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The determination of the orbit of a heavenly body from a short series of
observations, independent of the circular and parabolic hypotheses, depends on
two requirements: I. There must be some means to find the orbit which satisfies
three given complete observations. II. There must be a way to adjust the orbit
so found, such that the difference between the calculation and the entire supply
of observations becomes as small as possible.

The most convenient means to satisfy the second condition appears to be to
reduce it to the first. For the times t, t′, t′′, etc., the observed positions would
be m, m′, m′′, etc. (each of which will have two components); the positions p, p′,
p′′, etc. calculated according to the known elements e (considered as having six
components), and finally, the positions q, q′, q′′, etc. calculated according to the
(still considered as undetermined) elements f . The differences of the [positions
calculated according to the] elements e are thus

p−m, p′ −m′, p′′ −m′′, etc.
∗When I had the pleasure of making the personal acquaintance of Herr Professor Gauss

some time back, I saw among his papers the following essay, already outlined many years ago
and yet nowhere published, which contained the earlier method of the author for determining
the orbit. In my cursory reading of this summary overview I was soon convinced that the
method developed here by the author, for making a first approximation of two distances of
the planets from the Earth, was essentially different from that which the author has now
publically expounded upon in his larger work. So, I asked him for permission that I might
make this treatise known, with the assumption that it would be interesting to all connoisseurs
to know the way in which the author succeeded at arriving at a complete solution, which
differed from that of which an overview had been communicated to our readers in earlier
issues. I originally had the goal of accompanying the essay with some remarks for the purpose
of making a comparison of the earlier and later methods of the author; but these, had they
actually been explained, would be somewhat lengthy, and without reference to the work itself,
would remain ever unclear. It thus appeared advisable to me to communicate the entire essay
without further addenda (which is more intended for connoisseurs who have the work itself at
hand) to the astronomical readers of this periodical, just as it was set down by the author in
writing six years ago. - von Lindenau
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On the the other hand, the differences of the [positions calculated according to
the] elements f are

(p−m) + (q − p), (p′ −m′) + (q′ − p′), (p′′ −m′′) + (q′′ − p′′), etc.

These latter should thus become as small as possible, and maintain no reg-
ularity. The differences q − p, q′ − p′, etc., are, as long as the elements f are
considered as constant, functions of time and, since, properly considered, they
will be small by the nature things, it may thus be assumed from the short dura-
tion of the observations that they [the differences] are found for the intermediate
times with sufficient precision through interpolation, if two outer and one inner
[observation] are taken as given. They are denoted for those three times by x,
y, and z (each considered as having two components), thus, by the [well] known
first principles of interpolation theory, they will have a linear form αx+βy+γz,
where the coefficients α, β, γ are dependent on time. These differences of the
elements f will thus have, for the times t, t′, t′′, etc. the form:

p−m+ αx+ βy + γz

p′ −m′ + α′x+ β′y + γ′z

p′′ −m′′ + α′′x+ β′′y + γ′′z

etc.

where everything besides x, y, z is known. It will then be possible to easily
judge which values for x, y, and z are the most suitable. This can indeed
yield a completely methodical process for finding these values through calculation:
however, a certain instinct will always be just as sure a guide. 1

It is therefore apparent, that as soon as x, y, and z are determined, the
second condition is reduced to the first, and thus are we able to limit ourselves
solely to this.

Determination of the Orbit from Three Complete Observations
2.

It would indeed not be difficult to represent the relation of the six unknown
magnitudes to the given ones in six equations. Only, this would turn out to
be far too unhelpful; in order to be in the least bit useful, we must be satisfied
with reaching the orbit which exactly represents the three observations, stepwise.
Obviously all methods at all useful to this [purpose] ultimately yield the same
result; the quality of the end results is therefore no measure for the value of the
method, but rather only for the acuity of the observations on which it is based.
The value of the method can only be appreciated for the number and convenience
of the steps, and a method whereby a representation of the three observations
could not always be arrived at if so desired would not be a worse one, but rather
it would be no method at all. The investigation is thus split into two parts, a

