Geometry and Algebra in Computer Vision \& Robotics

Tomas Pajdla

with contributions from
Z. Kukelova, M. Bujnak, T. Schilling, J. Heller, C. Albl

Center for Machine Perception

Geometry of Vision \& Robotics Group

Tomas Pajdla
Assistant professor
Center for Machine Perception, Dpt. of Cybernetics, FEE, CTU in Prague pajdla@cmp.felk.cvut.cz

Research \& applications

- 3D reconstruction
- Photogrammetry
- Robotics \& manipulation
- Algebra, geometry, optimization

Teaching (PhD, MSc, BSc)
Geometry of Computer Vision \& Robotics Invíá ETHzürch

Research funding

Industry collaboration

www.neovision.cz

RETAIL monitoring

Industrial Vision Systems
Machine vision and image processing technology for industry and medicine

3D robotics
\& mp

(a)

Intelligent Robotics

Perspective camera model

T. Pajdla. Elements of Geometry for Computer Vision http://cmp.felk.cvut.cz/~pajdla/gvg/GVG-2014-Lecture.pdf

Camera

Digital cameras

Image projection model

1. Light extends along straight rays
2. Projection center
3. Projection plane

Image

Image is a $m \times n \times 3$ matrix in Matlab

$(0,0)^{\top}$

Direction vector of projection ray

Coordinate system with origin C

$$
\begin{aligned}
\beta & =\left(\vec{b}_{1}, \vec{b}_{2}, \vec{b}_{3}\right) \\
S & =(C, \beta) \\
\vec{b}_{3} & =\varphi(C, o)
\end{aligned}
$$

Miracle: The coordinates od the direction vector of a projection ray can be constructed by a adding " 1 " to image coordinates:

We measure in image

$$
\vec{u}=u \vec{b}_{1}+v \vec{b}_{2} \sim \mathbf{u}_{\left(\vec{b}_{1}, \vec{b}_{2}\right)}=\binom{u}{v}
$$

Triangle equality

$$
\vec{x}=\vec{u}+\vec{b}_{3}
$$

$$
\vec{x}=u \vec{b}_{1}+v \vec{b}_{2}+1 \vec{b}_{3} \sim \mathbf{x}_{\beta}=\left(\begin{array}{l}
u \\
v \\
1
\end{array}\right)
$$

Projection matrix: $\quad \eta \vec{x}_{\beta}=\vec{X}_{\beta}-\vec{C}_{\beta}$

$$
\underbrace{\vec{u}_{\alpha}=\left[\begin{array}{l}
u \\
v
\end{array}\right]} \begin{aligned}
\eta\left[\begin{array}{c}
\vec{u}_{\alpha} \\
1
\end{array}\right] & =\vec{X}_{\beta}-\vec{C}_{\beta} \\
\vec{y}_{\beta} & =\mathrm{A} \vec{y}_{\delta} \\
& =\mathrm{A}\left(\vec{X}_{\delta}-\vec{C}_{\delta}\right)
\end{aligned}
$$

$$
\eta\left[\begin{array}{c}
\vec{u}_{\alpha} \\
1
\end{array}\right]=\mathrm{A}\left[\mathrm{I} \mid-\vec{C}_{\delta}\right]\left[\begin{array}{c}
\vec{X}_{\delta} \\
1
\end{array}\right]
$$

$$
\eta\left[\begin{array}{c}
\vec{u}_{\alpha} \\
1
\end{array}\right]=\mathrm{P}_{\beta}\left[\begin{array}{c}
\vec{X}_{\delta} \\
1
\end{array}\right]
$$

$$
\eta \vec{x}_{\beta}=\mathrm{P}_{\beta}\left[\begin{array}{c}
\vec{X}_{\delta} \\
1
\end{array}\right]
$$

