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Motivation - the Quillen-Hovey theory

[Quillen’1967]

Let G be a Grothendieck category. The unbounded derived category D(G)
can be studied via model category structures on the category C(G) of
unbounded chain complexes over G:

Morphisms between A and B of D(G) are the C(G)-morphisms between
cofibrant and fibrant replacements of A and B , respectively, modulo chain
homotopy.

[Hovey’2002]

Such model category structures correspond to functorially complete
cotorsion pairs in C(G).

A basic example from algebraic geometry

G = Qcoh(X ), the category of quasi-coherent sheaves on a scheme X .
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Quasi-coherent sheaves as representations

Let X be a scheme and OX its structure sheaf.

[Enochs-Estrada’2005]

A quasi-coherent sheaf Q on X can be represented by an assignment

to every affine open subscheme U ⊆ X , an OX (U)-module Q(U) of
sections, and

to each pair of embedded affine open subschemes V ⊆ U ⊆ X ,
an OX (U)-homomorphism fUV : Q(U) → Q(V ) such that

idOX (V ) ⊗ fUV : OX (V ) ⊗OX (U) Q(U) → OX (V ) ⊗OX (U) Q(V ) ∼= Q(V )

is an OX (V )-isomorphism.

+ compatibility conditions for the fUV .
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Properties of the representations

Exactness

The functors OX (V ) ⊗OX (U) − are exact, i.e.,
the OX (U)-modules OX (V ) are flat.

The affine case

If X = Spec(R) for a commutative ring R , then Qcoh(X ) ∼= Mod-R .

Non-uniqueness of the representations

Not all affine open subschemes are needed: a set of them, S, covering
both X , and all U ∩ V where U,V ∈ S, will do.
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Extending properties of modules to quasi-coherent

sheaves

Examples

If each module of sections is

projective,

(restricted) flat Mittag-Leffler,

flat,

then the quasi-coherent sheaf Q is called

an infinite dimensional vector bundle,

(restricted) Drinfeld vector bundle,

flat quasi-coherent sheaf.

[Raynaud-Gruson’1971, Estrada-Guil-T.’2014]

The notions above are local, i.e., independent of the representation
(choice of the affine open covering S of the scheme X ).
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Flat Mittag-Leffler modules

[Raynaud-Gruson’1971]

A module M is flat Mittag-Leffler provided that each finite subset of M is
contained in a countably generated projective and pure submodule of M.
Notation: FM.

[Herbera-T.’2012]

Equivalently: M is locally C-free, where C is the class of all countably
presented projective modules.

A basic definition

Let C be a class of countably presented modules.

A module M is locally C-free provided there exists a set S ⊆ C consisting
of submodules of M such that

each countable subset of M is contained in a module from S, and

S is closed under unions of countable chains.
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Cohomology of quasi-coherent sheaves

[Gillespie’2004, Estrada-Guil-Prest-T.’2012]

Introduce a method of constructing functorially complete cotorsion pairs in
C(Qcoh(X )), and hence model category structures, using complete
cotorsion pairs (A,B) of modules such that A ⊆ F0.

A pair of classes (A,B) is a complete cotorsion pair in Mod-R if

A = ⊥B := {A ∈ Mod-R | ExtiR(A,B) = 0 for all i ≥ 1 and B ∈ B},

B = A⊥,

for each module M there is an exact sequence 0 → B → A → M → 0
with A ∈ A and B ∈ B (i.e., A is a special precovering class), and

for each module M ′ there is an exact sequence
0 → M ′ → B ′ → A′ → 0 with A′ ∈ A and B ′ ∈ B
(i.e., B is a special preenveloping class).
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Module approximations

A class of modules A is precovering if for each module M there is
f ∈ HomR(A,M) with A ∈ A such that each f ′ ∈ HomR(A′,M) with
A′ ∈ A factorizes through f :

A
f

// M

A′

OO�

�

� f ′

>>}}}}}}}

f is an A-precover of M. If f is also right minimal (i.e., f factorizes
through itself only by an automorphism of A), then f is an A-cover of M.
If f is surjective and Ext1R (A,Ker(f )) = 0, then f is called special.
If A provides for covers (special precovers) of all modules,
then A is called a covering (special precovering) class.