1[insert translators footnote on gewisser Tact]
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first approximation, and a method of adjustment. The former will be based
upon certain, almost true relations drawn from the nature of the problem, and
these are of such a type that the closer the approximations lie to one another,
the smaller they err, and mathematically speaking, they are rigorously exact for
observations which are infinitely close to one another. In any event, the influence
of their deviation from the truth thus diminishes the closer the observations are
on which they are based, whereby the method of adjustment is made easier or
wholly superfluous. Only it has to be considered that with close observations
small errors in the observations become very serious, and sometimes affect the
elements enormously, and hence the subsequent adjustment according to the
entire set of observations, which we above called the second requirement, turns
out to be all the more difficult. General rules cannot be given for the most
appropriate selection of the observations. In order to determine the value, or
more or less advantageous positions, of the observations, it is necessary to take
the type of orbit into consideration. For Ceres, the outermost observations,
distant by 41 days, were sufficiently well applied with great success in the first
approximation, and the calculations for the adjustment were quite simple. Also,
with the calculation of the second Pallas orbit, the preceding approximation was
not used, but rather the first method of approximation is well enough applied
anew to the 27 day observations. For orbits which were to come nearer to a
parabola, and in which the geocentric motion is very fast, the calculation would
preferably be begun with somewhat shorter time intervals. Here, a judgement
developed by experience is the best guide.

Principle Points of the First Approximation

First Point

Approximate determination of the distances from the Earth for the two outer
observations.

3.

In order to simplify the overview with respect to the great number of symbols
necessary for the following investigation, analogous things for the Earth, P , and
for the observed planet, p, should be denoted by the same characters, only the
former with capital letters, and the latter with lowercase. If the same letters
appear without an apostrophe as well as with two or three, it must therefore
be assumed, that the second and third have a similar relation to a second and
third observation for the times τ ′, τ ′′, as the first has to the observation for time
τ . Moreover, in and of itself it is not necessary that the time τ ′ fall between
the time τ and the time τ ′′; nevertheless, the use of the following prescriptions
is most advantageous if τ ′ lies approximately halfway between τ and τ ′′.

S, is the position of the Sun (in space) considered as fixed. p is the position
of the planet p at time τ . Similarly p′, p′′, P , P ′, P ′.

X, Y, Z are three arbitrary fixed planes, which intersect one another perpen-
dicularly at the center of the Sun.
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x, y, z are the perpendicular distances of the planet p from these three planes
at time τ . Similarly x′, y′, z′; x′′, y′′, z′′; X, Y , Z; X ′, Y ′, Z′; X ′′, Y ′′, Z′′.

ξ = x−X
η = y − Y hence ξ′, η′, ζ′, ξ′′, η′′, ζ′′

ζ = z − Z

Thus, ξ, η, ζ are the perpendicular distances of the planet p from three
moveable planes laid through P and parallel with X, Y, Z.

r of p S

R distance of P from S all positive. Similarly r′, etc.
ρ of p P

b Sp Z

B angle of the line SP with the plane Z

β Pp which is parallel to Z

d = r cos b

D = R cosB i.e. the projected distance on the plane Z,
δ = ρ cosβ and that parallel to it.

l Y

L angle of the projection with the plane Y

λ which is parallel to Y

The angles b and l are to be taken as positive on the same side of Z and
Y as z and y are considered to be positive. The angle b can always be taken
between the limits -90, +90 (so that d, etc. always remain positive); whereas
the angle l can always be allowed to grow from 0 to 360o, and indeed so that it

is set =

{
0o

180o

}
where x is

positive
negative

. In this way is obtained

x = r cos b cos l = d cos l

y = r cos b sin l = d sin l

z = r sin b = d tan b

and similar equations for x etc., X etc., ξ etc. We assume the orbits of
p and P to be in planes, and in so doing we abstract them from any outside
influences which might affect them. We set the longitude of p in the orbit
at time τ , = v (similarly v′, v′′; V , V ′, V ′′); and make 1

2
r′r′′ sin (v′′ − v′) = f ,

1
2
r′′r sin (v − v′′) = f ′ , 1

2
rr′ sin (v′ − v) = f ′′. Thus f , −f ′, f ′′, the areas of the

triangles p′Sp′′, pSp′′, pSp′, are positive (assuming that p runs in its proper
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direction, and τ ′ lies between τ and τ ′′; the arrangement of the symbols for
other cases presents no difficulty). Similarly F , F ′, F ′′. By g, −g, g, G, −G′,
G′′ we denote the areas of the sectors of the whole orbit, to which these three
triangles correspond, whose signs we assume as equal to those of f , −f ′, f ′′, F ,
−F ′, F ′′. Hence, g, g′, g′′ and G, G′, G′′ are proportional to the time intervals
τ ′′ − τ ′, τ − τ ′′, τ ′ − τ .