Homography

World coordinate system
Camera observes a plane
$\delta=\left(\vec{a}_{1}, \vec{a}_{2}, \vec{a}_{3}\right)$
$W=(O, \delta)$
$\alpha \vec{x}_{\beta}=\mathrm{P} \dot{X}{ }_{\delta}$
$\beta=\left(\vec{b}_{1}, \vec{b}_{2}, \vec{b}_{3}\right)$
$S=(C, \beta)$
Camera coordinate system

$$
\zeta\left[\begin{array}{l}
u \\
v \\
1
\end{array}\right]=\zeta \vec{x}_{\beta}=\mathrm{P}\left[\begin{array}{c}
\vec{X}_{\delta} \\
1
\end{array}\right]=\left[\begin{array}{llll}
\mathrm{p}_{1} & \mathrm{p}_{2} & \mathrm{p}_{3} & \mathrm{p}_{4}
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
0 \\
1
\end{array}\right]=\left[\begin{array}{lll}
\mathrm{p}_{1} & \mathrm{p}_{2} & \mathrm{p}_{4}
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]=\mathrm{H} \vec{y}_{\tau}
$$

COMPUTINGTHE HOMOGRAPHY from 4 correspondences

Computing the homography

$\exists \mathrm{H} \in \mathbb{R}^{3 \times 3}$, rank $\mathrm{H}=3$, so that $\forall(u, v) \stackrel{\text { corr }}{\hookrightarrow}\left(u^{\prime}, v^{\prime}\right) \exists \alpha \in \mathbb{R}$:

$$
\alpha\left(\begin{array}{l}
u^{\prime} \\
v^{\prime} \\
1
\end{array}\right)=\mathrm{H}\left(\begin{array}{l}
u \\
v \\
1
\end{array}\right)
$$

Introduce symbols for rows of homography H

$$
\mathrm{H}=\left(\begin{array}{l}
\mathbf{h}_{1}^{\top} \\
\mathbf{h}_{2}^{\top} \\
\mathbf{h}_{3}^{\top}
\end{array}\right)
$$

and rewrite the above matrix equation as

$$
\begin{aligned}
\alpha u^{\prime} & =\mathbf{h}_{1}^{\top} \mathbf{x} \\
\alpha v^{\prime} & =\mathbf{h}_{2}^{\top} \mathbf{x} \\
\alpha & =\mathbf{h}_{3}^{\top} \mathbf{x}
\end{aligned}
$$

Computing the homography

Eliminate α from the first two equations using the third one

$$
\begin{aligned}
& \left(\mathbf{h}_{3}^{\top} \mathbf{x}\right) u^{\prime}=\mathbf{h}_{1}^{\top} \mathbf{x} \\
& \left(\mathbf{h}_{3}^{\top} \mathbf{x}\right) v^{\prime}=\mathbf{h}_{2}^{\top} \mathbf{x}
\end{aligned}
$$

move all to the left hand side and reshape it using $\mathrm{x}^{\top} \mathbf{y}=\mathbf{y}^{\top} \mathbf{x}$

$$
\begin{aligned}
& \mathbf{x}^{\top} \mathbf{h}_{1}-\left(u^{\prime} \mathbf{x}^{\top}\right) \mathbf{h}_{3}=0 \\
& \mathbf{x}^{\top} \mathbf{h}_{2}-\left(v^{\prime} \mathbf{x}^{\top}\right) \mathbf{h}_{3}=0
\end{aligned}
$$

Introduce notation

$$
\mathbf{h}=\left(\begin{array}{lll}
\mathbf{h}_{1}^{\top} & \mathbf{h}_{2}^{\top} & \mathbf{h}_{3}^{\top}
\end{array}\right)^{\top}
$$

and express the above two equations in a matrix form

$$
\left(\begin{array}{ccccccccc}
u & v & 1 & 0 & 0 & 0 & -u^{\prime} u & -u^{\prime} v & -u^{\prime} \\
0 & 0 & 0 & u & v & 1 & -v^{\prime} u & -v^{\prime} v & -v^{\prime}
\end{array}\right) \mathbf{h}=0
$$