Preenveloping and (special) enveloping classes are defined dually.
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Transfinite extensions

Let C be a class of modules. A module M is C-filtered (or a transfinite
extension of the modules in C), provided that there exists an increasing
sequence (Mα | α ≤ σ) consisting of submodules of M such that M0 = 0,
Mσ = M,

Mα =
⋃

β<α Mβ for each limit ordinal α ≤ σ, and

for each α < σ, Mα+1/Mα is isomorphic to an element of C.

Notation: Trans(C).

Example

Let R be a ring and C the class of all simple modules. Then Trans(C) is
the class of all semiartinian modules.
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The abundance of approximations

[Eklof-T.’2000]

For each set of modules S, there is a complete cotorsion pair (⊥(S⊥),S⊥).

[Enochs’2012, Šťov́ıček’2012]

The class Trans(S) is precovering for each set of modules S.
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Some examples

[Enochs et al.]

For each ring R and each n ≥ 0, the class Pn is special precovering,
Fn is covering, and In is special preenveloping.

For each Iwanaga-Gorenstein ring R , the class GP is special
precovering, and GI is special preenveloping.

...

Does FM fit in this context?
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Flat Mittag-Leffler approximations

Theorem (Angeleri-Šaroch-T.)

FM is (pre) covering, iff R is a right perfect ring (i.e., P0 = F0).

What is the obstruction for existence of precovers?
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Bass modules

Let R be a ring, and C be a class of countably presented modules.

lim
−→ω

C denotes the class of all Bass modules over C, that is,
the modules B that are countable direct limits of modules from C.
W.l.o.g., such B is the direct limit of a chain

C0
f0→ C1

f1→ . . .
fi−1
→ Ci

fi→ Ci+1
fi+1
→ . . .

with Ci ∈ C and fi ∈ HomR(Ci ,Ci+1) for all i < ω.

Classic Bass modules

Let C be the class of all finitely generated projective modules. Then the
Bass modules coincide with the countably presented flat modules.

If R is not right perfect, then an instance of such a classic Bass module B
arises when Fi = R and fi is the left multiplication by ai (i < ω).
Note: B is not projective, hence not flat Mittag-Leffler.
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Proof of the theorem

It suffices to prove that if R is not right perfect, then the class FM is not
precovering.

Let B be a non-projective classic Bass module. Assume there exists a
FM-precover f : F → B . Let K = Ker(f ), so we have an exact sequence

0 → K →֒ F
f
→ B → 0.

Let κ be an infinite cardinal such that |R | ≤ κ and |K | ≤ 2κ = κω.
Then there exists a ‘tree-module’ short exact sequence

0 → D →֒ G → B (2κ) → 0

such that G ∈ FM and D is a free module of rank κ. Clearly, G ∈ P1.
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Let η : K → E be a {G}⊥-preenvelope of K with a {G}-filtered cokernel.
Consider the pushout

0 0




y





y

0 −−−−→ K
⊆

−−−−→ F
f

−−−−→ B −−−−→ 0

η





y

ε





y

∥

∥
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0 −−−−→ E
⊆

−−−−→ P
g

−−−−→ B −−−−→ 0




y





y

Coker(η)
∼=

−−−−→ Coker(ε)




y





y

0 0
Then P ∈ FM. Since f is an FM-precover, there exists h : P → F such
that fh = g . Then f = gε = fhε, whence K + Im(h) = F . Let h′ = h ↾ E .
Then h′ : E → K and Im(h′) = K ∩ Im(h).
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Consider the ‘restricted’ exact sequence

0 −−−−→ Im(h′)
⊆

−−−−→ Im(h)
f ↾Im(h)
−−−−−→ B −−−−→ 0.

As E ∈ G⊥ and G ∈ P1, also Im(h′) ∈ G⊥. Applying HomR(−, Im(h′)) to
the ‘tree-module’ exact sequence above, we obtain the exact sequence

HomR(D, Im(h′)) → Ext1R (B , Im(h′))2
κ

→ 0

where the first term has cardinality ≤ |K |κ ≤ 2κ, so the second term must
be zero.
This yields Im(h′) ∈ B⊥. Then f ↾ Im(h) splits, and so does the
FM-precover f , a contradiction with B /∈ FM.
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The general case

Šaroch’s lemma on Bass modules

Let C be a class of countably presented modules, and L the class of all
locally C-free modules.

