Hill's Lemma and Infinite Jordan–Hölder Theory

New Trends in Noncommutative Algebra

Ken Goodearl 65 Conference

University of Washington, Seattle

Jan Trlifaj Univerzita Karlova, Praha

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ ●豆 - のへの

Theorem

Assume M is a module of finite length. Then any two composition series of M are equivalent, that is, they have the same length and isomorphic consecutive factors.

- 4 同 6 4 日 6 4 日 6

Theorem

Assume M is a module of finite length. Then any two composition series of M are equivalent, that is, they have the same length and isomorphic consecutive factors.

Follows by the Schreier-Zassenhaus Lemma (or "Butterfly Lemma")

Lemma

Let M be a module. Any two finite chains of submodules

 $0 = M_0 \subseteq M_1 \subseteq \cdots \subseteq M_m = M$ and $0 = N_0 \subseteq N_1 \subseteq \cdots \subseteq N_n = M$

have equivalent refinements.

イロト 不得 トイヨト イヨト

Transfinite extensions

Definition

Let *R* be a ring, *C* a class of modules, and *M* a module. A chain of submodules of *M*, $\mathcal{M} = (M_{\alpha} \mid \alpha \leq \sigma)$, is a *C*-filtration of *M* of length σ provided that

- $M_{\alpha} \subseteq M_{\alpha+1}$, and $M_{\alpha+1}/M_{\alpha}$ is isomorphic to an element of C for each $\alpha < \sigma$,
- $M_0 = 0$, $M_\sigma = M$, and
- $M_{\alpha} = \bigcup_{\beta < \alpha} M_{\beta}$ for each limit ordinal $\alpha \leq \sigma$.

(日) (圖) (目) (E) (E) (E)

Transfinite extensions

Definition

Let *R* be a ring, *C* a class of modules, and *M* a module. A chain of submodules of *M*, $\mathcal{M} = (M_{\alpha} \mid \alpha \leq \sigma)$, is a *C*-filtration of *M* of length σ provided that

- $M_{\alpha} \subseteq M_{\alpha+1}$, and $M_{\alpha+1}/M_{\alpha}$ is isomorphic to an element of C for each $\alpha < \sigma$,
- $M_0=0,~M_\sigma=M$, and
- $M_{\alpha} = \bigcup_{\beta < \alpha} M_{\beta}$ for each limit ordinal $\alpha \leq \sigma$.

A module M possessing a C-filtration is called C-filtered, or a transfinite extension of the modules in C.

If $\sigma < \omega$, then *M* is called finitely *C*-filtered.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○二 つく⊙

Examples

If C = simp-R, then C-filtered = semiartinian, and finitely C-filtered = of finite length.

If $C = \{R\}$, then C-filtered = free.

3

◆□ > ◆圖 > ◆臣 > ◆臣 > ○

Examples

If C = simp-R, then C-filtered = semiartinian, and finitely C-filtered = of finite length.

```
If C = \{R\}, then C-filtered = free.
```

C-filtered modules include all

- extensions of modules in \mathcal{C} ,
- direct sums of modules in \mathcal{C} .

Notation: $M \in Filt(C)$.

C is filtration closed provided that C = Filt(C).

・ロト ・四ト ・ヨト

Roots of Ext

Definition

Let *R* be a ring and *C* a class of modules. Then *C* is a class of roots of Ext provided *C* has the form $C = {}^{\perp}\mathcal{B}$ for a class of modules \mathcal{B} , where

$$^{\perp}\mathcal{B}=\mathsf{KerExt}^1_R\left(-,\mathcal{B}
ight)=\{M\mid\mathsf{Ext}^1_R\left(M,B
ight)=\mathsf{0} ext{ for all }B\in\mathcal{B}\}.$$

Similarly, we define ${}^{\perp_{\infty}}\mathcal{B} = \bigcap_{i>1} \operatorname{KerExt}_{R}^{i}(-,\mathcal{B}).$