Computing the homography

Notice that A can be written in the form

$$
\mathrm{A}=\left(\begin{array}{ccccccccc}
u_{1} & v_{1} & 1 & 0 & 0 & 0 & -u_{1}^{\prime} u_{1} & -u_{1}^{\prime} v_{1} & -u_{1}^{\prime} \\
u_{2} & v_{2} & 1 & 0 & 0 & 0 & -u_{2}^{\prime} u_{2} & -u_{2}^{\prime} v_{2} & -u_{2}^{\prime} \\
& & & & \vdots & & & & \\
0 & 0 & 0 & u_{1} & v_{1} & 1 & -v_{1}^{\prime} u_{1} & -v_{1}^{\prime} v_{1} & -v_{1}^{\prime} \\
0 & 0 & 0 & u_{2} & v_{2} & 1 & -v_{2}^{\prime} u_{2} & -v_{2}^{\prime} v_{2} & -v_{2}^{\prime} \\
& & & & \vdots & & & &
\end{array}\right)
$$

which can be rewritten more concisely as

$$
\mathrm{A}=\left(\begin{array}{ccc}
\mathbf{x}_{1}^{\top} & \mathbf{0} & -u_{1}^{\prime} \mathbf{x}_{1}^{\top} \\
\mathbf{x}_{2}^{\top} & \mathbf{0} & -u_{2}^{\prime} \mathbf{x}_{2}^{\top} \\
& \vdots & \\
\mathbf{0} & \mathbf{x}_{1}^{\top} & -v_{1}^{\prime} \mathbf{x}_{1}^{\top} \\
\mathbf{0} & \mathbf{x}_{2}^{\top} & -v_{2}^{\prime} \mathbf{x}_{2}^{\top} \\
& \vdots &
\end{array}\right)
$$

Computing the homography from 4 points on 2 lines in Matlab

```
%4 points
>>x = [0 0 1;1 0 1;0 1 1;1 1 1]';
>>y = [1 1 1;1 0 1;0 1 1;0 0 1]';
```

\% the 2-line algorithm

```
>>A = [[x' zeros(size(x')) [-y(1,:)'*ones(1,3)].*(x')]
    [zeros(size(x')) x' [-y(2,:)'*ones(1,3)].*(x')]];
>>H = reshape(null(A),3,3)';
```

\% verification
$\gg \mathrm{e}=\mathrm{y}-(\mathrm{H} * \mathrm{x}) . /[[1 ; 1 ; 1] *(\mathrm{H}(3,:) * \mathrm{x})]$
e =
$1.0 \mathrm{e}-015$ *

0	0.0481	-0.2220	-0.4441
0	0.2220	0.0961	-0.2220
0	0	0	0

Setup

Calibration tatget

Laser spot

Laser spot in the camera view
$1 \mathrm{pxI} \sim 0.1 \mathrm{~mm}$, i.e. resolution $0.1 \mathrm{pxI} \sim 0.01 \mathrm{~mm}$

abb-sq-02:
VAR speeddata speed:= [15,15,0,0];
CONST zonedata zn := [FALSE, 3.0, 3.0, 3.0, 0.30, 3.0, 0.30];

pajdla@cmp.felk.cvut.cz
abb-sq-03:
VAR speeddata speed:= [15,15,0,0];
CONST zonedata zn := [FALSE, 0.1, 0.1, 0.1, 0.01, 0.1, 0.01];

4 - corners

segment $1 \quad 2 \quad 3 \quad 4 \quad 5$

D [mm]	31.36	31.19	31.20	31.48	44.18	44.36	
dD [mm]	0.06	-0.12	-0.11	0.17	-0.09	0.09	
dphi [deg]	0.12	-0.65	0.35	0.19	-0.10	NaN	

pajdla@cmp.felk.cvut.cz
abb-sq-03:
VAR speeddata speed:= [15,15,0,0];
CONST zonedata zn := [FALSE, 0.1, 0.1, 0.1, 0.01, 0.1, 0.01];

Hebestipl!!h of freftisectoh

> Logged in as pajdla

Log out

Admin Menu

Datasets
Jobs
Users
Browse
Disk Usage
Sanity Check
User Menu
Datasets
Jobs
Browse
Profile
Documentation
SfM Tutorial
Browser Interface
CLI Interface
Examples
What?

Why?

CMP SfM Web Service

BLike 11 ESend

CMP SfM Web Service provides a remote access to the 3D reconstruction systems developed in Center for Machine Perception, FEE, CTU Praque. Our service is available for research purposes only and access is granted on email request to Tomas Pajdla <pajdlaldimp. felk. crut. cz>. Any commercial use of the service and/or the obtained results is prohibited.

