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Design of ribs in the leading edge of Airbus A380



About 15-20% weight savings compared to traditional design

Michal Kočvara, Dept Math, Univ Birmingham



Design of control laws for Ariane 5

Wind disturbance rejection

Heavy load flexible structure

H∞ robust control and optimization



Validation and verification for Vega launcher

Conic optimization for assessing stability and performance



Convex conic geometry



Polytopes





Conics
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Intersection of convex cone
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with affine subspace

x1 = 1





Spectrahedra
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Arthur Cayley (1821-1895)











Conic duality



Some history

Linear programming: L. Kantorovich, G. Dantzig and

T. C. Koopmans (1940) for military and economics planning

Semidefinite programming (1990): eigenvalue optimization,

systems control, signal processing, combinatorics,

structural mechanics

More recently (2000): use of convex relaxations for non-convex

semialgebraic problems, polynomial optimization

Algorithms: simplex and interior-point methods