Roots of Ext

Definition

Let R be a ring and C a class of modules. Then C is a class of roots of Ext provided C has the form $C = {}^{\perp}\mathcal{B}$ for a class of modules \mathcal{B} , where

$$^{ot}\mathcal{B}=\mathsf{KerExt}^1_R\left(-,\mathcal{B}
ight)=\{M\mid\mathsf{Ext}^1_R\left(M,B
ight)=0 ext{ for all }B\in\mathcal{B}\}.$$

Similarly, we define $^{\perp_{\infty}}\mathcal{B} = \bigcap_{i>1} \operatorname{KerExt}_{R}^{i}(-,\mathcal{B}).$

Eklof Lemma

If C is a class of roots of Ext, then C = Filt(C).

Example

Let R be a ring. Then \mathcal{P}_n and \mathcal{F}_n for all $n < \omega$, are classes of roots of Ext. Let R be an Iwanaga–Gorenstein ring. Then \mathcal{GP} and \mathcal{GF} are classes of roots of Ext.

Deconstructible classes

Let κ be a cardinal and \mathcal{A} a class of modules. We denote by $\mathcal{A}^{<\kappa}$ the class of all $< \kappa$ -presented modules in \mathcal{A} .

Definition (Eklof'2006)

Let R be a ring and A a class of modules.

- Let κ be a cardinal. Then A is a κ-deconstructible provided that A ⊆ Filt(A^{<κ}).
- \mathcal{A} is deconstructible provided \mathcal{A} is κ -deconstructible for some infinite cardinal κ .

Deconstructible classes

Let κ be a cardinal and \mathcal{A} a class of modules. We denote by $\mathcal{A}^{<\kappa}$ the class of all $< \kappa$ -presented modules in \mathcal{A} .

Definition (Eklof'2006)

Let R be a ring and A a class of modules.

- Let κ be a cardinal. Then A is a κ-deconstructible provided that A ⊆ Filt(A^{<κ}).
- \mathcal{A} is deconstructible provided \mathcal{A} is κ -deconstructible for some infinite cardinal κ .

Example

- Let *R* be a ring. Then the classes \mathcal{P}_n and \mathcal{F}_n for all $n < \omega$, are deconstructible.
- Let R be an Iwanaga–Gorenstein ring. Then the classes \mathcal{GP} and \mathcal{GF} are deconstructible.

・ 回 ト ・ ヨ ト ・ ヨ ト

Deconstructible classes of roots of Ext

Lemma

Let \mathcal{A} be a class of modules. Then the following are equivalent:

- $\mathcal{A} = Filt(\mathcal{S})$ for a set of modules \mathcal{S} .
- \bigcirc \mathcal{A} is a deconstructible class closed under transfinite extensions.

Lemma

Let \mathcal{A} be a deconstructible class of modules. Then the following are equivalent:

- \mathcal{A} is a class of roots of Ext.
- **2** $\mathcal{P}_0 \subseteq \mathcal{A}$, and \mathcal{A} is closed under direct summands and transfinite extensions.

The latter implication (1) \implies (2) holds for any class \mathcal{A} by the Eklof Lemma, but the reverse one fails in general.

イロト 不得 トイヨト イヨト

Expanding a single C-filtration into a large family

Hill Lemma (Hill'81, ...)

-2

ヘロト 人間 ト 人 ヨ ト 人 ヨ トー

Hill Lemma (Hill'81, ...)

Let R be a ring, M a module, κ a regular infinite cardinal, and C a class of $< \kappa$ -presented modules. Let $\mathcal{M} = (\mathcal{M}_{\alpha} \mid \alpha \leq \sigma)$ be a C-filtration of M.

ヘロト 人間 とくほとく ヨトー

Hill Lemma (Hill'81, ...)

Let R be a ring, M a module, κ a regular infinite cardinal, and C a class of $< \kappa$ -presented modules. Let $\mathcal{M} = (\mathcal{M}_{\alpha} \mid \alpha \leq \sigma)$ be a C-filtration of M.