We provide the access to the service to our partners and to people in the Computer vision community to make it easier to
use our codes. There is no need to install any code on a client's computer and all the computations use our codes. There is no need to installany code on a client's computer and ail the computations results of different methods to ours based on the same data.

IMAGE No. 1

IMAGE No. 2

pajdla@cmp.felk.cvut.cz

SIMILAR FEATURES FORM MATCHES

Some feature are similar but do not really match

NOT ALL MATCHES ARE CORRECT

BUT SOME ARE

FEATURE CENTERS - POINTS

CHECK THE NUMBERS

EPIPOLAR CONSTRAINT

EPIPOLAR CONSTR \rightarrow algebraic equation

HOW TO GET ONE F?

F can be computed from 5 good matches

$$
\mathrm{x}_{2}{ }^{\top} \mathrm{F} \mathrm{x}_{1}=0
$$

HOW TO GET THE BEST F?

The best F is consistent with the highest number of matches

CONSISTENCY WITH F


```
FINDING THE BEST F
```


RANSAC (RANdom SAmpling Consensus)
\longrightarrow 1. Generate random 5 -tuples of matches
2. Compute F by solving $\mathrm{x}_{2}{ }^{\top} \mathrm{F} \mathrm{x}_{1}=0$ (not so trivial)
3. Count the number of good matches

Return the largest set of good matches

INTEGRATED FROM MANY CAMERAS

RESULT

Dense 3D by fish scales of R. Sara et al.

Dense 3D by fish scales of R. Sara et al.

RELATIVE CAMERA POSE PROBLEM

Algebraic equations

MINIMAL PROBLEMS \& RANSAC

5 matches are necessary and sufficient

RANSAC: find F to maximize the \# of good matches
select 5 matches \rightarrow compute $F \rightarrow$ record the support
\qquad

F ORMULATION

U N K N O W N S

$$
\mathrm{F}=\underbrace{\left[\begin{array}{lll}
f_{11} & f_{12} & f_{13} \\
f_{12} & f_{22} & f_{23} \\
f_{31} & f_{32} & f_{33}
\end{array}\right]}
$$

9 unknowns but only 8 have to be found (F up to scale)
\rightarrow we need at least 8 independent equations

EQUATIONS

$\operatorname{det} F=0$
$2 \mathrm{FF}{ }^{\top} \mathrm{F}-\operatorname{trace}\left(\mathrm{FF}{ }^{\top}\right) \mathrm{F}=0$

1 equation, degree 3

9 equations, degree 3

10 equations but only 3 "independent"

$$
8=3+5
$$

$\rightarrow 5$ more equations needed

5 EQUATIONS from image points

5 linear equations:

$\bullet f_{11}+\bullet f_{12}+\bullet f_{13}+\bullet f_{21}+\bullet f_{22}+\bullet f_{23}+\bullet f_{13}+\bullet f_{23}+\bullet f_{31}+\bullet f_{32}+\bullet f_{33}=0$

ELIMINATING UNKNOWNS

5 linear equations:

$\bullet f_{11}+\bullet f_{12}+\bullet f_{13}+\bullet f_{21}+\bullet f_{22}+\bullet f_{23}+\bullet f_{13}+\bullet f_{23}+\bullet f_{31}+\bullet f_{32}+\bullet f_{33}=0$
can be written in a matrix form

ELIMINATING UNKNOWNS

ELIMINATING UNKNOWNS

$F \sim x N_{1}+y N_{2}+z N_{3}+w N_{4}$
... 4 unknowns
F is up to scale \rightarrow choose a representative by setting $w=1$
$F:=x N_{1}+y N_{2}+z N_{3}+N_{4}$

3 unknowns x, y, z

substitute

$2 \mathrm{FF}^{\top} \mathrm{F}-\operatorname{trace}\left(\mathrm{FF}^{\top}\right) \mathrm{F}=0$
103 rd order equations in 3 unknowns

