Singular Value Decomposition Applications in Image Processing

Iveta Hnětynková

Katedra numerické matematiky, MFF UK

Outline

1. Singular value decomposition
2. Application 1 - image compression
3. Application 2 - image deblurring

1. Singular value decomposition

Consider a (real) matrix

$$
A \in \mathcal{R}^{n \times m}, r=\operatorname{rank}(A) \leq \min \{n, m\} .
$$

A has
m columns of length n,
n rows of lenght m,
r is the maximal number of linearly independent columns (rows) of A.

There exists an SVD decomposition of A in the form

$$
A=U \Sigma V^{T}
$$

where $U=\left[u_{1}, \ldots, u_{n}\right] \in \mathcal{R}^{n \times n}, V=\left[v_{1}, \cdot ., v_{m}\right] \in \mathcal{R}^{m \times m}$ are orthogonal matrices, and

$$
\begin{gathered}
\Sigma=\left[\begin{array}{cc}
\Sigma_{r} & 0 \\
0 & 0
\end{array}\right] \in \mathcal{R}^{n \times m}, \quad \Sigma_{r}=\left[\begin{array}{ccc}
\sigma_{1} & & \\
& \ddots & \\
& & \sigma_{r}
\end{array}\right] \in \mathcal{R}^{r \times r} \\
\sigma_{1} \geq \sigma_{2} \geq \ldots \geq \sigma_{r}>0
\end{gathered}
$$

Singular value decomposition - the matrices:

$\left\{u_{i}\right\}_{i=1, \ldots, n}$ are left singular vectors (columns of U),
$\left\{v_{i}\right\}_{i=1, \ldots, m}$
$\left\{\sigma_{i}\right\}_{i=1, \ldots, r}$ are right singular vectors (columns of V), are singular values of A.

The SVD gives us:

$$
\begin{aligned}
\operatorname{span}\left(u_{1}, \ldots, u_{r}\right) & \equiv \operatorname{range}(\mathrm{A}) \subset \mathcal{R}^{n}, \\
\operatorname{span}\left(v_{r+1}, \ldots, v_{m}\right) & \equiv \operatorname{ker}(\mathrm{A}) \subset \mathcal{R}^{m}, \\
\operatorname{span}\left(v_{1}, \ldots, v_{r}\right) & \equiv \operatorname{range}\left(\mathrm{A}^{\top}\right) \subset \mathcal{R}^{m}, \\
\operatorname{span}\left(u_{r+1}, \ldots, u_{n}\right) & \equiv \operatorname{ker}\left(\mathrm{A}^{\top}\right) \subset \mathcal{R}^{n},
\end{aligned}
$$

spectral and Frobenius norm of A, rank of A, \ldots

Singular value decomposition - the subspaces:

The outer product (dyadic) form:

We can rewrite A as a sum of rank-one matrices in the dyadic form

$$
\begin{aligned}
A & =U \Sigma V^{T} \\
& =\left[u_{1}, \ldots, u_{r}\right]\left[\begin{array}{lll}
\sigma_{1} & & \\
& \cdots & \\
& & \sigma_{r}
\end{array}\right]\left[\begin{array}{c}
v_{1}^{T} \\
\vdots \\
v_{r}^{T}
\end{array}\right] \\
& =u_{1} \sigma_{1} v_{1}^{T}+\ldots+u_{r} \sigma_{r} v_{r}^{T} \\
& =\sum_{i=1}^{r} \sigma_{i} u_{i} v_{i}^{T} \\
& \equiv \sum_{i=1}^{r} A_{i} .
\end{aligned}
$$

Moreover, $\left\|A_{i}\right\|_{2}=\sigma_{i}$ gives $\left\|A_{1}\right\|_{2} \geq\left\|A_{2}\right\|_{2} \geq \ldots \geq\left\|A_{r}\right\|_{2}$.

Matrix A as a sum of rank-one matrices:

SVD reveals the dominating information encoded in a matrix. The first terms are the "most" important.

