Approximation properties of the classes of flat modules originating from algebraic geometry

International Conference in Homological Algebra

University of Kentucky, Lexington, July 23, 2015

Jan Trlifaj (Univerzita Karlova, Praha)

Motivation - the Quillen-Hovey theory

[Quillen'1967]

Let \mathcal{G} be a Grothendieck category. The unbounded derived category $D(\mathcal{G})$ can be studied via model category structures on the category $\mathcal{C}(\mathcal{G})$ of unbounded chain complexes over \mathcal{G} :

Morphisms between A and B of D(G) are the C(G)-morphisms between cofibrant and fibrant replacements of A and B, respectively, modulo chain homotopy.

[Hovey'2002]

Such model category structures correspond to functorially complete cotorsion pairs in C(G).

A basic example from algebraic geometry

 $\mathcal{G} = Qcoh(X)$, the category of quasi-coherent sheaves on a scheme X.

Quasi-coherent sheaves as representations

Let X be a scheme and \mathcal{O}_X its structure sheaf.

[Enochs-Estrada'2005]

A quasi-coherent sheaf Q on X can be represented by an assignment

- to every affine open subscheme $U \subseteq X$, an $\mathcal{O}_X(U)$ -module Q(U) of sections, and
- to each pair of embedded affine open subschemes $V \subseteq U \subseteq X$, an $\mathcal{O}_X(U)$ -homomorphism $f_{UV} : Q(U) \to Q(V)$ such that

 $\mathsf{id}_{\mathcal{O}_X(V)} \otimes f_{UV} : \mathcal{O}_X(V) \otimes_{\mathcal{O}_X(U)} Q(U) \to \mathcal{O}_X(V) \otimes_{\mathcal{O}_X(U)} Q(V) \cong Q(V)$

is an $\mathcal{O}_X(V)$ -isomorphism.

+ compatibility conditions for the f_{UV} .

(日) (圖) (E) (E) (E)

Properties of the representations

Exactness

The functors $\mathcal{O}_X(V) \otimes_{\mathcal{O}_X(U)} -$ are exact, i.e., the $\mathcal{O}_X(U)$ -modules $\mathcal{O}_X(V)$ are flat.

The affine case

If $X = \operatorname{Spec}(R)$ for a commutative ring R, then $\operatorname{Qcoh}(X) \cong \operatorname{Mod} R$.

Non-uniqueness of the representations

Not all affine open subschemes are needed: a set of them, S, covering both X, and all $U \cap V$ where $U, V \in S$, will do.

イロト 不得 トイヨト イヨト

Extending properties of modules to quasi-coherent sheaves

Examples

If each module of sections is

- projective,
- (restricted) flat Mittag-Leffler,
- flat,

then the quasi-coherent sheaf Q is called

- an infinite dimensional vector bundle,
- (restricted) Drinfeld vector bundle,
- flat quasi-coherent sheaf.

[Raynaud-Gruson'1971, Estrada-Guil-T.'2014]

The notions above are local, i.e., independent of the representation (choice of the affine open covering S of the scheme X).

Flat Mittag-Leffler modules

[Raynaud-Gruson'1971]

A module M is flat Mittag-Leffler provided that each finite subset of M is contained in a countably generated projective and pure submodule of M. Notation: \mathcal{FM} .

[Herbera-T.'2012]

Equivalently: M is locally C-free, where C is the class of all countably presented projective modules.

A basic definition

Let $\ensuremath{\mathcal{C}}$ be a class of countably presented modules.

A module M is locally C-free provided there exists a set $S \subseteq C$ consisting of submodules of M such that

- ullet each countable subset of M is contained in a module from \mathcal{S} , and
- $\bullet \ {\cal S}$ is closed under unions of countable chains.

Cohomology of quasi-coherent sheaves

[Gillespie'2004, Estrada-Guil-Prest-T.'2012]

Introduce a method of constructing functorially complete cotorsion pairs in C(Qcoh(X)), and hence model category structures, using complete cotorsion pairs $(\mathcal{A}, \mathcal{B})$ of modules such that $\mathcal{A} \subseteq \mathcal{F}_0$.