SOLVING IT

$\left.\begin{array}{r}\operatorname{det} \mathrm{F}=0 \\ 2 \mathrm{FF} \mathrm{F}^{\top} \mathrm{F}-\operatorname{trace}\left(\mathrm{FF}^{\top}\right) \mathrm{F}=0\end{array}\right\} \quad \begin{aligned} & 10 \quad \begin{array}{l}\text { rd } \\ 3 \text { under equations in } \\ 3 \text { unkns }\end{array}\end{aligned}$

$$
X=\left[x^{3}, x^{2} y, x^{2} z, x y^{2}, x y z, x z^{2}, y^{3}, y z^{2}, z^{3}, x^{2}, x y, x z, y^{2}, y z, z^{2}, x, y, z, 1\right]^{\top}
$$

SOLVING IT

Gauss-Jordan elimination

SOLVING IT

SOLUTIONS

$[x, y, z]=\operatorname{eig}\left(A_{t}\right)$
... up to 10 solutions

R, T ... camera relative motion

ALGORITM

1. Construct matrix M
2. Build matrix At

$$
\begin{aligned}
& \mathrm{B}=\operatorname{inv}(\mathrm{M}(:, 1: 10)) * \mathrm{M}(:, 11: 20) ; \\
& \operatorname{At}=\operatorname{zeros}(10) ; \\
& \operatorname{At}(1: 6,:)=-\mathrm{B}([1: 6],:) ; \\
& \operatorname{At}(7,1)=1 ; \\
& \operatorname{At}(8,2)=1 ; \\
& \operatorname{At}(9,3)=1 ; \\
& \operatorname{At}(10,7)=1 ;
\end{aligned}
$$

3. Compute eigenvalues
$[x, y, z]=\operatorname{eig}\left(A_{t}\right)$
4. Recover camera relative motion R, T

ALGORITM

1. Not trivial to find
2. Simple \& fast

SOLVING ALGEBRAIC EQUATIONS

The previous procedure was a particular case of a general technique for solving systems of algebraic equations.

HISTORY

1888 David Hilbert: Finitness theorem Every ideal has a finite generating set
 1965 Bruno Burchberger: Groebner bases Computational procedure for solving systems of polynomial equations (Extremely simple: 20 lines of Maple code!)
 1998 Hans Stetter: Multiplication matrix A stable numerical procedure via eigenvectors

1999 Jean-Charles Faugere: F4 algorithm An efficient computational tool for cryptography

SOLVING ALGEBRAIC EQUATIONS

1 equation, 1 variable \rightarrow companion matrix \rightarrow eigenvalues

$$
\begin{aligned}
f(x)=x^{3} & +4 x^{2}+x-6=-6+1 x+4 x^{2}+1 x^{3} \\
M_{x} & =\left[\begin{array}{rrr}
0 & 0 & 6 \\
1 & 0 & -1 \\
0 & 1 & -4
\end{array}\right] \\
\gg \mathrm{e} & =\mathrm{eig}\left(\mathrm{M}_{x}\right) \\
\mathrm{e} & =\left[\begin{array}{r}
1 \\
-2 \\
-3
\end{array}\right] \quad x_{1}=1, x_{2}=-2, x_{3}=-3
\end{aligned}
$$

It works when eig works, i.e. order 100 in Matlab is often OK.

SOLVING ALGEBRAIC EQUATIONS

m equations, n variables

$$
\begin{array}{|l}
f_{1}(x, y)=25 x y-15 x-20 y+12 \\
f_{2}(x, y)=x^{2}+y^{2}-1
\end{array}
$$

\rightarrow Groebner basis
(a set of polynomials with the same solutions but easier to solve)

$$
\begin{aligned}
g_{1}(x, y) & =125 y^{3}-75 y^{2}+27-45 y \\
g_{2}(x, y) & =25 x y-15 x-20 y+12 \\
g_{3}(x, y) & =x^{2}+y^{2}-1
\end{aligned}
$$

SOLVING ALGEBRAIC EQUATIONS

 m equations, n variables$$
\begin{aligned}
& f_{1}(x, y)=25 x y-15 x-20 y+12 \\
& f_{2}(x, y)=x^{2}+y^{2}-1
\end{aligned}
$$