Optimal approximation of A with a rank- k :

The sum of the first k dyadic terms

$$
\sum_{i=1}^{k} A_{i} \equiv \sum_{i=1}^{k} \sigma_{i} u_{i} v_{i}^{T}
$$

is the best rank- k approximation of the matrix A in the sense of minimizing the 2-norm of the approximation error, i.e.

$$
\sum_{i=1}^{k} u_{i} \sigma_{i} v_{i}^{T}=\underset{X \in \mathcal{R}^{n \times m}, \operatorname{rank}(X) \leq k}{\operatorname{argmin}}\left\{\|A-X\|_{2}\right\}
$$

This allows to approximate A with a lower-rank matrix

$$
A \approx \sum_{i=1}^{k} A_{i} \equiv \sum_{i=1}^{k} \sigma_{i} u_{i} v_{i}^{T}
$$

Different possible distributions of singular values:

The matrices that are difficult (left) and easy (right) to approximate (BCSPWR06 and ZENIOS from the Harwell-Boeing Collection).

2. Application 1 - image compression

Grayscale image $=$ matrix, each entry represents a pixel brightness.

Grayscale image: scale $0, \ldots, 255$ from black to white

$=\left[\begin{array}{lllllllll}255 & 255 & 255 & 255 & 255 & \ldots & 255 & 255 & 255 \\ 255 & 255 & 31 & 0 & 255 & \ldots & 255 & 255 & 255 \\ 255 & 255 & 101 & 96 & 121 & \ldots & 255 & 255 & 255 \\ 255 & 99 & 128 & 128 & 98 & \ldots & 255 & 255 & 255 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \ldots & \vdots & \vdots & \vdots \\ 255 & 90 & 158 & 153 & 158 & \ldots & 100 & 35 & 255 \\ 255 & 255 & 102 & 103 & 99 & \ldots & 98 & 255 & 255 \\ 255 & 255 & 255 & 255 & 255 & \ldots & 255 & 255 & 255\end{array}\right]$

Colored image: 3 matrices for Red, Green and Blue brightness values

MATLAB DEMO: Low rank image approximation

Approximate a grayscale image A using its SVD
$A_{k}=\sum_{i=1}^{k} A_{i} \ldots$ best rank k approximation
Compare storage requirements and quality for different k.

Memory required to store:
an uncompressed image of size $m \times n: m n$ values
rank k SVD approximation: $k(m+n+1)$ values

Original image and its approximation by 33% of components:

Consequently, in $A=A_{1}+A_{2}+\ldots+A_{r}$:

- the first terms represent dominant information
- the last terms represent details (edges)

3. Application 2 - image deblurring

Sources of noise and blurring: physical sources (moving objects, lens out of focus), measurement, discretization, rounding errors, ...

Challenge: Having some information about the blurring process, try to approximate the "exact" image.

PSF (point spread function) $=$ blurring model for a single pixel

Model of blurring process: CONVOLUTION

X (exact image) \mathcal{A} (blurring operator) B (blurred noisy image)

Image vectorization $B \rightarrow b=\operatorname{vec}(B)$:

Obtaining a linear model:

Using some discretization techniques, it is possible to transform this problem to a linear problem

$$
A x=b, \quad A \in \mathcal{R}^{n \times n}, \quad x, b \in \mathcal{R}^{n}
$$

where

- A is a discretization of \mathcal{A},
- $b=\operatorname{vec}(B)$,
- $x=\operatorname{vec}(X)$.

Size of the problem: $n=$ number of pixels in the image, e.g., even for a low resolution 456×684 px we get 311904 equations.

Solution back reshaping $x=\operatorname{vec}(X) \rightarrow X:$

Solution of the linear problem:

Let A be nonsingular. Then $A x=b$ has the unique solution

$$
x^{\text {naive }}=A^{-1} b
$$

X

B

naive solution

Why? Because of specific properties of our problem.