Then there exists a family $\mathcal H$ consisting of submodules of M such that

- (H1) $\mathcal{M} \subseteq \mathcal{H}$.
- (H2) \mathcal{H} is closed under arbitrary sums and intersections.
- (H3) P/N has a C-filtration, for all $N \subseteq P$ in \mathcal{H} .
- (H4) If N ∈ H and S is a subset of M of cardinality < κ, then there is P ∈ H such that N ∪ S ⊆ P and P/N is < κ-presented.

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ ●豆 - のへの

For each $\alpha < \sigma$, take an *arbitrary* $< \kappa$ -generated submodule A_{α} of $M_{\alpha+1}$ such that $M_{\alpha+1} = M_{\alpha} + A_{\alpha}$.

Notice that $M_{\alpha} = \sum_{\alpha < \sigma} A_{\alpha}$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

For each $\alpha < \sigma$, take an *arbitrary* $< \kappa$ -generated submodule A_{α} of $M_{\alpha+1}$ such that $M_{\alpha+1} = M_{\alpha} + A_{\alpha}$.

Notice that $M_{\alpha} = \sum_{\alpha < \sigma} A_{\alpha}$.

A subset $S \subseteq \sigma$ is called closed in case each $\alpha \in S$ satisfies

$$M_{\alpha} \cap A_{\alpha} \subseteq \sum_{\beta < \alpha, \beta \in S} M_{\beta}.$$

Define $\mathcal{H} = \{\sum_{\alpha \in S} A_{\alpha} \mid S \text{ closed } \}.$

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ ●豆 - のへの

For each $\alpha < \sigma$, take an *arbitrary* $< \kappa$ -generated submodule A_{α} of $M_{\alpha+1}$ such that $M_{\alpha+1} = M_{\alpha} + A_{\alpha}$.

Notice that $M_{\alpha} = \sum_{\alpha < \sigma} A_{\alpha}$.

A subset $S \subseteq \sigma$ is called closed in case each $\alpha \in S$ satisfies

$$M_{\alpha} \cap A_{\alpha} \subseteq \sum_{\beta < \alpha, \beta \in S} M_{\beta}.$$

Define $\mathcal{H} = \{\sum_{\alpha \in S} A_{\alpha} \mid S \text{ closed } \}.$

Verification of the H–conditions:

All ordinals $\alpha \leq \sigma$ are closed, so $\mathcal{M} \subseteq \mathcal{H}$ and (H1) holds.

Unions and intersections of closed subsets are closed, and (H2) holds.

. . .

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ ●豆 - のへの

For each $\alpha < \sigma$, take an *arbitrary* $< \kappa$ -generated submodule A_{α} of $M_{\alpha+1}$ such that $M_{\alpha+1} = M_{\alpha} + A_{\alpha}$.

Notice that $M_{\alpha} = \sum_{\alpha < \sigma} A_{\alpha}$.

A subset $S \subseteq \sigma$ is called closed in case each $\alpha \in S$ satisfies

$$M_{\alpha} \cap A_{\alpha} \subseteq \sum_{\beta < \alpha, \beta \in S} M_{\beta}.$$

Define $\mathcal{H} = \{\sum_{\alpha \in S} A_{\alpha} \mid S \text{ closed } \}.$

Verification of the H–conditions:

All ordinals $\alpha \leq \sigma$ are closed, so $\mathcal{M} \subseteq \mathcal{H}$ and (H1) holds.

Unions and intersections of closed subsets are closed, and (H2) holds.

The proof gives more: \mathcal{H} forms a complete distributive sublattice of the complete modular lattice of all submodules of M.

. . .

Notation:

Let R be a ring, M a module, κ a regular infinite cardinal, and C a class of $< \kappa$ -presented modules.

Let $\mathcal{M} = (\mathcal{M}_{\alpha} \mid \alpha \leq \sigma)$ be a C-filtration of \mathcal{M} .