\rightarrow Groebner basis \rightarrow generalized companion matrix

$$
\mathrm{M}_{x+y}=\left[\begin{array}{rrrr}
0 & 125 & 0 & 125 \\
-60 & 100 & 125 & 75 \\
-63 & 45 & 175 & 45 \\
65 & 100 & -125 & 75
\end{array}\right]
$$

SOLVING ALGEBRAIC EQUATIONS

 m equations, n variables$$
\begin{aligned}
& f_{1}(x, y)=25 x y-15 x-20 y+12 \\
& f_{2}(x, y)=x^{2}+y^{2}-1
\end{aligned}
$$

\rightarrow Groebner basis \rightarrow generalized \rightarrow eigenvectors companion matrix

SOLVING ALGEBRAIC EQUATIONS

 m equations, n variables$$
\begin{aligned}
& f_{1}(x, y)=25 x y-15 x-20 y+12 \\
& f_{2}(x, y)=x^{2}+y^{2}-1
\end{aligned}
$$

\rightarrow Groebner basis $\rightarrow \begin{gathered}\text { generalized } \\ \text { companion }\end{gathered}$ matrix

THE DIFFICULT PART

Equations \rightarrow Groebner basis

no simple rule:

1. NP-complete in m, n (~3-coloring of graphs) (takes very long time to compute)
2. EXPSPACE-complete problem (needs huge space to remember intermediate results)

GB COMPUTATION ALGORITHMS

Manipulation ... polynomial multiplication \& pseudo-division

$$
\begin{aligned}
& f_{1}=25 x y-15 x-20 y+12 \\
& f_{2}=x^{2}+y^{2}-1
\end{aligned}
$$

$$
? g_{1}=(-5 y-3) f_{1}+(125 x-10) f_{2}
$$

$$
g_{1}=125 y^{3}-75 y^{2}+27-45 y
$$

$$
g_{2}=25 x y-15 x-20 y+12
$$

$$
g_{3}=x^{2}+y^{2}-1
$$

How to find coefficients?

GB COMPUTATION ALGORITHMS

1. "Standard" (Hironaka 1964) and Groebner (Burchberger 1965) bases
2. 1965: Buchberger's algorithm

- a generalization of the Gauss-Jordan elimination
- extremely simple: 7 (+ 13 for the rem division) lines of code
- not efficient
- not good for numerical approximations

3. 1999 (2005): F4 (F5) algorithm (J.-C. Faugere)

- more efficient, more robust, more complex

COMPUTING GB MAY BE VERY HARD

Example:

4 polynomials, 3 variables, degree ≤ 6, small integer coeffs

$$
\begin{aligned}
& f_{1}=8 x^{2} y^{2}+5 x y^{3}+3 x^{3} z+x^{2} y z \\
& f_{2}=x^{5}+2 y^{3} z^{2}+13 y^{2} z^{3}+5 y z^{4} \\
& f_{3}=8 x^{3}+12 y^{3}+x z^{2}+3 \\
& f_{4}=7 x^{2} y^{4}+18 x y^{3} z^{2}+y^{3} z^{3}
\end{aligned}
$$

have extremely simple Groebner basis

$$
\begin{aligned}
g_{1} & =x \\
g_{2} & =y^{3}+\frac{1}{4} \\
g_{3} & =z^{2}
\end{aligned}
$$

HOWEVER

when computed by the Buchberger's algorithm over the rational numbers w.r.t. the grevlex ordering $x>y>z$, the following polynomial appears during the computation:
$y^{3}-1735906504290451290764747182 \ldots$