The orbits of p and P are conic sections, whose semimajor axes we denote
by a, A. The eccentricity of the orbit p we set = e = sinφ (for an ellipse); hence
a cosφ2 = k will be the half parameter. Longitude of the aphelion of p, in its
orbit is = π. The mean longitude is = m (similarly m′, m′′, M , M ′, M ′′). The
other symbols will be indicated in the course of the investigation itself.

4.

Since p, p′, p′′ are in a plane with S, it follows from a known theorem that

0 = xy′z′′ + x′y′′z + x′′yz′ − xy′′z′ − x′yz′′ − x′′y′z

and hence, that the upper three of the following nine magnitudes

y′z′′ − y′′z′ y′′z − yz′′ yz′ − y′z
z′x′′ − z′′x′ z′′x− zx′′ zx′ − z′x
x′y′′ − x′′y′ x′′y − xy′′ xy′ − x′y

are proportional to the three middle ones and to the three lower, respectively.
It is easily concluded,
I. that these very magnitudes are also proportional to f , f ′, f ′′, since the

three upper, middle, and lower simply represent the doubled area of the projec-
tion of the triangles whose areas are f , f ′, f ′′, onto the fundamental planes X, Y,
Z, and thus are proportional to them as the doubled cosine of the inclination of
the orbit of p with respect to these planes is to unity. (In a complete treatment,
further remarks regarding the signs would be necessary, which can, however,
also be easily circumvented by a mere assessment).2

II. that if the three upper, the three middle, or the three lower are multiplied
by x, x′, x′′, y, y′, y′′ or z, z′, z′′, the sum of the products will = 0. From this
can easily be concluded

0 = fx+ f ′x′ + f ′′x′′ through completely 0 = FX + F ′X ′ + F ′′X ′′

0 = fy + f ′y′ + f ′′y′′ analagous conclusions, 0 = FY + F ′Y ′ + F ′′Y ′′

0 = fz + f ′z′ + f ′′z′′ is obtained 0 = FZ + F ′Z′ + F ′′Z′′

2durch blossen Calcul
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From this, the following three equations can easily be derived

(F + F ′′)(fξ + f ′ξ′ + f ′′ξ′′)

= (Ff ′′ − F ′′f)(X −X ′′) + [F ′(f + f ′′)− (F + F ′′)f ′]X ′

(F + F ′′)(fη + f ′η′ + f ′′η′′)

= (Ff ′′ − F ′′f)(Y − Y ′′) + [F ′(f + f ′′)− (F + F ′′)f ′]Y ′

(F + F ′′)(fζ + f ′ζ′ + f ′′ζ′′)

= (Ff ′′ − F ′′f)(Z − Z′′) + [F ′(f + f ′′)− (F + F ′′)f ′]Z′

From these three equations we derive four others, by multiplying them

first with then with then with and finally, with and
ηζ′′ − η′′ζ ηZ′ − Y ′ζ η′Z′ − Y ′ζ′ η′′Z′ − Y ′ζ′′ adding
ζξ′′ − ζ′′ξ ζX ′ − Z′ξ ζ′X ′ − Z′ξ′ ζ′′Z′ − Y ′ξ′′ the
ξη′′ − ξ′′η ξY ′ −X ′η ξ′Y ′ −X ′η′ ξ′′Y ′ −X ′η′′ products

For a convenient overview, we denote the sum of the products which arise.

after

multiplication

of these factors

with

∗ ∗ δ′δD′[π′πP ′] δ′′δD′[π′′πP ′] ξ, η, ζ

[ππ′π′′] δδ′δ′′ × [ππ′π′′] δδ′D′[ππ′P ′] ∗ δ′′δ′D′[π′′π′P ′] ξ′, η′, ζ′

∗ δδ′′D′[ππ′′P ′] δ′δ′′D′[π′π′′P ′] ∗ ξ′′, η′′, ζ′′

[πPπ′′] δDδ′′[πPπ′′] δDD′[πPP ′] δ′DD′[π′PP ′] δ′DD′[π′′PP ′] X,Y, Z

[πP ′π′′] δD′δ′′[πP ′π′′] ∗ ∗ ∗ X ′, Y ′, Z′

δD′′δ′′[πP ′′π′′] δD′′D′[πP ′′P ′] δ′D′′D′[π′P ′′P ′] δ′′D′′D′[π′′P ′′P ′] X ′′, Y ′′, Z′′

It is clear, that in the spots here filled with *, there must be a 0, and that
all magnitudes indicated by bracketed symbols are given. That is to say

[ππ′π′′] = tanβ · sin (λ′ − λ′′) + tanβ′ · sin (λ′′ − λ) + tanβ′′ · sin (λ− λ′)
[πPπ′′] = tanβ · sin (L− λ′′) + tanB · sin (λ′′ − λ) + tanβ′′ · sin (λ− L)

etc.