The image always contains errors (noise):

Assuming noise is additive, our linear model is

$$
A x \approx b, \quad b=b^{\text {exact }}+b^{\text {noise }}
$$

where

$$
\left\|b^{\text {exact }}\right\| \gg\left\|b^{\text {noise }}\right\| \quad \text { BUT } \quad\left\|A^{-1} b^{\text {exact }}\right\| \ll\left\|A^{-1} b^{\text {noise }}\right\| .
$$

Schema of the naive approach: noise amplification

Usual properties of the model $A x \approx b$:

- ill-posedness $=$ sensitivity of x to small changes in b;
- singular values σ_{j} of A decay quickly
$\longrightarrow \sigma_{j} \approx 0$ for many singular values,
$\longrightarrow A$ has a large condition number;
- $b^{\text {exact }}$ is smooth, and satisfies the discrete Picard condition (DPC);
- $b^{\text {noise }}$ is often random and does not satisfy DPC.

SVD components of the naive solution:

From the SVD of A we have

$$
\begin{aligned}
x^{\text {naive }} & \equiv A^{-1} b=\sum_{j=1}^{n}\left(\frac{1}{\sigma_{j}} v_{j} u_{j}^{T}\right) b \\
& =\sum_{j=1}^{n} \frac{u_{j}^{T} b}{\sigma_{j}} v_{j} \\
& =\underbrace{\sum_{j=1}^{n} \frac{u_{j}^{T} b^{\text {exact }}}{\sigma_{j}} v_{j}}_{x^{\text {exact }}=A^{-1} b^{\text {exact }}}+\underbrace{\sum_{j=1}^{n} \frac{u_{j}^{T} b^{\text {noise }}}{\sigma_{j}} v_{j}}_{A^{-1} b^{\text {noise }}} .
\end{aligned}
$$

What is the size of the right sum (inverted noise) in comparison to the left one?

Exact data: on average, $\left|u_{j}^{T} b^{\text {exact }}\right|$ decay faster than σ_{j} (DPC).
White noise: the values $\left|u_{j}^{T} b^{\text {noise }}\right|$ do not exhibit any trend.
Thus the coefficients $u_{j}^{T} b=u_{j}^{T} b^{\text {exact }}+u_{j}^{T} b^{\text {noise }}$ are:

- for small j dominated by the exact part,
- for large j dominated by the noisy part.

By the division by σ_{j}, the noisy components of the naive solution corresponding to small singular values are amplified.

Violation of DPC due to presence of noise in b :

Basic regularization method - Truncated SVD:

Using the dyadic form

$$
A=U \Sigma V^{T}=\sum_{i=1}^{n} u_{i} \sigma_{i} v_{i}^{T}
$$

we can approximate A with a rank k matrix

$$
A \approx S_{k} \equiv \sum_{i=1}^{k} A_{i}=\sum_{i=1}^{k} u_{i} \sigma_{i} v_{i}^{T}
$$

Replacing A by S_{k} gives an TSVD approximate solution

$$
x^{(k)}=\sum_{j=1}^{k} \frac{u_{j}^{T} b}{\sigma_{j}} v_{j} .
$$

TSVD regularization: removing of troublesome components

Here the smallest σ_{j} 's are not present. However, we removed also some components of $x^{\text {exact }}$.

Selection of k : It depends on the amount of noise, image properties, etc. An optimal k has to balance between:

- removing noisy components,
- not losing too many components of the exact solution.

MATLAB DEMO: Compute TSVD regularized solutions for different values of k. Compare quality of the obtained image.

Comparison of blurred noisy image and its TSVD approximation

Various sources of images in applications:
CT, MRI, PET, electron microscopy, radar/sonar imaging, ...

X-Ray application: radiologists selfie

References:

Textbooks:

- Hansen, Nagy, O'Leary: Deblurring Images, Spectra, Matrices, and Filtering, SIAM, 2006.
- Hansen: Discrete Inverse Problems, Insight and Algorithms, SIAM, 2010.

Software (MatLab toolboxes): on the homepage of P. C. Hansen

- HNO package,
- Regularization tools,
- AIRtools,
- ...