~ 80,000 digits

COMPUTATION

Macaulay2 program over the rational field \mathbb{Q}
$R=Q Q[x, y, z, M o n o m i a l O r d e r=>G R e v L e x] ;$
$\mathrm{I}=$ ideal $\left(8 * \mathrm{x}^{\wedge} 2 * \mathrm{y}^{\wedge} 2+5 * \mathrm{x} * \mathrm{y}^{\wedge} 3+3 * \mathrm{x}^{\wedge} 3 * \mathrm{z}+\mathrm{x}^{\wedge} 2 * \mathrm{y} * \mathrm{z}\right.$, $\mathrm{x}^{\wedge} 5+2 * \mathrm{y}^{\wedge} 3 * \mathrm{z}^{\wedge} 2+13 * \mathrm{y}^{\wedge} 2 * \mathrm{z}^{\wedge} 3+5 * \mathrm{y} * \mathrm{z}^{\wedge} 4$, $8 * x^{\wedge} 3+12 * y^{\wedge} 3+x * z^{\wedge} 2+3$, $\left.7 * x^{\wedge} 2 * y^{\wedge} 4+18 * x * y^{\wedge} 3 * z^{\wedge} 2+y^{\wedge} 3 * z^{\wedge} 3\right)$
G = gens gb I
will run very long.

The problem is in remembering very long coefficients.

COMPUTATION

Macaulay2 program over the finite field $\mathbb{Z} / 13$
$R=Z Z / 13[x, y, z, M o n o m i a l O r d e r=>G R e v L e x] ;$

$$
\begin{aligned}
& \text { I = ideal (} 8 * x^{\wedge} 2 * y^{\wedge} 2+5 * x * y^{\wedge} 3+3 * x^{\wedge} 3 * z+x^{\wedge} 2 * y * z \text {, } \\
& x^{\wedge} 5+2 * y^{\wedge} 3 * z^{\wedge} 2+13 * y^{\wedge} 2 * z^{\wedge} 3+5 * y * z^{\wedge} 4 \text {, } \\
& 8 * x^{\wedge} 3+12 * y^{\wedge} 3+x * z^{\wedge} 2+3 \text {, } \\
& \left.7 * x^{\wedge} 2 * y^{\wedge} 4+18 * x * y^{\wedge} 3 * z^{\wedge} 2+y^{\wedge} 3 * z^{\wedge} 3\right) \\
& \mathrm{G}=\text { gens } \mathrm{gb} \mathrm{I}
\end{aligned}
$$

returns a very similar basis in the fraction of the second

$$
\begin{aligned}
& g_{1}=x \\
& g_{2}=y^{3}+10 \\
& g_{3}=z^{2}
\end{aligned} \quad\left(\begin{array}{l}
g_{1}=x \\
g_{2}=y^{3}+\frac{1}{4} \\
g_{3}=z^{2}
\end{array}\right)
$$

W H Y ? General algorithms can construct all GBs but often generate many complicated polynomials

Groebner basis

SPECIFIC GB CONSTRUCTION ALG'S

1. Find a short path towards the GB which is independent from the actual coefficients, implement it efficiently.
2. Use floating-point arithmetics to do the manipulations to avoid huge coefficients.

SHORT PATH TO GB

1. Restructure \& reformulate the problem to reduce the number of variables and the degree of monomials.
2. Use a computer algebra system (Macaulay2) to compute the Groebner basis in a finite field (fast!) for random coefficients and remember the path:
```
R = ZZ/P[x,y,z, MonomialOrder=>GRevLex];
    \uparrow
    "lucky" prime number (always exists)
```

$\operatorname{try} P=1,2,3,5,7, \ldots, 30011,30013,30029, \ldots$
until the result stabilizes (always does)

FLOATING POINT ARITHMETICS

Strictly speaking, polynomial manipulations must be done in exact arithmetics

$$
\begin{aligned}
& f_{1}=25 x y+25 x+12 \\
& f_{2}=x^{2} y+x^{2}+3 \\
& \begin{aligned}
x f_{1}-25 f_{2} & =x(25 x y+25 x+12)-25\left(x^{2} y+x^{2}+3\right) \\
& =12 x-75
\end{aligned} \\
& \quad
\end{aligned}
$$

Double canceling may fail when rounding occurs
in floating point arithmetics

FLOATING POINT ARITHMETICS

For some computer vision problems rounding does not destroy the result.

All manipulations have to be done with care and checked on typical data in randomized experiments.

David Cox John Little Donal 0'Shea

IDEALS, VARIETIES, AIID ALGORITHMS

An Introduction to Computational Algebraic Geometry and Commutative Algebra
Third EditionSpringer

From Google Street View to 3D City Models