A pair of classes $(\mathcal{A}, \mathcal{B})$ is a complete cotorsion pair in Mod-R if

- $\mathcal{A} = {}^{\perp}\mathcal{B} := \{A \in \text{Mod-}R \mid \text{Ext}_R^i(A, B) = 0 \text{ for all } i \ge 1 \text{ and } B \in \mathcal{B}\},\$ • $\mathcal{B} = \mathcal{A}^{\perp}.$
- for each module M there is an exact sequence $0 \rightarrow B \rightarrow A \rightarrow M \rightarrow 0$ with $A \in A$ and $B \in B$ (i.e., A is a special precovering class), and
- for each module M' there is an exact sequence
 0 → M' → B' → A' → 0 with A' ∈ A and B' ∈ B
 (i.e., B is a special preenveloping class).

3

ヘロト 人間ト 人造ト 人造ト

Module approximations

A class of modules \mathcal{A} is precovering if for each module M there is $f \in \operatorname{Hom}_R(A, M)$ with $A \in \mathcal{A}$ such that each $f' \in \operatorname{Hom}_R(A', M)$ with $A' \in \mathcal{A}$ factorizes through f:

f is an \mathcal{A} -precover of M. If f is also right minimal (i.e., f factorizes through itself only by an automorphism of A), then f is an \mathcal{A} -cover of M. If f is surjective and $\operatorname{Ext}_{R}^{1}(\mathcal{A},\operatorname{Ker}(f)) = 0$, then f is called special. If \mathcal{A} provides for covers (special precovers) of all modules, then \mathcal{A} is called a covering (special precovering) class.

Preenveloping and (special) enveloping classes are defined dually.

(Aproximation properties ...)

Transfinite extensions

Let C be a class of modules. A module M is C-filtered (or a transfinite extension of the modules in C), provided that there exists an increasing sequence $(M_{\alpha} \mid \alpha \leq \sigma)$ consisting of submodules of M such that $M_0 = 0$, $M_{\sigma} = M$,

- $M_{lpha} = igcup_{eta < lpha} M_{eta}$ for each limit ordinal $lpha \leq \sigma$, and
- for each $\alpha < \sigma$, $M_{\alpha+1}/M_{\alpha}$ is isomorphic to an element of C.

Notation: Trans(C).

Example

Let R be a ring and C the class of all simple modules. Then Trans(C) is the class of all semiartinian modules.

(日) (圖) (E) (E) (E)

The abundance of approximations

[Eklof-T.'2000]

For each set of modules S, there is a complete cotorsion pair $(^{\perp}(S^{\perp}), S^{\perp})$.

[Enochs'2012, Šťovíček'2012]

The class Trans(S) is precovering for each set of modules S.

Some examples

[Enochs et al.]

o ...

- For each ring R and each $n \ge 0$, the class \mathcal{P}_n is special precovering, \mathcal{F}_n is covering, and \mathcal{I}_n is special preenveloping.
- For each Iwanaga-Gorenstein ring *R*, the class *GP* is special precovering, and *GI* is special preenveloping.

Does \mathcal{FM} fit in this context?

・ 同 ト ・ 三 ト ・ 三 ト

Flat Mittag-Leffler approximations

Theorem (Angeleri-Šaroch-T.)

 \mathcal{FM} is (pre) covering, iff R is a right perfect ring (i.e., $\mathcal{P}_0 = \mathcal{F}_0$).

What is the obstruction for existence of precovers?

(4 間) トイヨト イヨト

Bass modules

Let R be a ring, and C be a class of countably presented modules.

 $\underbrace{\lim_{\omega \to \infty} C}_{\omega}$ denotes the class of all Bass modules over C, that is, the modules B that are countable direct limits of modules from C. W.l.o.g., such B is the direct limit of a chain

$$C_0 \stackrel{f_0}{\rightarrow} C_1 \stackrel{f_1}{\rightarrow} \ldots \stackrel{f_{i-1}}{\rightarrow} C_i \stackrel{f_i}{\rightarrow} C_{i+1} \stackrel{f_{i+1}}{\rightarrow} \ldots$$

with $C_i \in C$ and $f_i \in \text{Hom}_R(C_i, C_{i+1})$ for all $i < \omega$.

Classic Bass modules

Let C be the class of all finitely generated projective modules. Then the Bass modules coincide with the countably presented flat modules.

If *R* is not right perfect, then an instance of such a classic Bass module *B* arises when $F_i = R$ and f_i is the left multiplication by a_i ($i < \omega$). Note: *B* is not projective, hence not flat Mittag-Leffler.

(Aproximation properties ...)

Proof of the theorem

It suffices to prove that if R is not right perfect, then the class \mathcal{FM} is not precovering.

