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1. Singular value decomposition

Consider a (real) matrix

A ∈ Rn×m, r = rank (A) ≤ min {n,m} .

A has

m columns of length n ,
n rows of lenght m ,
r is the maximal number of linearly independent

columns (rows) of A .
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There exists an SVD decomposition of A in the form

A = U ΣV T ,

where U = [u1, . . . , un] ∈ Rn×n, V = [v1,
. . . , vm] ∈ Rm×m are orthogo-

nal matrices, and

Σ =

[
Σr 0
0 0

]
∈ Rn×m, Σr =

 σ1
. . .

σr

 ∈ Rr×r,
σ1 ≥ σ2 ≥ . . . ≥ σr > 0 .
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Singular value decomposition – the matrices:

A U S V
T

{ui} i= 1,...,n are left singular vectors (columns of U),

{vi} i= 1,...,m are right singular vectors (columns of V ),

{σi} i=1,...,r are singular values of A.
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The SVD gives us:

span (u1, . . . , ur) ≡ range (A) ⊂ Rn,
span (vr+1, . . . , vm) ≡ ker (A) ⊂ Rm,

span (v1, . . . , vr) ≡ range (AT) ⊂ Rm,
span (ur+1, . . . , un) ≡ ker (AT) ⊂ Rn,

spectral and Frobenius norm of A, rank of A, ...
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Singular value decomposition – the subspaces:
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The outer product (dyadic) form:

We can rewrite A as a sum of rank-one matrices in the dyadic form

A = U ΣV T

= [u1, . . . , ur]

 σ1
. . .

σr


 vT1...
vTr


= u1σ1v

T
1 + . . . + urσrv

T
r

=
r∑

i=1

σiuiv
T
i

≡
r∑

i=1

Ai .

Moreover, ‖Ai‖2 = σi gives ‖A1‖2 ≥ ‖A2‖2 ≥ . . . ≥ ‖Ar‖2 .
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Matrix A as a sum of rank-one matrices:

A

A1

A2

Ar -1

Ar

...

+

+

+

+

i = 1

r

S AiA

SVD reveals the dominating information encoded in a matrix. The

first terms are the “most” important.
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Optimal approximation of A with a rank-k:

The sum of the first k dyadic terms

k∑
i=1

Ai ≡
k∑
i=1

σiuiv
T
i

is the best rank-k approximation of the matrix A in the sense of
minimizing the 2-norm of the approximation error, i.e.

k∑
i=1

uiσiv
T
i = argmin

X∈Rn×m, rank (X)≤k
{‖A−X‖2}.

This allows to approximate A with a lower-rank matrix

A ≈
k∑
i=1

Ai ≡
k∑
i=1

σiuiv
T
i .
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Different possible distributions of singular values:
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2. Application 1 - image compression

Grayscale image = matrix, each entry represents a pixel brightness.
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Grayscale image: scale 0, . . . ,255 from black to white

=


255 255 255 255 255 . . . 255 255 255
255 255 31 0 255 . . . 255 255 255
255 255 101 96 121 . . . 255 255 255
255 99 128 128 98 . . . 255 255 255
...

...
...

...
... . . .

...
...

...
255 90 158 153 158 . . . 100 35 255
255 255 102 103 99 . . . 98 255 255
255 255 255 255 255 . . . 255 255 255



Colored image: 3 matrices for Red, Green and Blue brightness values
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MATLAB DEMO: Low rank image approximation

Approximate a grayscale image A using its SVD

Ak =
∑k
i=1Ai ... best rank k approximation

Compare storage requirements and quality for different k.

Memory required to store:

an uncompressed image of size m× n: mn values

rank k SVD approximation: k(m+ n+ 1) values
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Original image and its approximation by 33% of components:

Consequently, in A = A1 +A2 + ...+Ar :

• the first terms represent dominant information

• the last terms represent details (edges)
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3. Application 2 - image deblurring
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Sources of noise and blurring: physical sources (moving objects,
lens out of focus), measurement, discretization, rounding errors, ...