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ ●豆 - のへの

Notation:

Let R be a ring, M a module, κ a regular infinite cardinal, and C a class of $< \kappa$ -presented modules.

Let $\mathcal{M} = (M_{\alpha} \mid \alpha \leq \sigma)$ be a C-filtration of M.

Replacing a C-filtration by a more convenient one

Asume that $C = A^{<\kappa}$ for some class, A, of roots of Ext, and $gen(M) = \lambda \ge \kappa$. Let $\{m_{\gamma} \mid \gamma < \lambda\}$ be a set of *R*-generators of *M*.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○二 つく⊙

Notation:

Let R be a ring, M a module, κ a regular infinite cardinal, and C a class of $< \kappa$ -presented modules.

Let $\mathcal{M} = (M_{\alpha} \mid \alpha \leq \sigma)$ be a *C*-filtration of *M*.

Replacing a C-filtration by a more convenient one

Asume that $C = A^{<\kappa}$ for some class, A, of roots of Ext, and gen $(M) = \lambda \ge \kappa$. Let $\{m_{\gamma} \mid \gamma < \lambda\}$ be a set of *R*-generators of *M*.

Then *M* has a *C*-filtration $\mathcal{M}' = (M'_{\beta} \mid \beta \leq \lambda)$ such that $\sum_{\gamma < \beta} m_{\gamma} R \subseteq M'_{\beta}$ for all $\beta < \lambda$.

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ ●豆 - のへの

Applications of the Hill Lemma II

C-socle length constraints (Enochs'10, Šťovíček'10)

Let $\operatorname{Sum}(\mathcal{C})$ denote the class of all direct sums of copies of the modules from \mathcal{C} . Then there exists a $\operatorname{Sum}(\mathcal{C})$ -filtration \mathcal{N} of M of length $\leq \kappa$.

ヘロト 人間 とくほとく ヨトー

Applications of the Hill Lemma II

C-socle length constraints (Enochs'10, Šťovíček'10)

Let $\operatorname{Sum}(\mathcal{C})$ denote the class of all direct sums of copies of the modules from \mathcal{C} . Then there exists a $\operatorname{Sum}(\mathcal{C})$ -filtration \mathcal{N} of M of length $\leq \kappa$.

Sketch of proof:

Again, let A_{α} be a $< \kappa$ -generated module such that $M_{\alpha+1} = M_{\alpha} + A_{\alpha}$. Let S_{α} be closed and such that $S_{\alpha} \subseteq \alpha + 1$, $\operatorname{card}(S_{\alpha}) < \kappa$ and $\alpha \in S_{\alpha}$. By induction, we define a "socle level" function $f : \sigma \to \kappa$ by

For each $\gamma \leq \kappa$, let $T_{\gamma} = \{ \alpha < \sigma \mid f(\alpha) < \gamma \}$. Then T_{γ} is closed.

The desired filtration is $\mathcal{N} = (N_{\gamma} \mid \gamma \leq \kappa)$ where $N_{\gamma} = \sum_{\alpha \in T_{\gamma}} A_{\beta}$.

Precovers and covers of modules

Definition

• A class of modules A is precovering if for each module M there is $f \in \operatorname{Hom}_R(A, M)$ with $A \in A$ such that each $f' \in \operatorname{Hom}_R(A', M)$ with $A' \in A$ has a factorization through f:

The map f is then called an \mathcal{A} -precover of M.

• Let \mathcal{A} be precovering. Assume that for f = f', each factorization g is an automorphism. Then \mathcal{A} is called a covering class.

(日) (圖) (目) (E) (E) (E)

Theorem (Enochs'10, Šťovíček'10)

Let S be a set of modules and A = Filt(S). Then A is precovering. If A is closed under direct limits, then A is covering.

< □ > < □ > < □ > < □ > < □ > .

Theorem (Enochs'10, Šťovíček'10)

Let S be a set of modules and A = Filt(S). Then A is precovering. If A is closed under direct limits, then A is covering.