Let B be a non-projective classic Bass module. Assume there exists a \mathcal{FM} -precover $f: F \to B$. Let K = Ker(f), so we have an exact sequence

$$0 \to K \hookrightarrow F \xrightarrow{f} B \to 0.$$

Let κ be an infinite cardinal such that $|R| \leq \kappa$ and $|K| \leq 2^{\kappa} = \kappa^{\omega}$. Then there exists a 'tree-module' short exact sequence

$$0 \to D \hookrightarrow G \to B^{(2^{\kappa})} \to 0$$

such that $G \in \mathcal{FM}$ and D is a free module of rank κ . Clearly, $G \in \mathcal{P}_1$.

Let $\eta: K \to E$ be a $\{G\}^{\perp}$ -preenvelope of K with a $\{G\}$ -filtered cokernel. Consider the pushout

Then $P \in \mathcal{FM}$. Since f is an \mathcal{FM} -precover, there exists $h: P \to F$ such that fh = g. Then $f = g\varepsilon = fh\varepsilon$, whence $K + \operatorname{Im}(h) = F$. Let $h' = h \upharpoonright E$. Then $h': E \to K$ and $\operatorname{Im}(h') = K \cap \operatorname{Im}(h)$.

Consider the 'restricted' exact sequence

$$0 \longrightarrow \operatorname{Im}(h') \xrightarrow{\subseteq} \operatorname{Im}(h) \xrightarrow{f \upharpoonright \operatorname{Im}(h)} B \longrightarrow 0$$

As $E \in G^{\perp}$ and $G \in \mathcal{P}_1$, also $\text{Im}(h') \in G^{\perp}$. Applying $\text{Hom}_R(-, \text{Im}(h'))$ to the 'tree-module' exact sequence above, we obtain the exact sequence

$$\operatorname{\mathsf{Hom}}_R(D,\operatorname{\mathsf{Im}}(h')) o\operatorname{\mathsf{Ext}}^1_R(B,\operatorname{\mathsf{Im}}(h'))^{2^\kappa} o 0$$

where the first term has cardinality $\leq |\mathcal{K}|^{\kappa} \leq 2^{\kappa}$, so the second term must be zero.

This yields $\text{Im}(h') \in B^{\perp}$. Then $f \upharpoonright \text{Im}(h)$ splits, and so does the \mathcal{FM} -precover f, a contradiction with $B \notin \mathcal{FM}$.

(日) (同) (三) (三) (二)

The general case

Šaroch's lemma on Bass modules

Let ${\cal C}$ be a class of countably presented modules, and ${\cal L}$ the class of all locally ${\cal C}\text{-free modules}.$

Let B be a Bass module over C such that B is not a direct summand in a module from \mathcal{L} .

Then the Bass module B has no \mathcal{L} -precover.

A connection to tilting theory

T is a (large) tilting module provided that

- $pd(T) < \infty$,
- $\operatorname{Ext}_{R}^{i}(T, T^{(X)}) = 0$ for each $i \geq 1$ and each set X,

• There exists $r < \omega$ and an exact sequence $0 \rightarrow R \rightarrow T_0 \rightarrow \cdots \rightarrow T_r \rightarrow 0$ with $T_j \in Add(T)$ for all $j \leq r$.

 $T_T := T^{\perp}$ is the right tilting class, and

 $\mathcal{A}_{\mathcal{T}} = {}^{\perp}(\mathcal{T}^{\perp})$ is the left tilting class induced by \mathcal{T} .

《曰》 《曰》 《曰》 《曰》

The tilting generalization

Replacements

The projective module $R \leftrightarrow$ any tilting module T,

 $\mathcal{P}_0 \leftrightarrow \text{the left tilting class } \mathcal{A}_{\mathcal{T}}\text{,}$

 $\mathcal{F}_0 \leftrightarrow \text{the direct limit closure } \varinjlim \mathcal{A}_{\mathcal{T}},$

 $\mathcal{FM} \leftrightarrow$ the class \mathcal{L} of all locally T-free modules, i.e., the locally C-free modules, where C is the class of all countably presented modules from \mathcal{A}_T .

Theorem (Angeleri-Šaroch-T.)

 \mathcal{L} is (pre) covering, iff $\mathcal{A}_{T} = \varinjlim \mathcal{A}_{T}$, iff each pure embedding in Add(T) splits (i.e., T is \sum -pure split).

