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1 Introduction

The simulation of viscoelastic fluids is a challenging problem. In this talk Oldroyd-B model is
studied. The main problem appears at high Weissenberg number, where the simulation does
not converge. The problem of high Weissenberg number was treated for example in [1] using
log-conformation formulation. This formulation was used in [2] for the simulation of Oldroyd-B
model using Finite element method. The same formulation was also successfully used in [3] using
Finite volume method. In this talk another procedure is used, inspired by [4] the second order
diminishing stabilization term is used both for Finite element and Finite Volume method, and
both methods are compared.

2 Mathematical model

Oldroyd-B model is based on standard balance equations. We suppose that the fluid density ρ
is constant. Then balance of mass and balance of linear momentum reduce to

divv = 0

ρv̇ = divT,

where v is fluid velocity, v̇ is a material time derivative of the velocity and T is a symmetric
stress tensor (balance of angular momentum) in the form

T = −pI+ 2µD+GA.

Pressure is denoted by p, µ is the dynamic viscosity, D =
�
∇v + (∇v)T

�
/2 is a symmetric part

of the velocity gradient, G is the elastic modulus. The viscoelastic part of the stress tensor A

satisfies the following partial differential equation

A+ λ
δA

δt
= 2λD,

where λ is the relaxation time. The derivative δA/δt stands for the objective time derivative
and it can be chosen from the one-parametric family of Gordon-Schowalter derivatives

�
δA

δt

�
= Ȧ−WA+AW + a(DA+AD), a ∈ [−1, 1],

where W =
�
∇v − (∇v)T

�
/2 is an antisymmetric part of the velocity gradient. For a = −1 this

derivative is called upper convected derivative (used in Oldroyd-B model that is studied here),
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for a = 1 it is called lower convected derivative (Oldroyd-A model), and for a = 0 co-rotational
derivative (co-rotational model)1.

For Oldroyd-B model the viscoelastic part of the stress tensor satisfies

A+ λ

�
∂A

∂t
+ v ·∇A− (∇v)A −A(∇v)T

�
= 2λD. (1)

3 Computational domain

The computational domain is a two-dimensional pipe with several sinusoidal narrowings (see
Fig. 1). Diameter of the pipe at the inlet is equal to D, diameter in the narrowest point is equal
to Dmin. It contains Nseg segments, the segment is a part of the pipe between two neighbouring
narrowings, length of the segment is equal to Lseg. Part of the pipe that is straight at the inlet
has the length Lin, a straight part at the outlet has the length Lout.
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Figure 1: Computational domain.

The following material parameters are used: Density ρ = 1000 kg m−3, dynamic viscosity µ =
9 × 10−3 Pa s, elastic modulus G = (10−3/λ) Pa and the relaxation time λ controls the non-
dimensional Weissenberg number

We =
λU

D
,

where U is the characteristic velocity and D the pipe diameter. The velocity at the inlet has
a parabolic profile with the mean value U = 10 cm s−1, pipe diameter at the inlet D = 1 cm.
Stress-free boundary condition is prescribed at the outlet and no-slip boundary condition on the
walls.

4 Numerical methods and results

Two different numerical methods are used – Finite element method and Finite volume method.

Finite element method is based on the weak solution of the governing equations. The imple-
mentation is based on the code developed in [5]. Pressure p/velocity v/part of the stress A are
approximated by P1disc /Q2/Q2 elements. A fully coupled monolithic finite element approach
that treats all the numerical variables simultaneously is used. Set of linear algebraic equation is
solved by the direct solver Umfpack.

1Note that there is no high Weissenberg number problem for the co-rotational model.
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Finite volume method is implemented into OpenFOAM CFD toolbox. Central scheme second
order upwind is used. Pressure implicit splitting operators algorithm is used, which means that
first the linear momentum equation and it is solved and then is corrected by continuity equation
in the special loop. The linear equations are solved using preconditioned Bi-Conjugated gradient
with diagonal incomplete LU preconditioner.

For both methods further stabilization for the viscoelastic part of the stress tensor A is used.
Instead of solving (1) equation

A− kΔA+ λ

�
∂A

∂t
+ v ·∇A− (∇v)A−A(∇v)T

�
= 2λD

is solved, where k is a stabilization coefficient.

When deriving viscoelastic Oldroyd-B model from microscopical principles, using statistical
physics the laplace term emerges in Oldroyd-B model. Usually in the literature this term is
omitted because the coefficient k is very small, according to [6] the coeficient k ≈ 10−9 − 10−7.
Nevertheless the presence of the laplace term in the equations is important for the stabilization
of the numerics.

System of equations is solved in the following way: For k = 1/2 the result is obtained and it is
used as an initial condition for a new computation with smaller k, this is repeated upto the k of
order 10−8. The process of decreasing the coefficient k can be done upto the critical value kmin.
For smaller k, the stabilization does not work and no solution can be found.

Using four different meshes with different mesh sizes h and six different Weissenberg numbers
We it has been found out that

kmin = Ch2 exp(We)

which means that the problem of high Weissenberg number can not be solved only by using
denser meshes because the exponential function grows faster then the quadratic function.

The problem is simulated considering six different geometries – with 2, 3 and 4 segments and
with two different lengths of segments – 2cm and 4cm. Some of the results are formulated in the
conclusion. Comparison of Finite element and Finite Volume method for Nseg = 2, Lseg =2 cm
and We = 0.5 is depicted in Fig. 2.

Finite Element Method, We = 0.5

Finite Volume Method, We = 0.5

Figure 2: Comparison of FEM vs. FVM.
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5 Conclusion

Both methods – Finite element and Finite volume method – show a good agreement which is
an indicator that the computed results are correct. The results show that the problem highly
depends on the geometry. Weissenberg number may not fully characterize the problem. With
longer segments higher maximal Weissenberg number can be reached, on the other hand more
segments cause a cumulation of the stress and so only lower maximal Weissenberg number is
reached.
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