Approximations and Locally Free Modules

Congreso de la Real Sociedad Matemática Española

Santiago de Compostela, January 22, 2013

Jan Trlifaj (Univerzita Karlova, Praha)

イロト 不得 トイヨト イヨト

・ 回 ト ・ ヨ ト ・ ヨ ト

A class of modules C is decomposable, provided there is a cardinal κ such that each module in C is a direct sum of $< \kappa$ -generated modules from C.

A class of modules C is decomposable, provided there is a cardinal κ such that each module in C is a direct sum of $< \kappa$ -generated modules from C.

Some classic examples

A class of modules C is decomposable, provided there is a cardinal κ such that each module in C is a direct sum of $< \kappa$ -generated modules from C.

Some classic examples

[Kaplansky'58] The class \mathcal{P}_0 is decomposable. Uniformly: $\kappa = \aleph_1$ sufficient for all R, but no uniqueness in general.

A class of modules C is decomposable, provided there is a cardinal κ such that each module in C is a direct sum of $< \kappa$ -generated modules from C.

Some classic examples

[Kaplansky'58] The class \mathcal{P}_0 is decomposable. Uniformly: $\kappa = \aleph_1$ sufficient for all R, but no uniqueness in general.

[Faith-Walker'67] The class \mathcal{I}_0 of all injective modules is decomposable, iff R is right noetherian. Here, κ depends R; uniqueness by Krull-Schmidt-Azumaya.

A class of modules C is decomposable, provided there is a cardinal κ such that each module in C is a direct sum of $< \kappa$ -generated modules from C.

Some classic examples

[Kaplansky'58] The class \mathcal{P}_0 is decomposable. Uniformly: $\kappa = \aleph_1$ sufficient for all R, but no uniqueness in general.

[Faith-Walker'67] The class \mathcal{I}_0 of all injective modules is decomposable, iff *R* is right noetherian. Here, κ depends *R*; uniqueness by Krull-Schmidt-Azumaya.

[Gruson-Jensen'73], [Huisgen-Zimmermann'79] **Mod**-R is decomposable, iff R is right pure-semisimple. Uniformly: $\kappa = \aleph_0$ sufficient for all such R; uniqueness by Krull-Schmidt-Azumaya.

通 ト イヨ ト イヨト

Let $C \subseteq \text{Mod-}R$. A module M is C-filtered (or a transfinite extension of the modules in C), provided that there exists an increasing sequence $(M_{\alpha} \mid \alpha \leq \sigma)$ consisting of submodules of M such that $M_0 = 0$, $M_{\sigma} = M$,

- $M_{\alpha} = \bigcup_{\beta < \alpha} M_{\beta}$ for each limit ordinal $\alpha \leq \sigma$, and
- for each $\alpha < \sigma$, $M_{\alpha+1}/M_{\alpha}$ is isomorphic to an element of C.

・ 同 ト ・ ヨ ト ・ ヨ ト …

Let $C \subseteq \text{Mod-}R$. A module M is C-filtered (or a transfinite extension of the modules in C), provided that there exists an increasing sequence $(M_{\alpha} \mid \alpha \leq \sigma)$ consisting of submodules of M such that $M_0 = 0$, $M_{\sigma} = M$,

- $M_{\alpha} = \bigcup_{\beta < \alpha} M_{\beta}$ for each limit ordinal $\alpha \leq \sigma$, and
- for each $\alpha < \sigma$, $M_{\alpha+1}/M_{\alpha}$ is isomorphic to an element of C.

Notation: $M \in Filt(C)$. A class A is closed under transfinite extensions, if $Filt(A) \subseteq A$.

・ 同 ト ・ ヨ ト ・ ヨ ト

Let $C \subseteq \text{Mod-}R$. A module M is C-filtered (or a transfinite extension of the modules in C), provided that there exists an increasing sequence $(M_{\alpha} \mid \alpha \leq \sigma)$ consisting of submodules of M such that $M_0 = 0$, $M_{\sigma} = M$,

- $M_{\alpha} = \bigcup_{\beta < \alpha} M_{\beta}$ for each limit ordinal $\alpha \leq \sigma$, and
- for each $\alpha < \sigma$, $M_{\alpha+1}/M_{\alpha}$ is isomorphic to an element of C.