Corollary

- Each deconstructible class closed under transfinite extensions is precovering.
- The classes \mathcal{P}_n , and \mathcal{GP} for R Iwanaga–Gorenstein, are precovering.
- The classes \mathcal{F}_n , and \mathcal{GF} for R Iwanaga–Gorenstein, are covering.

イロト イポト イヨト イヨト

Applications of the Hill Lemma III

(Hill's Lemma and Jordan-Hölder Theory)

Shelah's Singular Compactness

Let λ be a singular cardinal $> \kappa$, and M be a module with gen $(M) = \lambda$. Assume that for each regular cardinal τ with $\kappa < \tau < \lambda$, M is " τ -free"

- 4 同下 4 三下 4 三下

Shelah's Singular Compactness

Let λ be a singular cardinal $> \kappa$, and M be a module with gen $(M) = \lambda$. Assume that for each regular cardinal τ with $\kappa < \tau < \lambda$, M is " τ -free" that is, there is a set S_{τ} consisting of "free" submodules of M such that

- gen $(N) < \tau$ for all $N \in S_{\tau}$.
- Each subset of M of cardinality $< \tau$ is contained in an element of S_{τ} .
- S_{τ} is closed under unions of well–ordered chains of length $< \tau$.

Then *M* is "free."

Theorem (Shelah'81, Eklof–Mekler'02)

Shelah's Singular Compactness holds when

- "free" = free,
- "free" = C-filtered, where C is any class of $< \kappa$ -presented modules.

(日) (圖) (E) (E) (E)

Theorem (Shelah'81, Eklof–Mekler'02)

Shelah's Singular Compactness holds when

- *"free" = free,*
- "free" = C-filtered, where C is any class of $< \kappa$ -presented modules.

Often, locally "free" implies "free" for $gen(M) = \lambda$ singular, but for λ regular, one needs additional set-theoretic assumptions, or a more particular algebraic setting.

イロト 不得下 イヨト イヨト 二日

Theorem

[Eklof–Fuchs–Shelah'90, Šťovíček–T.'07, Angeleri–Šaroch–T.'07, Šaroch–Šťovíček'08]

3

イロン イヨン イヨン イヨン

Theorem

[Eklof–Fuchs–Shelah'90, Šťovíček–T.'07, Angeleri–Šaroch–T.'07, Šaroch–Šťovíček'08]

Let R be a right noetherian ring, B be a class of modules closed under direct sums and $C = {}^{\perp_{\infty}}B$.

3

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・

Theorem

[Eklof–Fuchs–Shelah'90, Šťovíček–T.'07, Angeleri–Šaroch–T.'07, Šaroch–Šťovíček'08]

Let R be a right noetherian ring, B be a class of modules closed under direct sums and $C = {}^{\perp_{\infty}}B$.

Then ${\mathcal C}$ is $\aleph_1\text{-}deconstructible} whenever either$

3

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・

Theorem

[Eklof–Fuchs–Shelah'90, Šťovíček–T.'07, Angeleri–Šaroch–T.'07, Šaroch–Šťovíček'08]

Let R be a right noetherian ring, \mathcal{B} be a class of modules closed under direct sums and $\mathcal{C} = {}^{\perp_{\infty}}\mathcal{B}$.

Then ${\mathcal C}$ is $\aleph_1\text{-}deconstructible} whenever either$

all modules in C have finite projective dimension, or

Theorem

[Eklof–Fuchs–Shelah'90, Šťovíček–T.'07, Angeleri–Šaroch–T.'07, Šaroch–Šťovíček'08]

Let R be a right noetherian ring, B be a class of modules closed under direct sums and $C = {}^{\perp_{\infty}}B$.

Then ${\mathcal C}$ is $\aleph_1\text{-}deconstructible} whenever either$

all modules in C have finite projective dimension, or

2 $\mathcal B$ consists of modules of finite injective dimension, or

3

Theorem

[Eklof–Fuchs–Shelah'90, Šťovíček–T.'07, Angeleri–Šaroch–T.'07, Šaroch–Šťovíček'08]

Let R be a right noetherian ring, B be a class of modules closed under direct sums and $C = {}^{\perp_{\infty}}B$.