It is not necessary to put down all 16 equations here, since they can all be
derived in an analogous way from the first, by simply exchanging β with β′, β′′

B, B′, B′′ and λ with λ′, λ′′, L, L′, L′′ if in the place π of stands π′, π′′, P , P ′,
P ′′ respectively, and so on. At the same time, it is seen that the 16 magnitudes
are reduced to 12, since

+ [πP ′π′′] = −[ππ′′P ′] = +[π′′πP ′]

[ππ′P ′] = −[π′πP ′]

[π′′π′P ′] = −[π′π′′P ′]
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Further, it is easily recognized that the expression [ππ′π′′], multiplied by the
product of the three cosines of the latitudes which appear in it, is the sixfold
volume of a pyramid, whose apex falls in the center, and whose three base
angle points fall on the surface of a sphere described with radius 1, such that
they correspond to three geocentric positions of p, and they will give positive or
negative signs to the sixfold value, according as those three geocentric positions
lie on the sphere in an opposite or the same sense as the positive poles3 of the
planes X, Y, Z, respectively. And the remaining signs express entirely similar
things. In this way, the following four equations appear:

(F + F ′′)f ′δ′[ππ′π′′] =

(Ff ′′ − F ′′f)(D[πPπ′′]−D′′[πP ′′π′′]) + (F ′(f + f ′′)− (F + F ′′)f ′)D′[πP ′π′′]

(1)

(F + F ′′)(f ′δ′[ππ′P ′] + f ′′δ′′[ππ′′P ′]) = (Ff ′′ − F ′′f)(D[πPP ′]−D′′[πP ′′P ′]) (2)
(F + F ′′)(fδ[π′πP ′] + f ′′δ′′[π′π′′P ′]) = (Ff ′′ − F ′′f)(D[π′PP ′]−D′′[π′P ′′P ′]) (3)
(F + F ′′)(fδ[π′′πP ′] + f ′δ′[π′′π′P ′]) = (Ff ′′ − F ′′f)(D[π′′PP ′]−D′′[π′′P ′′P ′]) (4)

5.

We want to examine more closely [näher betrachten] these four equations,
which are rigorously correct, in order to base our first approximation upon them.
If we conceive of the time intervals as infinitely small magnitudes of the first
order, then f , f ′, f ′′, G, G′, G′′ and all bracketed [quantities] will also be of the
first order, with the exception of [ππ′π′′] which is of the third order. I omit the
proofs, as well as the easily offered [sich leicht darbietenden] remarks on special
exceptions. Should the inclination of the orbits of p and P relative to one another
be considered as magnitudes of the first order, all bracketed magnitudes would
stand one order higher. Further

Ff ′′ − F ′′f =
F

G
· f
′′

g′′
Gg′′ − F ′′

G′′
· f
g
G′′g

or (because Gg′′ = G′′g)

=

(
F

G
· f
′′

g′′
− F ′′

G′′
· f
g

)
Gg′′

Now G − F is a magnitude of the third order, hence 1 − F
G

is one of the
second, etc., and therefore F

G
· f
′′
g′′ −

F ′′
G′′ ·

f
g

is also of the second, and consequently
Ff ′′ − F ′′f is of the fourth (it would actually be of the fifth, were τ ′ to fall
halfway between τ and τ ′′). Hence, what stands on the right hand side in the
second, third, and fourth equations is of the fifth order, and of that which is on

3I permit myself this easily understandable expression on account of brevity. The positive
pole of X lies on the side of this plane where x is considered positive, etc.
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the left hand side, both the first and the second part are of the third. Thus, for
the first approximation, we can set

from 2) f ′δ′[ππ′P ′] = −f ′′δ′′[ππ′′P ′]
from 4) fδ[ππ′′P ′] = −f ′δ′[π′π′′P ′]
What follows from 3), is identical with these results. To achieve a further

reduction we could set f
g

= f ′
g′ , both of which magnitudes differ from unity by

only the second order, and differ from each other by just as much (if τ ′ falls
halfway between τ and τ ′′, the difference is only of the third order). Since there-
fore: g : −g′ : g′′ = τ ′′ − τ ′ : τ ′′ − τ : τ ′ − τ , we will have