Let B be a Bass module over C such that B is not a direct summand in a
module from L.

Then the Bass module B has no L-precover.
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A connection to tilting theory

T is a (large) tilting module provided that

pd(T ) < ∞,

ExtiR(T ,T (X )) = 0 for each i ≥ 1 and each set X ,

There exists r < ω and an exact sequence
0 → R → T0 → · · · → Tr → 0 with Tj ∈ Add(T ) for all j ≤ r .

TT := T⊥ is the right tilting class, and

AT = ⊥(T⊥) is the left tilting class induced by T .
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The tilting generalization

Replacements

The projective module R ↔ any tilting module T ,

P0 ↔ the left tilting class AT ,

F0 ↔ the direct limit closure lim
−→

AT ,

FM ↔ the class L of all locally T -free modules, i.e., the locally C-free
modules, where C is the class of all countably presented modules from AT .

Theorem (Angeleri-Šaroch-T.)

L is (pre) covering, iff AT = lim
−→

AT , iff each pure embedding in Add(T )
splits (i.e., T is

∑

-pure split).
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The dual setting: contraherent cosheaves

Definition (Positselski)

Let X be a scheme and OX its structure sheaf.
A contraherent cosheaf P on X can be represented by an assignment

to every affine open subscheme U ⊆ X , of an OX (U)-module P(U)
of cosections, and

to each pair of embedded affine open subschemes V ⊆ U ⊆ X ,
an OX (U)-homomorphism gVU : P(V ) → P(U) such that

HomOX (U)(OX (V ), gVU) : P(V ) → HomOX (U)(OX (V ),P(U))

is an OX (V )-isomorphism.

+ compatibility conditions for the gVU .
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A drawback and a remedy

The drawback

The OX (U)-module OX (V ) is only flat, but not projective in general, so
the Hom-functor above is not exact.

The remedy

Exactness is forced by an extra condition on the contraherent cosheaf P :

Ext1OX (U)(OX (V ),P(U)) = 0.

Moreover, the OX (U)-modules OX (V ) are very flat ...
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Very flat modules

Definition

A module M over a commutative ring R is very flat provided that
M ∈ ⊥(S⊥) where S = {R [s−1] | s ∈ R} and R [s−1] denotes the
localization of R at the multiplicative set {1, s, s2, ...}.
Notation: VF := ⊥(S⊥).

Lemma (Positselski)

Let R → S be a homomorphism of commutative rings such that the
induced morphism of affine schemes Spec(S) → Spec(R) is an open
embedding. Then S is a very flat R-module.

Basic properties of very flat modules

P0 ⊆ VF ⊆ F0 ∩ P1.

There is a complete cotorsion pair (VF , CA). The modules in CA are
called contraadjusted.

VF = Trans(VF≤ω).
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Locally very flat modules

Definition

A module M is locally very flat provided there exists a set E consisting of
countably presented very flat submodules of M such that each countable
subset of M is contained in an element of E , and E is closed under unions
of countable chains.

Notation: LV.

Basic properties

Since P0 ⊆ VF , we have FM ⊆ LV ⊆ F0.

Also EC ⊆ CA. If R is a domain, then DI ⊆ CA.
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Example: the case of a Dedekind domain

Lemma (Slávik-T.)

Let R be a Dedekind domain and M be a module.

VF = Trans(T ), where T is the set of all submodules of the modules
in S.

If M is of finite rank, then M ∈ VF , iff there exists 0 6= s ∈ R such
that M ⊗R R [s−1] is a projective R [s−1]-module.

(‘Pontryagin Criterion’) M ∈ LV, iff each finite subset of M is
contained in a countably generated very flat pure submodule of M,
iff each finite rank submodule of M is very flat.
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Locally very flat modules and precovers

Theorem (Slávik-T.)

Let R be a noetherian domain. Then the following conditions are
equivalent:

LV is a (pre) covering class,

VF is a covering class,

Spec(R) is finite,

VF = F0.

In this case, R has Krull dimension 1.
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