Then ${\mathcal C}$ is $\aleph_1\text{-}deconstructible} whenever either$

- all modules in C have finite projective dimension, or
- B consists of modules of finite injective dimension, or
- B is closed under products and unions of well-ordered chains, and contains all injective modules.

3

ヘロト 人間ト 人間ト 人間ト

The Drinfeld class ${\cal D}$

Definition (Raynaud–Gruson'71)

 \mathcal{L} denotes the class of all Mittag–Leffler modules, i.e., the modules M such that the canonical map

$$M \otimes_R \prod_{i \in I} M_i \to \prod_{i \in I} (M \otimes_R M_i)$$

$$m \otimes_R (m_i)_{i \in I} \mapsto (m \otimes_R m_i)_{i \in I}$$

is monic for each family of left *R*-modules $(M_i \mid i \in I)$.

$\mathcal{D} = \mathcal{F} \cap \mathcal{L}$ the class of all flat Mittag-Leffler modules.

 $\mathcal{P}_0 \subseteq \mathcal{D}$, and \mathcal{D} is closed under direct summands and transfinite extensions. So \mathcal{D} looks like a deconstructible class of roots of Ext ...

(Hill's Lemma and Jordan-Hölder Theory)

(Goodearl'72) D = the class of all the modules all of whose finitely generated submodules are projective, in case R is a von Neumann regular ring.

(Azumaya–Facchini'89) \mathcal{D} = the class of all groups all of whose countably generated subgroups are free, in case $R = \mathbb{Z}$.

ヘロト 人間 とくほとく ヨトー

\aleph_1 -projective modules

Definition (Shelah'81, Eklof-Mekler'02)

```
Let R be a ring.
A module M is \aleph_1-projective if M "\tau-free" where \tau = \aleph_1 and "free" = projective.
```

-2

< □ > < □ > < □ > < □ > < □ > .

\aleph_1 -projective modules

Definition (Shelah'81, Eklof-Mekler'02)

Let *R* be a ring. A module *M* is \aleph_1 -projective if *M* " τ -free" where $\tau = \aleph_1$ and "free" = projective.

That is, there is a set $\mathcal S$ consisting of submodules of M such that

- (A1) Each element of $\mathcal S$ is a countably generated projective module.
- (A2) Each countable subset of M is contained in an element of S.
- (A3) \mathcal{S} is closed under unions of well–ordered chains of countable length.

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ ●豆 - のへの

Theorem (Herbera–T.'09)

Let R be a ring.

- A module M is flat Mittag–Leffler, if and only if M is \aleph_1 –projective.
- The class \mathcal{D} is deconstructible, if and only if R is a right perfect ring.

ヘロト 人間ト 人間ト 人目ト

Theorem (Herbera–T.'09)

Let R be a ring.

- A module M is flat Mittag–Leffler, if and only if M is \aleph_1 –projective.
- The class \mathcal{D} is deconstructible, if and only if R is a right perfect ring.

Theorem (Bazzoni–Šťovíček'10, Šaroch–T.'10)

Let R be a countable non-right perfect ring.

Then \mathcal{D} is not a class of roots of Ext, and \mathcal{D} is not precovering.

Theorem (Herbera–T.'09)

Let R be a ring.

- A module M is flat Mittag–Leffler, if and only if M is \aleph_1 –projective.
- The class \mathcal{D} is deconstructible, if and only if R is a right perfect ring.

Theorem (Bazzoni–Šťovíček'10, Šaroch–T.'10)

Let R be a countable non-right perfect ring.

Then \mathcal{D} is not a class of roots of Ext, and \mathcal{D} is not precovering.

Open problem

Let *R* be a von Neumann regular non-artinian right self-injective ring. Is the class \mathcal{D} (= all non-singular modules) precovering?

イロト イポト イヨト イヨト