δ =
g

f
· f
′

g′
· τ
′′ − τ

τ ′′ − τ ′ ·
[π′π′′P ′]

[ππ′′P ′]
· δ′ (5)

δ′′ =
g′′

f ′′
· f
′

g′
· τ
′′ − τ
τ ′ − τ ·

[ππ′P ′]

[ππ′′P ′]
· δ′ (6)

These formulas give δ and δ′′ from δ′, up to and including the second order,
if τ ′ lies halfway between τ and τ ′′, otherwise, the second order is excluded. In
the latter case we can set f ′

g′ = 1, since the difference is only of the second order;
on the other hand, in the first case it would not be unworth the effort to set

f ′ = g′ +
4

3
(f + f ′ + f ′′) or f ′

g′
= 1 +

4

3

f + f ′ + f ′′

f ′

which will soon be more precisely determined and is more exact by one order.
(It is easily seen that f + f ′ + f ′′ is equal to the triangle between the three
positions p, p′, p′′; thus, by a known approximation = 3

4
×section of the curved

surface between the chord pp′′ and the arc.) Moreover it follows from the above
formula

δ′′

δ
=

[ππ′P ′]

[π′π′′P ′]
· τ
′′ − τ ′

τ ′ − τ
which, if Z is taken for the ecliptic or B, B′, B′′ = 0, transforms itself into

δ′′

δ
=

tanβ sin (λ′ − L′)− tanβ′ sin (λ− L′)
tanβ′ sin (λ′′ − L′)− tanβ′′ sin (λ′ − L′) ·

τ ′′ − τ ′

τ ′ − τ

that is, the known, Olbersian formula.4

6.

Now that we have derived tractable approximations from formulas 2, 3, and
4, we can undertake the first in a similar way. As is known

1

r
=

1

k
(1− e cos (v − π))

1

r′
=

1

k
(1− e cos (v′ − π))

1

r′′
=

1

k
(1− e cos (v′′ − π))

4Short and Easy Method, to find the Approximate Partial Determination of the Path of a
Comet p.45
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It follows from this, that if these are multiplied with sin (v′′ − v′), sin (v − v′′),
and sin (v′ − v) and added, then

f+f ′+f ′′
rr′r′′ = 1

k
(sin (v′′ − v′) + sin (v − v′′) + sin (v′ − v))

= − 4
k

sin 1
2
(v′′ − v′) sin 1

2
(v − v′′) sin 1

2
(v′ − v)

or
f + f ′ + f ′′

f ′
= −2r′

k
·

sin 1
2
(v′′ − v′) sin 1

2
(v′ − v)

cos 1
2
(v′′ − v)

According to a known theorem of theoretical astronomy

traversed space
mean motion

=
a

3
2 ·
√
k

2

Consequently

k =
4gg′

a3(m′ −m)(m′′ −m′) =
4gg′

A3(M ′ −M)(M ′′ −M ′)

Therefore

f+f ′+f ′′
f ′ = −A

3(M′−M)(M′′−M′)
2 cos 1

2 (v′′−v)
· 1

r′3 ·
r′r′
rr′′ ·

r′r′′ sin 1
2 (v′′−v′)
g

· rr
′ sin 1

2 (v′−v)
g′′

f+f ′+f ′′
g′ = − r

′r′′ sin 1
2 (v′′−v′)
g

· rr
′′ sin 1

2 (v′′−v)
g′ · rr

′ sin 1
2 (v′−v)
g′′ · A

3(M′−M)(M′′−M′)
2r′3 · r

′r′
rr′′

It is easily concluded from this, since

1

cos 1
2
(v′′ − v)

,
r′r′′ sin 1

2
(v′′ − v′)
g

,
rr′ sin 1

2
(v′ − v)

g′′

will only fall short of unity by a magnitude of the second order, as will r′r′
rr′′ if

either falls τ ′ halfway between τ and τ ′′, or the difference between the path of
p and a circle can be considered as being of the first order, that we may set
approximately

f + f ′ + f ′′

f ′
= − A3

2r′3
(M ′ −M)(M ′′ −M ′)