Notation: $M \in Filt(\mathcal{C})$. A class \mathcal{A} is closed under transfinite extensions, if $Filt(\mathcal{A}) \subseteq \mathcal{A}$.

Eklof Lemma

The class ${}^{\perp}\mathcal{C} := \text{KerExt}^1_R(-,\mathcal{C})$ is closed under transfinite extensions for each class of modules \mathcal{C} .

In particular, so are the classes \mathcal{P}_n and \mathcal{F}_n of all modules of projective and flat dimension $\leq n$, for each $n < \omega$.

(Congreso de la RSME)

・ 日 ・ ・ ヨ ・ ・ ヨ ・

Definition (Eklof'06)

A class of modules \mathcal{A} is deconstructible, provided there is a cardinal κ such that $\mathcal{A} \subseteq \operatorname{Filt}(\mathcal{A}^{<\kappa})$, where $\mathcal{A}^{<\kappa}$ denotes the class of all $< \kappa$ -presented modules from \mathcal{A} .

直 ト イヨト イヨト

Definition (Eklof'06)

A class of modules \mathcal{A} is deconstructible, provided there is a cardinal κ such that $\mathcal{A} \subseteq \operatorname{Filt}(\mathcal{A}^{<\kappa})$, where $\mathcal{A}^{<\kappa}$ denotes the class of all $< \kappa$ -presented modules from \mathcal{A} .

All decomposable classes are deconstructible, and so is Mod-R for any R.

Definition (Eklof'06)

A class of modules \mathcal{A} is deconstructible, provided there is a cardinal κ such that $\mathcal{A} \subseteq \operatorname{Filt}(\mathcal{A}^{<\kappa})$, where $\mathcal{A}^{<\kappa}$ denotes the class of all $< \kappa$ -presented modules from \mathcal{A} .

All decomposable classes are deconstructible, and so is Mod-R for any R.

[Enochs et al.'01]

The classes \mathcal{P}_n and \mathcal{F}_n are deconstructible for each $n < \omega$.

Definition (Eklof'06)

A class of modules \mathcal{A} is deconstructible, provided there is a cardinal κ such that $\mathcal{A} \subseteq \operatorname{Filt}(\mathcal{A}^{<\kappa})$, where $\mathcal{A}^{<\kappa}$ denotes the class of all $< \kappa$ -presented modules from \mathcal{A} .

All decomposable classes are deconstructible, and so is Mod-R for any R.

[Enochs et al.'01]

The classes \mathcal{P}_n and \mathcal{F}_n are deconstructible for each $n < \omega$.

[Eklof-T.'01], [Šťovíček-T.'09]

For each set of modules S, the class $^{\perp}(S^{\perp})$ is deconstructible. Here, $S^{\perp} := \text{KerExt}^{1}_{R}(S, -)$.

Approximations of modules

(Congreso de la RSME)

Approximations and locally free modules

э

ヘロト 人間 ト 人 ヨト 人 ヨトー

Approximations of modules

A class of modules \mathcal{A} is precovering if for each module M there is $f \in \operatorname{Hom}_R(A, M)$ with $A \in \mathcal{A}$ such that each $f' \in \operatorname{Hom}_R(A', M)$ with $A' \in \mathcal{A}$ has a factorization through f:

The map f is called an \mathcal{A} -precover of M.

Approximations of modules

A class of modules \mathcal{A} is precovering if for each module M there is $f \in \operatorname{Hom}_R(A, M)$ with $A \in \mathcal{A}$ such that each $f' \in \operatorname{Hom}_R(A', M)$ with $A' \in \mathcal{A}$ has a factorization through f:

The map f is called an \mathcal{A} -precover of M.

[Saorín-Šťovíček'11], [Enochs'12]

All deconstructible classes closed under transfinite extensions are precovering.