イロト 不得 トイヨト イヨト

The dual setting: contraherent cosheaves

Definition (Positselski)

Let X be a scheme and \mathcal{O}_X its structure sheaf.

A contraherent cosheaf P on X can be represented by an assignment

- to every affine open subscheme U ⊆ X, of an O_X(U)-module P(U) of cosections, and
- to each pair of embedded affine open subschemes V ⊆ U ⊆ X, an O_X(U)-homomorphism g_{VU} : P(V) → P(U) such that

$$\operatorname{Hom}_{\mathcal{O}_X(U)}(\mathcal{O}_X(V), g_{VU}) : P(V) \to \operatorname{Hom}_{\mathcal{O}_X(U)}(\mathcal{O}_X(V), P(U))$$

is an $\mathcal{O}_X(V)$ -isomorphism.

+ compatibility conditions for the g_{VU} .

< ロ > < 同 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

A drawback and a remedy

The drawback

The $\mathcal{O}_X(U)$ -module $\mathcal{O}_X(V)$ is only flat, but not projective in general, so the Hom-functor above is not exact.

The remedy

Exactness is forced by an extra condition on the contraherent cosheaf P:

$$\mathsf{Ext}^{1}_{\mathcal{O}_{X}(U)}(\mathcal{O}_{X}(V), P(U)) = 0.$$

Moreover, the $\mathcal{O}_X(U)$ -modules $\mathcal{O}_X(V)$ are very flat ...

Very flat modules

Definition

A module M over a commutative ring R is very flat provided that $M \in {}^{\perp}(S^{\perp})$ where $S = \{R[s^{-1}] \mid s \in R\}$ and $R[s^{-1}]$ denotes the localization of R at the multiplicative set $\{1, s, s^2, ...\}$. Notation: $\mathcal{VF} := {}^{\perp}(S^{\perp})$.

Lemma (Positselski)

Let $R \to S$ be a homomorphism of commutative rings such that the induced morphism of affine schemes $Spec(S) \to Spec(R)$ is an open embedding. Then S is a very flat R-module.

Basic properties of very flat modules

- $\mathcal{P}_0 \subseteq \mathcal{VF} \subseteq \mathcal{F}_0 \cap \mathcal{P}_1$.
- There is a complete cotorsion pair ($\mathcal{VF}, \mathcal{CA}$). The modules in \mathcal{CA} are called contraadjusted.

•
$$\mathcal{VF} = \operatorname{Trans}(\mathcal{VF}^{\leq \omega})$$

Locally very flat modules

Definition

A module M is locally very flat provided there exists a set \mathcal{E} consisting of countably presented very flat submodules of M such that each countable subset of M is contained in an element of \mathcal{E} , and \mathcal{E} is closed under unions of countable chains.

Notation: \mathcal{LV} .

Basic properties Since $\mathcal{P}_0 \subseteq \mathcal{VF}$, we have $\mathcal{FM} \subseteq \mathcal{LV} \subseteq \mathcal{F}_0$. Also $\mathcal{EC} \subseteq \mathcal{CA}$. If *R* is a domain, then $\mathcal{DI} \subseteq \mathcal{CA}$.

- 4 目 ト - 4 日 ト - 4 日 ト

Example: the case of a Dedekind domain

Lemma (Slávik-T.)

Let R be a Dedekind domain and M be a module.

- VF = Trans(T), where T is the set of all submodules of the modules in S.
- If M is of finite rank, then M ∈ VF, iff there exists 0 ≠ s ∈ R such that M ⊗_R R[s⁻¹] is a projective R[s⁻¹]-module.
- ('Pontryagin Criterion') M ∈ LV, iff each finite subset of M is contained in a countably generated very flat pure submodule of M, iff each finite rank submodule of M is very flat.

イロト イポト イヨト イヨト

Locally very flat modules and precovers

Theorem (Slávik-T.)

Let *R* be a noetherian domain. Then the following conditions are equivalent:

- \mathcal{LV} is a (pre) covering class,
- \mathcal{VF} is a covering class,
- Spec(R) is finite,
- $\mathcal{VF} = \mathcal{F}_0$.

In this case, R has Krull dimension 1.

References

1. L.Angeleri Hügel, J.Šaroch, J.T.: *Approximations and Mittag-Leffler conditions*, preprint (2014).

2. L.Positselski: *Contraherent cosheaves*, preprint (2012), arXiv:1209.2995v4.

3. A.Slávik, J.T.: Very flat and locally very flat modules, preprint (2015).