In the same manner is approximately

F + F ′ + F ′′

F ′
= − A3

2R′3
(M ′ −M)(M ′′ −M ′)

If it is so desired, the latter magnitude can also be exactly calculated, since
everything relevant to it is given. Both are of the second order, and are deter-
mined up to, but excluding the fourth. Thus, we have

F ′(f + f ′′)− (F + F ′′)f ′ = F ′(f + f ′ + f ′′)− (F + F ′ + F ′′)f ′

= F ′f ′ 1
2
A3(M ′ −M)(M ′′ −M ′)( 1

R′3 −
1

r′3 )

which are magnitudes of the fourth order determined up to, and excluding the
sixth. In equation 1 above, the part on the left hand side is of the fifth order; in
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the part on the right hand side, the first term is of the sixth or seventh order,
that is to say Ff ′′ = F ′′f is of the fourth or fifth, and D[πPπ′′] −D′′[πP ′′π′′] is
of the second.5 The second term is of the fifth order. We omit the former, and
thereby obtain

[ππ′π′′]

[πP ′π′′]
· 2

A3(M ′ −M)(M ′′ −M ′) = (
1

R′3
− 1

r′3
)
R

δ′
(7)

accurate up to and excluding the second [order], if τ ′ falls halfway between τ

and τ ′′; otherwise, it is incorrect only by a magnitude of the first order. This
formula, which receives the following form if we take the ecliptic for Z, is the
most important part of the entire method and is its first foundation.{

1−
(
R′

r′

)3
}
· R
′

δ′
=

−2

A3(M ′ −M)(M ′′ −M ′) ·

tanβ′ sin (λ′′ − λ)− tanβ sin (λ′′ − λ′)− tanβ′′ sin (λ′ − λ)

tanβ sin (L′ − λ′′)− tanβ′′ sin (L′ − λ)

where L is the longitude of the Sun +180o.
Since that which stands here on the right hand side is given, one sees that

from the combination of this equation with the following

R′
δ′
R′
r′

=

√
(1 + tanβ′2 +

R′R′

δ′δ′
+ 2

R′

δ′
cos (λ′ − L′))

r′ can easily be found. The indirect method is here by far the most conve-
nient. After a few trials [Versuchen], for which suitable prescriptions can easily
be given, the goal is very quickly arrived at. It can also always be seen whether
there is more than one value for r′, and thus more than one orbit that can
represent the observations, which can indeed sometimes be the case.

Otherwise it is further to be remarked, that here the longitudes ought not
be computed from the mobile equinoctial point, but rather from a fixed point;
in practice, however, this difference is of no meaning. If the time is expressed
in days, we obtain

log(M ′ −M)(M ′′ −M ′) = log(τ ′ − τ) + log(τ ′′ − τ ′) + 6.4711352(−10)

(where, M , etc. must be expressed not in degrees, but rather in parts of the
radius).

If we have δ′ and r′, then f+f ′+f ′′
f ′ can also be determined, and thus also δ

and δ′′. Moreover, from the consideration of formula 7), yet more interesting
corollaries can be derived, which must be omitted here.

5That is to say, that this is actually subtraction, since [πPπ′′],[πP ′′π′′] have the same sign;
this is not the case with the coefficients of Ff ′′−F ′′f in equations 2, 3, and 4, but rather the
parts will there actually be added. A deeper investigation would be too lengthy here.
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Second Point
Approximate Determination of the Elements

7.

We leave out entirely the middle observation for the time τ ′, and use instead
the distances δ and δ′′, which were approximately determined in the preceding
point. It is clear, that from this the heliocentric longitude, latitude and distance,
can thus be derived; and hence, the longitude of Ω[ascending node symbol] and
the inclination of the orbit, and the longitude in the orbit. Thus the problem
still remains to determine the remaining elements, namely a, e, π, and the epoch,

from the two longitudes in the orbit . . .v v′′

the distances from the Sun . . .r r′′

and the corresponding times . . .τ τ ′′

Since the relations of these magnitudes to the given ones are transcendental,
we must again depend upon the indirect method. We will consider three here.