In particular, so are the classes $^{\perp}(S^{\perp})$ for all sets of modules S.

< 回 > < 回 > < 回 >

A consistency result

• [Eklof-Shelah'03] It is independent of ZFC whether the class of all Whitehead groups (= ${}^{\perp}\{\mathbb{Z}\}$) is precovering (or deconstructible).

通 ト イヨ ト イヨト

A consistency result

• [Eklof-Shelah'03] It is independent of ZFC whether the class of all Whitehead groups (= ${}^{\perp}\{\mathbb{Z}\}$) is precovering (or deconstructible).

A result in ZFC

A consistency result

 [Eklof-Shelah'03] It is independent of ZFC whether the class of all Whitehead groups (= [⊥]{ℤ}) is precovering (or deconstructible).

A result in ZFC

A module *M* is flat Mittag-Leffler provided the functor $M \otimes_R -$ is exact, and for each system of left *R*-modules $(N_i \mid i \in I)$, the canonical map $M \otimes_R \prod_{i \in I} N_i \to \prod_{i \in I} M \otimes_R N_i$ is monic.

A consistency result

 [Eklof-Shelah'03] It is independent of ZFC whether the class of all Whitehead groups (= [⊥]{ℤ}) is precovering (or deconstructible).

A result in ZFC

A module *M* is flat Mittag-Leffler provided the functor $M \otimes_R -$ is exact, and for each system of left *R*-modules $(N_i | i \in I)$, the canonical map $M \otimes_R \prod_{i \in I} N_i \to \prod_{i \in I} M \otimes_R N_i$ is monic.

Assume that R is not right perfect.

- [Herbera-T.'12] The class \mathcal{FM} of all flat Mittag-Leffler modules is closed under transfinite extensions, but it is not deconstructible.
- [Šaroch-T.'12], [Bazzoni-Šťovíček'12] If *R* is countable, then *FM* is not precovering.

(Congreso de la RSME)

Approximations and locally free modules

э

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・

Let R be a ring, and \mathcal{F} a class of countably presented modules.

< 回 > < 回 > < 回 >

Let R be a ring, and \mathcal{F} a class of countably presented modules.

Definition

A module M is locally \mathcal{F} -free, if M possesses a subset S consisting of countably \mathcal{F} -filtered modules, such that

- each countable subset of M is contained in an element of S,
- $\bullet~0\in\mathcal{S},$ and \mathcal{S} is closed under unions of countable chains.

Let R be a ring, and \mathcal{F} a class of countably presented modules.

Definition

A module M is locally \mathcal{F} -free, if M possesses a subset S consisting of countably \mathcal{F} -filtered modules, such that

- each countable subset of M is contained in an element of S,
- $\bullet~0\in\mathcal{S},$ and \mathcal{S} is closed under unions of countable chains.

Let \mathcal{L} denote the class of all locally \mathcal{F} -free modules.

伺 ト イヨト イヨト

Let R be a ring, and \mathcal{F} a class of countably presented modules.

Definition

A module *M* is locally \mathcal{F} -free, if *M* possesses a subset \mathcal{S} consisting of countably \mathcal{F} -filtered modules, such that

- each countable subset of M is contained in an element of S,
- $\bullet~0\in\mathcal{S},$ and \mathcal{S} is closed under unions of countable chains.

Let \mathcal{L} denote the class of all locally \mathcal{F} -free modules.

Note: If M is countably generated, then M is locally \mathcal{F} -free, iff M is countably \mathcal{F} -filtered.

< 回 > < 三 > < 三 >

Let R be a ring, and \mathcal{F} a class of countably presented modules.

Definition

A module M is locally \mathcal{F} -free, if M possesses a subset S consisting of countably \mathcal{F} -filtered modules, such that

- each countable subset of M is contained in an element of S,
- $\bullet~0\in \mathcal{S},$ and \mathcal{S} is closed under unions of countable chains.

Let \mathcal{L} denote the class of all locally \mathcal{F} -free modules.

