Discrete Fourier transform

Gilbert Strang (1994): "FFT is the most important numerical algorithm of our lifetime"

Included in Top 10 Algorithms of 20th Century by the IEEE journal Computing in Science \& Engineering
https://en.wikipedia.org/wiki/Discrete_Fourier_transform https://en.wikipedia.org/wiki/Fast_Fourier_transform

Discrete Cosine Transform (DCT)

- Real version of Fast Fourier Transform
- Expansion into a cosine Fourier series
- More possible definitions

$$
X_{k}=\sum_{n=0}^{N-1} x_{n} \cos \left[\frac{\pi}{N}\left(n+\frac{1}{2}\right) k\right], \quad k=0,1, \ldots, N-1
$$

- Inverse transform (up to a scale factor)

$$
X_{k}=\frac{x_{0}}{2}+\sum_{n=1}^{N-1} x_{n} \cos \left[\frac{\pi}{N}\left(k+\frac{1}{2}\right) n\right], \quad k=0,1, \ldots, N-1
$$

DCT in JPEG

- Encoding of a JPEG image: color transformation, splitting into $8 x 8$ blocks
- Each block is an 8×8 matrix of integers in $[0,255]$
- Subtract 128 - values in $[-128,127]$
- Twodimensional DCT:

$$
G_{u, v}=\frac{1}{4} \alpha(u) \alpha(v) \sum_{x=0}^{7} \sum_{y=0}^{7} g_{x, y} \cos \left[\frac{(2 x+1) u \pi}{16}\right] \cos \left[\frac{(2 y+1) v \pi}{16}\right]
$$

- Normalization factors (for orthonormal transformation)

$$
\alpha(t)=\left\{\begin{array}{lr}
\frac{1}{\sqrt{2}} \quad \text { if } t=0 \\
1 \quad \text { otherwise }
\end{array}\right.
$$

- Rounding, other technical steps, ...

DCT in JPEG

We obtain the original 8×8 image as a linear combination of the following basis:

DCT in JPEG

29993 bytes vs. 5872 bytes

DFT in MP3

- Psychoacoustic model - identification of sound components, which are important for human perception of sound/music
- (Windowed) DFT is used to obtain the frequency spectrum
- Subband decomposition
- First song used by Karlheinz Brandenburg to develop the MP3: "Tom's Diner" by Suzanne Vega

Signal Processing

FIGURE 2.2
2048 samples recorded of a dog heart and its DFT coefficients. The magnitudes of the DFT coefficients are shown (see property 1 in Section 2.5.1).

FIGURE 2.3
The truncated DFT coefficients and the time signal reconstructed from the truncated DFT.

Data Compression

FIGURE 2.25
A piece of an example audio signal, sampled at $\mathbf{3 2} \mathbf{~ k h z}$. Shown is the left channel of the stereo signal.

FIGURE 2.26
The stereo audio signal, coded and decoded with $67 \mathrm{~kb} / \mathrm{s}$. The left channel is shown.

FIGURE 2.27

The left channel of the stereo audio signal, coded and decoded, but with $30 \mathrm{~kb} / \mathrm{s}$.

Hi - This is <you-know-who>

Classic spectrogram of a speech sample

```
[y,fs,bits] = wavread('SpeechSample.wav');
soundsc(y,fs); \% Let's hear it
\% for classic look:
colormap('gray'); map = colormap; imap = flipud(map);
\(\mathrm{M}=\) round \((0.02 * f s)\); \(\% 20 \mathrm{~ms}\) window is typical
\(\mathrm{N}=2\) nextpow2( \(4 * \mathrm{M}\) ) ; \% zero padding for interpolation
\(\mathrm{w}=0.54-0.46 * \cos (2 * \mathrm{pi} *[0: \mathrm{M}-1] /(\mathrm{M}-1))\);
colormap(imap); \% Octave wants it here
spectrogram(y,N,fs,w,-M/8,1,60);
colormap(imap); \% Matlab wants it here
title('Hi - This is <you-know-who> ');
ylim([0,(fs/2)/1000]); \% don't plot neg. frequencies
```


Figure 2.3: Time and Frequency represented in a musical score. "... zum Raum wird hier die Zeit" (Richard Wagner, "Parsifal"). Reprinted with kind permission of Schott Musik International, Mainz.

Karlheinz Gröchenig (a.k.a. Charlie):

Hi, Dr. Elizabeth?
Yeah, vh... I accidentally took the Fourier transform of my cat...