First Method.
If π is taken as given,

r′′ + r

r′′ − r tan
1

2
(v′′ − v) = tan ζ

so
e =

cos ζ

cos 1
2
(v′′ − v) cos [π − 1

2
(v + v′′)− ζ]

It is therefore most advisable to calculate k in a twofold way:

k = r[1− e cos (v − π)] = r′′[1− e cos (v′′ − π)]

which will also serve to check the calculation. If e = sinφ, then a = k

cosφ2 . The
eccentric and mean anomalies and longitude can then be calculated from the
true anomaly either by the usual method or more conveniently by the indirect
method; from this, and from the mean motion given by a, is obtained a twofold
determination of the mean longitude for any epoch whatsoever. If both agree,
the correct value for π has been found; if not, the calculation must be repeated
with a somewhat modified value for π, and the true value found through interpo-
lation. It is advisable regarding this to seek the remaining elements not through
interpolation, but rather from a new calculation from the corrected value of π,
and not stop until both values for the epoch come into complete agreement.

Second Method.
If e is taken as given.
Here the calculation is exactly the same, only the true value must be ap-

proximately known, since here π must be sought for by the equation

cos [π − 1
2
(v + v′′)− ζ] =

cos ζ

e cos 1
2
(v′′ − v)

11



and two different values belong to the cosine. Moreover II is prefered to I,
and in general both methods are only appropriate if the traversed arc is indeed
very large, and the elements are already approximately known. For the first
approximation from a short series of observations, we must always depend on
the following

Third Method.
If k is taken as given.
Here,

1
r′′ −

1
r

2 sin 1
2
(v′′ − v)

=
e

k
sin (

1

2
(v + v′′)− π)

2
k
− 1

r′′ −
1
r

2 cos 1
2
(v′′ − v)

=
e

k
cos ( 1

2
(v + v′′)− π)

Division thus gives tan [ 1
2
(v + v′′)− π], hence π, and afterwards e from one of

the two equations. The rest is entirely the same as in the foregoing methods.
The advantage of this third method consists in the fact that a very approximate
value for k can be found directly, if the arc v′′ − v is not too large. Namely, the
sector between the two radii vectors is

g′ =
a

3
2
√
k

2
(m′′ −m) = 1

2
A

3
2 (M ′′ −M)

√
k

Thus 2g′ =
∫
rrdw from w = v to w = v′′.

Now, however, according to the known approximation-integration formula
of Cotes,

∫
φw · dw from w = v to w = v′′ is

= ( 1
2
φv + 1

2
φv′′)(v′′ − v)

and still more exact

= ( 1
6
φv + 2

3
φ 1

2
(v + v′′) + 1

6
φv′′)(v′′ − v)

still more exact

= ( 1
8
φv + 3

8
φ( 2

3
v + 1

3
v′′) + 3

8
φ( 1

3
v + 2

3
v′′) + 1

8
φv′′)(v′′ − v) etc.

It is sufficient to stick with the first two.
From the first, we thus have

2g′ = 1
2
(rr + r′′r′′)(v′′ − v) and

√
k =

1
2
(rr + r′′r′′)

A
3
2

· v′′ − v
M ′′ −M

A is usually made = 1; v′′ − v and M ′′ − M are expressed in seconds, so
log (M ′′ −M) = log (τ ′′ − τ) + 3.5500073. In order to simplify the calculation,
we set r′

r
= tan (45o ± ψ) whereby 1

2
(rr + r′′r′′) = 1

cos 2ψ
. From the second inte-

gration formula, the radius which belongs to the longitude 1
2
(v′′ + v) is set = r∗

so
1

r∗
= 1

2
(
1

r
+

1

r′′
) +

[
1
2
(
1

r
+

1

r′′
)− 1

k

]
2 sin 1

4
(v′′ − v)

2

cos 1
2
(v′′ − v)
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By means of this equation, r∗ can be determined by means of the first value
of k. Then

2g′ = 1
6
(rr + r′′r′′) + 2

3
r∗r∗

thus the new value of k is

= k

{
1 +

2
3
(r∗r∗ − 1

2
(rr + r′′r′′))

rr + r′′r′′

}2

In practice, it is usually exact enough, and more convenient, to search for the
logarithms of the new values of k thereby, so that the logarithm of the first will
be increased by 4

3
log r∗r∗

1
2 (rr+r′′r′′)

. If it is desired to use the new values of k to

determine the value of 1
r∗ still more exactly according to the above equation,

and accordingly to correct the value of k, then the twofold determination of the
epoch will almost always agree so well, that absolutely no new assumptions will
be necessary. With Ceres and Pallas, since τ ′′− τ was of course 41 and 42 days,
they always agreed to within a couple of hundredths of a second.

Adjustment Methods
8.