Note: If M is countably generated, then M is locally \mathcal{F} -free, iff M is countably \mathcal{F} -filtered.

Lemma (Slávik-T.)

• \mathcal{L} is closed under transfinite extensions.

•
$$\mathcal{L}^{\perp} \subseteq (\varinjlim_{\omega} \mathcal{F})^{\perp}$$
.

Basic example: $\mathcal{F}\mathcal{M}$ as a particular instance of $\mathcal L$

・聞き ・ 国を ・ 国を

Basic example: $\mathcal{F}\mathcal{M}$ as a particular instance of $\mathcal L$

Theorem (Herbera-T.'12)

Let $\mathcal{F} =$ be the class of all countably presented projective modules. Then the notions of a locally \mathcal{F} -free module and a flat Mittag-Leffler module coincide for any ring R.

Basic example: $\mathcal{F}\mathcal{M}$ as a particular instance of $\mathcal L$

Theorem (Herbera-T.'12)

Let $\mathcal{F} =$ be the class of all countably presented projective modules. Then the notions of a locally \mathcal{F} -free module and a flat Mittag-Leffler module coincide for any ring R.

Example

Let $R = \mathbb{Z}$. An abelian group A is flat Mittag-Leffler, iff all countable subgroups of A are free. In particular, the Baer-Specker group \mathbb{Z}^{κ} is flat Mittag-Leffler for each κ , but not free.

- 4 目 ト - 4 日 ト - 4 日 ト

The non-deconstructibility of \mathcal{L}

(Congreso de la RSME)

Approximations and locally free modules

3

イロト イポト イヨト イヨト

The non-deconstructibility of $\ensuremath{\mathcal{L}}$

- \mathcal{F} a class of countably presented modules,
- \mathcal{L} the class of all locally \mathcal{F} -free modules,
- \mathcal{D} the class of all direct summands of the modules M that fit into an exact sequence

$$0 \rightarrow F' \rightarrow M \rightarrow C' \rightarrow 0,$$

where F' is a free module, and C' is countably \mathcal{F} -filtered.

The non-deconstructibility of $\ensuremath{\mathcal{L}}$

- \mathcal{F} a class of countably presented modules,
- \mathcal{L} the class of all locally \mathcal{F} -free modules,
- \mathcal{D} the class of all direct summands of the modules M that fit into an exact sequence

$$0 \rightarrow F' \rightarrow M \rightarrow C' \rightarrow 0,$$

where F' is a free module, and C' is countably \mathcal{F} -filtered.

Theorem (Slávik-T.)

Assume there exists a module $N \in \varinjlim_{\omega} \mathcal{F} \setminus \mathcal{D}$. Then the class \mathcal{L} is not deconstructible.

イロト イポト イヨト イヨト

The non-deconstructibility of $\ensuremath{\mathcal{L}}$

- \mathcal{F} a class of countably presented modules,
- $\mathcal L$ the class of all locally $\mathcal F$ -free modules,
- \mathcal{D} the class of all direct summands of the modules M that fit into an exact sequence

$$0 \rightarrow F' \rightarrow M \rightarrow C' \rightarrow 0,$$

where F' is a free module, and C' is countably \mathcal{F} -filtered.

Theorem (Slávik-T.)

Assume there exists a module $N \in \varinjlim_{\omega} \mathcal{F} \setminus \mathcal{D}$. Then the class \mathcal{L} is not deconstructible.

In particular, the class \mathcal{FM} is not deconstructible for each non-right perfect ring R.

イロト イポト イヨト イヨト

3

イロト イポト イヨト イヨト

Definition

- T is a tilting module provided that
 - T has finite projective dimension,
 - $\operatorname{Ext}_{R}^{i}(T, T^{(\kappa)}) = 0$ for each cardinal κ , and
 - there exists an exact sequence 0 → R → T₀ → · · · → T_r → 0 such that r < ω, and for each i < r, T_i ∈ Add(T), i.e., T_i is a direct summand of a (possibly infinite) direct sum of copies of T.

