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MOTIVATION



MEASURING COMPLEXITY

• Evolution of complexity can be seen as a basis for
intelligent behavior.

• Some cellular automata could be exhibiting evolutionary
properties.

But still many open questions:

• How large is this subclass of cellular automata?

• Can it happen faster in some systems (number of states,
size of grids, dimensions)

→Measuring the complexity of these systems can help
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Figure 1: Turing machine in Game of Life
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COMPLEXITY



COMPLEXITY AND INTERESTINGNESS

Figure 1: Three pictures with varying “complexities”

Some of Grassberger’s features of a complex process
(Grassberger 1989):

• Between disorder and order
• Often involves hierarchies with feedback loops
• Higher level concepts arise without being put explicitely

Hugo Cisneros Complexity seminar 3/22



SHANNON INFORMATION AND ENTROPY

Definition

For a discrete random variable , with pi ≜ P(X = i)

H = −
∑
i

pi log pi

Largest when p1 = p2 = ... = pn = 1
n , uncertainty is maximal.

• Measures randomness of inputs

• High and low entropy correspond respectively to maximal
order and disorder

Hugo Cisneros Complexity seminar 4/22



KOLMOGOROV COMPLEXITY

Definition
For a universal computer U the algorithmic information of S
relative to U is defined as the length of the shortest program
that yields S on U.

CU(S) = min
ProgU(S)

Len[ProgU(S)]

• Theoretically close to what we are looking for

• Not computable → this makes it hard to use in practice
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MEASURING COMPLEXITY WITH
COMPRESSION



COMPRESSION: GENERALITIES

Goal: reduce the size of some data (not possible in general).

Essential in modern software: ZIP, PNG, JPEG, GIF, MP3, MP4,
etc.

Some of those algorithms started as a measure of complexity
(Lempel and Ziv 1976).
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COMPRESSION PRINCIPLES

Prediction by partial matching compression

• Estimate the probability of the next symbol

• Encode optimally with respect to these predictions (with
e.g arithmetic encoding)
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COMPRESSION PRINCIPLES

Remark
Compression approximates Kolmogorov complexity because

compressed_string + decompressor_program

is a valid program that can generate the string.

The approximation works better with “intelligent” enough
compressors.
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COMPRESSION AND COMPREHENSION

A better compressor has a better “understanding” of data
(Mahoney 1999; Zenil 2019).

Very compressible object have a simple underlying structure.

01001000 01100101 01101100

01101100 01101111 00100000

01110111 01101111 01110010

01101100 01100100 00100001

Hugo Cisneros Complexity seminar 8/22



COMPRESSION AND COMPREHENSION

A better compressor has a better “understanding” of data
(Mahoney 1999; Zenil 2019).

Very compressible object have a simple underlying structure.

01001000 01100101 01101100

01101100 01101111 00100000

01110111 01101111 01110010

01101100 01100100 00100001

== Hello world!
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MEASURING COMPLEXITY IN CELLULAR
AUTOMATA



COMPRESSION FOR COMPLEXITY IN CA

Compressing cellular automata in 1D (Zenil 2010):

• Treat the CA as a string

• Compress with common algorithms (Gzip)

• Use the length of the compressed string as the complexity
metric
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COMPRESSION FOR COMPLEXITY IN CA

Compressing cellular automata in 1D (Zenil 2010):
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Figure 2: Compressed lengths of the 256 ECA
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COMPRESSION FOR COMPLEXITY IN CA

Compressing cellular automata in 1D (Zenil 2010):

Figure 2: Lowest compressed length: Regular and periodic

Figure 3: Highest compressed length: Disordered1

1Figures from Zenil 2010.
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RESULTS FOR COMPRESSION AS THE ONLY METRIC
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NEURAL NETWORKS

Input/output pairs (xi, yi) ∈ RN × RK,W1 ∈ RN×H,W2 ∈ RH×K

hi = f1(W1xi + b1)

ŷi = f2(W2hi + b2)
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NEURAL NETWORKS FOR COMPRESSION

• Compressing text

• Compressing images
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NEURAL NETWORKS FOR COMPRESSION

• Compressing arbitrary data with no decompression

We can use neural networks to make these predictions
(Schmidhuber and Heil 1996; Mahoney 2000)
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NEURAL NETWORKS FOR COMPLEXITY

A neural network is trained on the input/output pairs like below.

The error of the network L quantifies how easily “learnable” the
patterns are and how compressible the system is.
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COMPRESSING TEMPORALLY

Figure 4: Compressing different timesteps together

Training loss L(T) and testing losses L(T+τ).

Score:
L(T)

L(T+τ)
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RESULTS FOR CELLULAR AUTOMATA

Interesting systems with high score
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NEXT DIRECTIONS



COARSE-GRAINING

To detect larger structures and potentially more complex
behavior, it might be necessary to

• Step back from the local approach

• Study very large grids
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WHY SCALE THINGS UP?
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INFORMATION BASED

Idea: encode blocks of inputs according to how probable they
are to appear.

• Very probable blocks are converted to a 0 pixel
• Improbable blocks are converted to a 1 pixel
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AUTOENCODERS

Hourglass-shaped neural nework

Input Output
Intermediate 
Representation

Figure 5: Autoencoders for coarse-graining
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REMAINING OPEN QUESTIONS

• Is this form of “interestingness” enough?

• Where should the search happen?

• Use/combine theoreticalmetrics with observational ones?

• Can complexity keep increasing in isolation?
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THANK YOU!
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