If the position for time τ ′ is calculated according to the approximated ele-
ments found through the foregoing method, and found to be in agreement with
observation, the work is then complete. Usually the agreement will be very
close (the difference often amounts to only a few seconds in my calculations)
but rarely complete, partly because it is to a degree based on only approximate
assumptions, and partly because the heliocentric positions which are used in it
are not elliptical but rather they include small perturbations. The values of
the small magnitudes of higher order which were discarded above could indeed
be very closely determined from the approximated elements, and so the above
formulas and the values of δ and δ′′ could thereby be improved; but I am of
the opinion, that these calculations would be far more difficult than one of the
following methods.

The most simple first method of adjustment, which I first chanced upon at
the inducement of Pallas, and which, because the intervals were small enough,
I applied with the happiest success, is the following.

According to the approximated elements, which were found in the above
manner, let us set the calculated position for the time τ at longitude = λ′ + L

and at latitude = β′ + B, since those observed are λ′ and β′, so that all of the
small inaccuracies in the assumptions conspire such that the longitude turns out
to be too large by L, and the latitude by B; thus the orbit is calculated entirely
anew, and in exactly the same way, by using the observations

λ, λ′ − L, λ′′

β, β′ −B, β′
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as a basis. The result will be that the positions calculated from the new elements
which follow from that will be so little different from λ′ and β′(in my experience,
only in parts of seconds) that it will require no further adjustment.

9.

Since the determination of the orbit will be based upon the same observa-
tions, the just indicated operation applies only in the case that it is applied
to the first approximation. If it is desired afterwards to adjust the elements by
means of complete [lauter ] or partial [zum Teil ] observations, I have, after many
other tests, discovered the following two methods to be the most useful.

I. The heliocentric locations are calculated from two outer geocentric ob-
servations according to three hypotheses, by first assuming the approximate
distances for these observations, and afterwards slightly adjusting first the one,
then the others. The location for the middle observation is calculated according
to the elements which were found in all three hypotheses, and is compared with
the observed location. The corrected distances are then found through interpo-
lation and, if desired, the corrected elements as well, though it is better not to
avoid the effort of calculating these from the new distances through particular
calculations, especially if the variations of the elements are still very large.

IIa. Entirely the same procedure is made use of, only with the difference that
instead of the approximate distances in the outer observations, the approximate
determination of the inclination and of the ascending nodes are used, and each
of these is somewhat adjusted.

IIb. The heliocentric positions are calculated from the three geocentric posi-
tions, partly with approximated and partly with somewhat adjusted determina-
tion of the inclination and of the ascending node; from the two outer heliocentric
positions the elements are calculated, and from these elements the middle he-
liocentric observation is calculated, which is then compared with the positions
derived from the observed geocentric positions, and then the improved inclina-
tion and ascending node are sought through interpolation, etc.

In IIb the ellipse could also be determined from the three heliocentric po-
sitions according to the known formula, without simultaneously utilizing the
times; the two intervals can be calculated from the dimensions of the ellipse
and compared with the true, and then the corrected inclination and ascending
node could be sought through interpolation, just as before. Only I had to re-
ject this procedure in my experience. In this way an exact representation of
the observations would only be attained only after repeated operations with
far more trouble. To investigate the causes of this in detail would be too ex-
tensive.6 I will merely remark that in this way the second differential, which
we did away with immediately through the manipulations detailed in articles
5 and 6, is again brought about, and that these delicate second differentials
can be massively distorted through a change in the inclination and ascending
node which is itself not very large. It can easily happen here that a change of a
few minutes in the ascending node or the inclination can bring about an ellipse

6cf. Theoria motus corporum coelest. art. 93.
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which has almost no similarity at all with the previous one, hence, therefore
the interpolation can understandably no longer be trusted. This is not the case
with our method, which is always based on only two observations. Sapienti sat.–
From my repeated experience, I find the first method to be the most suitable
and the most general. Moreover, all of these methods are only applicable as
long as the arc remains sufficiently large. If observations are taken of one or
many years, other [methods] will again be necessary, upon which I am not able
to expound more extensively here. In these cases it is generally not advisable
to base the elements on three complete observations, but rather it is far more
suitable to use four longitudes and two latitudes.– If the observations encompass
still more years, and if the elements are determined to within a small amount of
error [bis auf kleinigkeiten], I consider the method of the differential variations
[Differential-Änderungen] whereby an arbitrary number of observations can be
used as a basis, to be the best method.
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