Challenge: Having some information about the blurring process, try
to approximate the “exact” image.
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PSF (point spread function) = blurring model for a single pixel

↙ ↓ ↘

↓ ↓ ↓
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Model of blurring process: CONVOLUTION

Blurred photo: −→

Barcode scanning: −→

X(exact image) A(blurring operator) B(blurred noisy image)
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Image vectorization B → b = vec (B):

b =B b  b      b= [   ,   ,..., ]1 2 w

[ ]
b

b

b

1

2

...

w
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Obtaining a linear model:

Using some discretization techniques, it is possible to transform this
problem to a linear problem

Ax = b, A ∈ Rn×n, x, b ∈ Rn,

where

• A is a discretization of A,

• b = vec(B),

• x = vec(X).

Size of the problem: n = number of pixels in the image, e.g., even
for a low resolution 456 x 684 px we get 311 904 equations.
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Solution back reshaping x = vec (X) → X:

x = X x  x      x= [   ,   ,..., ]1 2 w

[ ]
x

x

x

1

2

...

w
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Solution of the linear problem:

Let A be nonsingular. Then Ax = b has the unique solution

xnaive = A−1b.

X B

A

naive solution

A−1

Why? Because of specific properties of our problem.
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The image always contains errors (noise):

exact B

+ NOISE =

B

Assuming noise is additive, our linear model is

Ax ≈ b, b = bexact + bnoise,

where

‖bexact‖ � ‖bnoise‖ BUT ‖A−1bexact‖ � ‖A−1bnoise‖.
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Schema of the naive approach: noise amplification
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Usual properties of the model Ax ≈ b:

• ill-posedness = sensitivity of x to small changes in b;

• singular values σj of A decay quickly

−→ σj ≈ 0 for many singular values,

−→ A has a large condition number;

• bexact is smooth, and satisfies the discrete Picard condition (DPC);

• bnoise is often random and does not satisfy DPC.
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SVD components of the naive solution:

From the SVD of A we have

xnaive ≡ A−1b =
n∑

j=1

(
1

σj
vj u

T
j

)
b

=
n∑

j=1

uTj b

σj
vj

=
n∑

j=1

uTj b
exact

σj
vj︸ ︷︷ ︸

xexact=A−1bexact

+
n∑

j=1

uTj b
noise

σj
vj︸ ︷︷ ︸

A−1bnoise

.

What is the size of the right sum (inverted noise) in comparison to
the left one?
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Exact data: on average, |uTj b
exact| decay faster than σj (DPC).

White noise: the values |uTj b
noise| do not exhibit any trend.

Thus the coefficients uTj b = uTj b
exact + uTj b

noise are:

• for small j dominated by the exact part,

• for large j dominated by the noisy part.

By the division by σj, the noisy components of the naive solution

corresponding to small singular values are amplified.
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Violation of DPC due to presence of noise in b:

0 2 4 6 8

×10
4

10
-15

10
-10

10
-5

10
0

10
5

Singular values of A and projections uT

i
b

projections uTi b

singular values σi
noise level

29



Basic regularization method - Truncated SVD:

Using the dyadic form

A = U ΣV T =
n∑
i=1

uiσiv
T
i ,

we can approximate A with a rank k matrix

A ≈Sk ≡
k∑
i=1

Ai =
k∑
i=1

ui σi v
T
i .

Replacing A by Sk gives an TSVD approximate solution

x(k) =
k∑

j=1

uTj b

σj
vj .
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TSVD regularization: removing of troublesome components

0 2 4 6 8

×10
4

10
-15

10
-10

10
-5

10
0

10
5

Singular values of A and projections uT

i
b

projections uTi b

singular values σi
noise level

filtering functions Φi

31



Here the smallest σj’s are not present. However, we removed also

some components of xexact.

Selection of k: It depends on the amount of noise, image properties,

etc. An optimal k has to balance between:

• removing noisy components,

• not losing too many components of the exact solution.

MATLAB DEMO: Compute TSVD regularized solutions for differ-

ent values of k. Compare quality of the obtained image.
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Comparison of blurred noisy image and its TSVD approximation
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Various sources of images in applications:

CT, MRI, PET, electron microscopy, radar/sonar imaging, ...
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X-Ray application: radiologists selfie
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