(4回) (4回) (4回)

Definition

T is a tilting module provided that

- T has finite projective dimension,
- $\operatorname{Ext}_{R}^{i}(T, T^{(\kappa)}) = 0$ for each cardinal κ , and
- there exists an exact sequence 0 → R → T₀ → · · · → T_r → 0 such that r < ω, and for each i < r, T_i ∈ Add(T), i.e., T_i is a direct summand of a (possibly infinite) direct sum of copies of T.

$$\mathcal{B}_T := \{T\}^{\perp_{\infty}} = \bigcap_{1 < i} \operatorname{KerExt}_R^i(T, -)$$
 the right tilting class of T .

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶

Definition

T is a tilting module provided that

- T has finite projective dimension,
- $\operatorname{Ext}_{R}^{i}(T, T^{(\kappa)}) = 0$ for each cardinal κ , and
- there exists an exact sequence 0 → R → T₀ → · · · → T_r → 0 such that r < ω, and for each i < r, T_i ∈ Add(T), i.e., T_i is a direct summand of a (possibly infinite) direct sum of copies of T.

$$\mathcal{B}_T := \{T\}^{\perp_{\infty}} = \bigcap_{1 < i} \operatorname{KerExt}_R^i(T, -)$$
 the right tilting class of T .

$\mathcal{A}_{\mathcal{T}} := {}^{\perp}\mathcal{B}_{\mathcal{T}}$ the left tilting class of \mathcal{T} .

・ロト ・回ト ・ヨト ・

Tilting classes are exactly the classes of finite type, i.e., the classes of the form S^{\perp} , where S is a set of strongly finitely presented modules of bounded projective dimension.

- 4 週 ト - 4 三 ト - 4 三 ト

Tilting classes are exactly the classes of finite type, i.e., the classes of the form S^{\perp} , where S is a set of strongly finitely presented modules of bounded projective dimension.

Let $S_T := A_T \cap \text{mod-}R$ and $\overline{A}_T := \varinjlim S$. Then A_T is the class of all direct summands of S_T -filtered modules, and $A_T \subseteq \overline{A}_T$.

くぼう くほう くほう

Tilting classes are exactly the classes of finite type, i.e., the classes of the form S^{\perp} , where S is a set of strongly finitely presented modules of bounded projective dimension.

Let $S_T := A_T \cap \text{mod-}R$ and $\overline{A}_T := \varinjlim S$. Then A_T is the class of all direct summands of S_T -filtered modules, and $A_T \subseteq \overline{A}_T$.

Definition

The tilting module T is \sum -pure split provided that $\overline{A}_T = A_T$, that is, the left tilting class of T is closed under direct limits. Equivalently: Each pure embedding $T_0 \hookrightarrow T_1$ such that $T_0, T_1 \in \text{Add}(T)$ splits.

Tilting classes are exactly the classes of finite type, i.e., the classes of the form S^{\perp} , where S is a set of strongly finitely presented modules of bounded projective dimension.

Let $S_T := A_T \cap \text{mod-}R$ and $\overline{A}_T := \varinjlim S$. Then A_T is the class of all direct summands of S_T -filtered modules, and $A_T \subseteq \overline{A}_T$.

Definition

The tilting module T is \sum -pure split provided that $\overline{A}_T = A_T$, that is, the left tilting class of T is closed under direct limits. Equivalently: Each pure embedding $T_0 \hookrightarrow T_1$ such that $T_0, T_1 \in \text{Add}(T)$ splits.

Example

Let T = R. Then T is a tilting module of projective dimension 0, and T is \sum -pure split, iff R is a right perfect ring.

3

イロト 不得 トイヨト イヨト

(Congreso de la RSME)

Approximations and locally free modules

12 / 16

3

・ 同 ト ・ ヨ ト ・ ヨ ト

The setting

Let *R* be a countable ring, and *T* be a non- Σ -pure-split tilting module. Let \mathcal{F}_T be the class of all countably presented modules in \mathcal{A}_T , and \mathcal{L}_T the class of all locally \mathcal{F}_T -free modules.

