COMPLEXITY SEMINAR

Hugo Cisneros March 10, 2020

ΜΟΤΙVΑΤΙΟΝ

• Evolution of complexity can be seen as a basis for intelligent behavior.

MEASURING COMPLEXITY

- Evolution of complexity can be seen as a basis for intelligent behavior.
- Some cellular automata could be exhibiting evolutionary properties.

Figure 1: Turing machine in Game of Life

- Evolution of complexity can be seen as a basis for intelligent behavior.
- Some cellular automata could be exhibiting evolutionary properties.

- Evolution of complexity can be seen as a basis for intelligent behavior.
- Some cellular automata could be exhibiting evolutionary properties.

· How large is this subclass of cellular automata?

- Evolution of complexity can be seen as a basis for intelligent behavior.
- Some cellular automata could be exhibiting evolutionary properties.

- · How large is this subclass of cellular automata?
- Can it happen faster in some systems (number of states, size of grids, dimensions)

- Evolution of complexity can be seen as a basis for intelligent behavior.
- Some cellular automata could be exhibiting evolutionary properties.

- · How large is this subclass of cellular automata?
- Can it happen faster in some systems (number of states, size of grids, dimensions)

ightarrow Measuring the complexity of these systems can help

COMPLEXITY AND INTERESTINGNESS

Figure 1: Three pictures with varying "complexities"

Some of Grassberger's features of a complex process (Grassberger 1989):

- Between disorder and order
- Often involves hierarchies with feedback loops
- · Higher level concepts arise without being put explicitely

Definition

For a discrete random variable , with $p_i \triangleq P(X = i)$

$$H = -\sum_i p_i \log p_i$$

Largest when $p_1 = p_2 = ... = p_n = \frac{1}{n}$, uncertainty is maximal.

- · Measures randomness of inputs
- High and low entropy correspond respectively to maximal order and disorder

Definition

For a universal computer U the algorithmic information of S relative to U is defined as the length of the shortest program that yields S on U.

$$C_U(S) = \min_{Prog_U(S)} \operatorname{Len}[Prog_U(S)]$$

- Theoretically close to what we are looking for
- Not computable \rightarrow this makes it hard to use in practice

MEASURING COMPLEXITY WITH COMPRESSION

Goal: reduce the size of some data (not possible in general).

Essential in modern software: ZIP, PNG, JPEG, GIF, MP3, MP4, etc.

Some of those algorithms started as a measure of complexity (Lempel and Ziv 1976).

Prediction by partial matching compression

· Estimate the probability of the next symbol

• Encode optimally with respect to these predictions (with e.g arithmetic encoding)

Remark

Compression approximates Kolmogorov complexity because

compressed_string + decompressor_program

is a valid program that can generate the string.

The approximation works better with "intelligent" enough compressors.

A better compressor has a better "understanding" of data (Mahoney 1999; Zenil 2019).

Very compressible object have a simple underlying structure.

A better compressor has a better "understanding" of data (Mahoney 1999; Zenil 2019).

Very compressible object have a simple underlying structure.

== Hello world!

MEASURING COMPLEXITY IN CELLULAR AUTOMATA

Compressing cellular automata in 1D (Zenil 2010):

- · Compress with common algorithms (Gzip)
- Use the length of the compressed string as the complexity metric

COMPRESSION FOR COMPLEXITY IN CA

Compressing cellular automata in 1D (Zenil 2010):

Figure 2: Compressed lengths of the 256 ECA

COMPRESSION FOR COMPLEXITY IN CA

Compressing cellular automata in 1D (Zenil 2010):

Figure 2: Lowest compressed length: Regular and periodic

Figure 3: Highest compressed length: Disordered¹

¹Figures from Zenil 2010.

NEURAL NETWORKS

Input/output pairs $(x_i, y_i) \in \mathbb{R}^N \times \mathbb{R}^K$, $\mathbf{W}_1 \in \mathbb{R}^{N \times H}$, $\mathbf{W}_2 \in \mathbb{R}^{H \times K}$ $h_i = f_1(\mathbf{W}_1 x_i + \mathbf{b}_1)$ $\hat{y}_i = f_2(\mathbf{W}_2 h_i + \mathbf{b}_2)$

Compressing text

Compressing images

· Compressing arbitrary data with no decompression

We can use neural networks to make these predictions (Schmidhuber and Heil 1996; Mahoney 2000)

A neural network is trained on the input/output pairs like below.

The error of the network *L* quantifies how easily "learnable" the patterns are and how compressible the system is.

COMPRESSING TEMPORALLY

Figure 4: Compressing different timesteps together

Training loss $L^{(T)}$ and testing losses $L^{(T+\tau)}$. Score: $\frac{L^{(T)}}{L^{(T+\tau)}}$

Interesting systems with high score

Interesting systems with high score

Interesting systems with high score

NEXT DIRECTIONS

To detect larger structures and potentially more complex behavior, it might be necessary to

- · Step back from the local approach
- Study very large grids

WHY SCALE THINGS UP?

WHY SCALE THINGS UP?

WHY SCALE THINGS UP?

Idea: encode blocks of inputs according to how probable they are to appear.

- · Very probable blocks are converted to a 0 pixel
- · Improbable blocks are converted to a 1 pixel

Hourglass-shaped neural nework

Figure 5: Autoencoders for coarse-graining

· Is this form of "interestingness" enough?

· Where should the search happen?

· Use/combine theoretical metrics with observational ones?

Can complexity keep increasing in isolation?

THANK YOU!

REFERENCES

Grassberger, Peter (1989). "Randomness, Information, and Complexity". In: *Proceedings of the 5th Mexican School on Statistical Physics*. Mexican School on Statistical Physics (EMFE). arXiv: 1208.3459.

- Lempel, A. and J. Ziv (Jan. 1976). "On the Complexity of Finite Sequences". In: *IEEE Transactions on Information Theory* 22.1, pp. 75–81. ISSN: 0018-9448. DOI: 10.1109/TIT.1976.1055501.
- Mahoney, Matthew V (1999). "Text Compression as a Test for Artificial Intelligence". In: *Proceedings of AAAI-1999*. AAAI, p. 3.

- Mahoney, Matthew V (2000). "Fast Text Compression with Neural Networks". In: *FLAIRS*. FLAIRS Conference, p. 5.
 Schmidhuber, J. and S. Heil (Jan. 1996). "Sequential Neural Text Compression". In: *IEEE Transactions on Neural Networks* 7.1, pp. 142–146. ISSN: 1045-9227. DOI: 10.1109/72.478398.
 Zenil, Hector (2010). "Compression-Based Investigation of the Dynamical Properties of Cellular Automata and Other Systems". In: *Complex Systems* 19.1.
- (Sept. 3, 2019). "Compression Is Comprehension, and the Unreasonable Effectiveness of Digital Computation in the Natural World". In: arXiv: 1904.10258 [cs, math].