈ S satisfies

Mα ∩ Aα ⊆
∑

β<α,β∈S

Mβ.

Define H = {
∑

α∈S Aα | S closed }.

Verification of the H–conditions:

All ordinals α ≤ σ are closed, so M ⊆ H and (H1) holds.

Unions and intersections of closed subsets are closed, and (H2) holds.
. . .
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Idea of the proof (Hill’81)

For each α < σ, take an arbitrary < κ–generated submodule Aα of Mα+1

such that Mα+1 = Mα + Aα.

Notice that Mα =
∑

α<σ Aα.

A subset S ⊆ σ is called closed in case each α ∈ S satisfies

Mα ∩ Aα ⊆
∑

β<α,β∈S

Mβ.

Define H = {
∑

α∈S Aα | S closed }.

Verification of the H–conditions:

All ordinals α ≤ σ are closed, so M ⊆ H and (H1) holds.

Unions and intersections of closed subsets are closed, and (H2) holds.
. . .

The proof gives more: H forms a complete distributive sublattice
of the complete modular lattice of all submodules of M.
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Applications of the Hill Lemma

Notation:

Let R be a ring, M a module, κ a regular infinite cardinal, and

C a class of < κ–presented modules.

Let M = (Mα | α ≤ σ) be a C–filtration of M.
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Applications of the Hill Lemma

Notation:

Let R be a ring, M a module, κ a regular infinite cardinal, and

C a class of < κ–presented modules.

Let M = (Mα | α ≤ σ) be a C–filtration of M.

Replacing a C–filtration by a more convenient one

Asume that C = A<κ for some class, A, of roots of Ext, and
gen(M) = λ ≥ κ. Let {mγ | γ < λ} be a set of R-generators of M.
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Applications of the Hill Lemma

Notation:

Let R be a ring, M a module, κ a regular infinite cardinal, and

C a class of < κ–presented modules.

Let M = (Mα | α ≤ σ) be a C–filtration of M.

Replacing a C–filtration by a more convenient one

Asume that C = A<κ for some class, A, of roots of Ext, and
gen(M) = λ ≥ κ. Let {mγ | γ < λ} be a set of R-generators of M.

Then M has a C–filtration M′ = (M ′
β | β ≤ λ) such that∑

γ<β mγR ⊆ M ′
β for all β < λ.
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Applications of the Hill Lemma II

C–socle length constraints (Enochs’10, Šťov́ıček’10)

Let Sum(C) denote the class of all direct sums of copies of the modules
from C. Then there exists a Sum(C)–filtration N of M of length ≤ κ.
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Applications of the Hill Lemma II

C–socle length constraints (Enochs’10, Šťov́ıček’10)

Let Sum(C) denote the class of all direct sums of copies of the modules
from C. Then there exists a Sum(C)–filtration N of M of length ≤ κ.

Sketch of proof:

Again, let Aα be a < κ–generated module such that Mα+1 = Mα + Aα.

Let Sα be closed and such that Sα ⊆ α + 1, card(Sα) < κ and α ∈ Sα.

By induction, we define a “socle level” function f : σ → κ by

f (α) = 0 provided that Sα = {α}, and by

f (α) = supβ∈Sα,β 6=α f (β) + 1 otherwise.

For each γ ≤ κ, let Tγ = {α < σ | f (α) < γ}. Then Tγ is closed.

The desired filtration is N = (Nγ | γ ≤ κ) where Nγ =
∑

β∈Tγ
Aβ.
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Precovers and covers of modules

Definition

A class of modules A is precovering if for each module M there is
f ∈ HomR(A,M) with A ∈ A such that each f ′ ∈ HomR(A′,M) with
A′ ∈ A has a factorization through f :

A
f

// M

A′

g

OO�

�

� f ′

>>}}}}}}}

The map f is then called an A–precover of M.

Let A be precovering. Assume that for f = f ′, each factorization g is
an automorphism. Then A is called a covering class.
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Precovers and filtrations

Theorem (Enochs’10, Šťov́ıček’10)

Let S be a set of modules and A = Filt(S). Then A is precovering.
If A is closed under direct limits, then A is covering.
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Precovers and filtrations

Theorem (Enochs’10, Šťov́ıček’10)

Let S be a set of modules and A = Filt(S). Then A is precovering.
If A is closed under direct limits, then A is covering.

Corollary

Each deconstructible class closed under transfinite extensions is
precovering.

The classes Pn, and GP for R Iwanaga–Gorenstein, are precovering.

The classes Fn, and GF for R Iwanaga–Gorenstein, are covering.
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Applications of the Hill Lemma III

(Hill’s Lemma and Jordan–Hölder Theory) 14 / 20



Applications of the Hill Lemma III

Shelah’s Singular Compactness

Let λ be a singular cardinal > κ, and M be a module with gen(M) = λ.
Assume that for each regular cardinal τ with κ < τ < λ, M is “τ–free”
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Applications of the Hill Lemma III

Shelah’s Singular Compactness

Let λ be a singular cardinal > κ, and M be a module with gen(M) = λ.
Assume that for each regular cardinal τ with κ < τ < λ, M is “τ–free”
that is, there is a set Sτ consisting of “free” submodules of M such that

gen(N) < τ for all N ∈ Sτ .