The setting

Let *R* be a countable ring, and *T* be a non- \sum -pure-split tilting module. Let \mathcal{F}_T be the class of all countably presented modules in \mathcal{A}_T , and \mathcal{L}_T the class of all locally \mathcal{F}_T -free modules.

Theorem (Slávik-T.)

Assume that $\mathcal{L}_T \subseteq \mathcal{P}_1$, \mathcal{L}_T is closed under direct summands, and $M \in \mathcal{L}_T$ whenever $M \subseteq L \in \mathcal{L}_T$ and $L/M \in \overline{\mathcal{A}}_T$. Then the class \mathcal{L}_T is not precovering.

< 回 > < 回 > < 回 >

The setting

Let *R* be a countable ring, and *T* be a non- \sum -pure-split tilting module. Let \mathcal{F}_T be the class of all countably presented modules in \mathcal{A}_T , and \mathcal{L}_T the class of all locally \mathcal{F}_T -free modules.

Theorem (Slávik-T.)

Assume that $\mathcal{L}_T \subseteq \mathcal{P}_1$, \mathcal{L}_T is closed under direct summands, and $M \in \mathcal{L}_T$ whenever $M \subseteq L \in \mathcal{L}_T$ and $L/M \in \overline{\mathcal{A}}_T$. Then the class \mathcal{L}_T is not precovering.

Corollary

If R is countable and non-right perfect, then \mathcal{FM} is not precovering.

イロト イポト イヨト イヨト

An different class of examples

(Congreso de la RSME)

Approximations and locally free modules

13 / 16

3

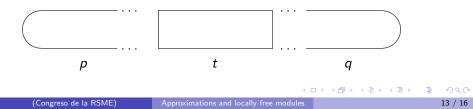
- 4 同 6 4 日 6 4 日 6

An different class of examples

Let R be an indecomposable hereditary artin algebra of infinite representation type, with the Auslander-Reiten translation τ . Then there is a partition of all indecomposable finitely generated modules into three sets:

- q := indecomposable preinjective modules
- (i.e., indecomposable injectives and their τ -shifts),
- *p* := indecomposable preprojective modules
- (i.e., indecomposable projectives and their $\tau^-\text{-shifts}),$

t := regular modules (the rest).



(Congreso de la RSME)

Approximations and locally free modules

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶

 p^{\perp} is a right tilting class. $M \in p^{\perp}$ iff M has no non-zero direct summands from p.

 p^{\perp} is a right tilting class. $M \in p^{\perp}$ iff M has no non-zero direct summands from p.

The tilting module *L* inducing p^{\perp} is called the Lukas tilting module. The left tilting class of *L* is the class of all Baer modules.

 p^{\perp} is a right tilting class. $M \in p^{\perp}$ iff M has no non-zero direct summands from p.

The tilting module *L* inducing p^{\perp} is called the Lukas tilting module. The left tilting class of *L* is the class of all Baer modules.

```
[Angeleri-Kerner-T.'10]
```

The class of all Baer modules coincides with Filt(p).

The Lukas tilting module L is countably generated, but has no finite dimensional direct summands, and it is not \sum -pure split.

ヘロト 不良 トイヨト イヨト

Non-deconstructibility in the realm of artin algebras

・日本 ・日本 ・日本

Non-deconstructibility in the realm of artin algebras

Let \mathcal{F}_L be the class of all countably presented Baer modules. The elements of \mathcal{L}_L are called the locally Baer modules.

Non-deconstructibility in the realm of artin algebras

Let \mathcal{F}_L be the class of all countably presented Baer modules. The elements of \mathcal{L}_L are called the locally Baer modules.

Theorem (Slávik-T.)

Let R be a countable indecomposable hereditary artin algebra of infinite representation type. Then the class of all locally Baer modules is not precovering (and hence not deconstructible).

A conjecture

(Congreso de la RSME)

3

<ロ> (日) (日) (日) (日) (日)

A conjecture

A ring R is right pure-semisimple, iff each class of right R-modules closed under transfinite extensions and direct summands is deconstructible.

• • = • • = •