Each subset of M of cardinality < τ is contained in an element of Sτ .

Sτ is closed under unions of well–ordered chains of length < τ .

Then M is “free.”
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Theorem (Shelah’81, Eklof–Mekler’02)

Shelah’s Singular Compactness holds when

“free” = free,

“free” = C–filtered, where C is any class of < κ-presented modules.
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Theorem (Shelah’81, Eklof–Mekler’02)

Shelah’s Singular Compactness holds when

“free” = free,

“free” = C–filtered, where C is any class of < κ-presented modules.

Often, locally “free” implies “free” for gen(M) = λ singular,

but for λ regular, one needs additional set–theoretic assumptions,

or a more particular algebraic setting.
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ℵ1–deconstructibility of the roots of Ext

Theorem

[Eklof–Fuchs–Shelah’90, Šťov́ıček–T.’07, Angeleri–Šaroch–T.’07,
Šaroch–Šťov́ıček’08]

(Hill’s Lemma and Jordan–Hölder Theory) 16 / 20
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[Eklof–Fuchs–Shelah’90, Šťov́ıček–T.’07, Angeleri–Šaroch–T.’07,
Šaroch–Šťov́ıček’08]

Let R be a right noetherian ring, B be a class of modules closed under
direct sums and C = ⊥∞B.
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[Eklof–Fuchs–Shelah’90, Šťov́ıček–T.’07, Angeleri–Šaroch–T.’07,
Šaroch–Šťov́ıček’08]

Let R be a right noetherian ring, B be a class of modules closed under
direct sums and C = ⊥∞B.

Then C is ℵ1–deconstructible whenever either

1 all modules in C have finite projective dimension, or
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Let R be a right noetherian ring, B be a class of modules closed under
direct sums and C = ⊥∞B.

Then C is ℵ1–deconstructible whenever either

1 all modules in C have finite projective dimension, or

2 B consists of modules of finite injective dimension, or
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ℵ1–deconstructibility of the roots of Ext

Theorem

[Eklof–Fuchs–Shelah’90, Šťov́ıček–T.’07, Angeleri–Šaroch–T.’07,
Šaroch–Šťov́ıček’08]

Let R be a right noetherian ring, B be a class of modules closed under
direct sums and C = ⊥∞B.

Then C is ℵ1–deconstructible whenever either

1 all modules in C have finite projective dimension, or

2 B consists of modules of finite injective dimension, or

3 B is closed under products and unions of well–ordered chains, and
contains all injective modules.

(Hill’s Lemma and Jordan–Hölder Theory) 16 / 20



The Drinfeld class D

Definition (Raynaud–Gruson’71)

L denotes the class of all Mittag–Leffler modules, i.e., the modules M
such that the canonical map

M ⊗R

∏

i∈I

Mi →
∏

i∈I

(M ⊗R Mi )

m ⊗R (mi )i∈I 7→ (m ⊗R mi )i∈I

is monic for each family of left R–modules (Mi | i ∈ I ).

D = F ∩ L the class of all flat Mittag-Leffler modules.

P0 ⊆ D, and D is closed under direct summands and transfinite extensions.
So D looks like a deconstructible class of roots of Ext ...
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(Goodearl’72) D = the class of all the modules all of whose finitely
generated submodules are projective, in case R is a von Neumann regular
ring.

(Azumaya–Facchini’89) D = the class of all groups all of whose
countably generated subgroups are free, in case R = Z.
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ℵ1–projective modules

Definition (Shelah’81, Eklof–Mekler’02)

Let R be a ring.
A module M is ℵ1-projective if M “τ–free” where τ = ℵ1 and “free” =
projective.
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ℵ1–projective modules

Definition (Shelah’81, Eklof–Mekler’02)

Let R be a ring.
A module M is ℵ1-projective if M “τ–free” where τ = ℵ1 and “free” =
projective.

That is, there is a set S consisting of submodules of M such that

(A1) Each element of S is a countably generated projective module.

(A2) Each countable subset of M is contained in an element of S.

(A3) S is closed under unions of well–ordered chains of countable
length.
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Theorem (Herbera–T.’09)

Let R be a ring.

A module M is flat Mittag–Leffler, if and only if M is ℵ1–projective.

The class D is deconstructible, if and only if R is a right perfect ring.
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Theorem (Herbera–T.’09)

Let R be a ring.

A module M is flat Mittag–Leffler, if and only if M is ℵ1–projective.

The class D is deconstructible, if and only if R is a right perfect ring.

Theorem (Bazzoni–Šťov́ıček’10, Šaroch–T.’10)

Let R be a countable non–right perfect ring.

Then D is not a class of roots of Ext, and D is not precovering.
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Theorem (Herbera–T.’09)

Let R be a ring.

A module M is flat Mittag–Leffler, if and only if M is ℵ1–projective.

The class D is deconstructible, if and only if R is a right perfect ring.

Theorem (Bazzoni–Šťov́ıček’10, Šaroch–T.’10)

Let R be a countable non–right perfect ring.

Then D is not a class of roots of Ext, and D is not precovering.

Open problem

Let R be a von Neumann regular non–artinian right self–injective ring.
Is the class D (= all non-singular modules) precovering?
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