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1 Introduction

Asphalt concrete is important for its usage in the construction of the roads, highways or run-
ways. When the cars are running over the surface of the road, the material is being repeatedly
compressed. Therefore, it is important to study how the response of the material depends on
the applied load and its speed.

This contribution reflects joint research with V. Prtsa, J. Malek and J.M. Krishnan who studied
the response of the asphalt concrete in a wheel tracker test. The experiment was performed
for asphalt concrete confined with 200 kPa and containing 2% of air voids. In this abstract we
present a numerical simulation of this experiment described by th Burgers model.

2 Description of the experiment

In the experiment, that is being simulated, the sample of the shape of a brick with the dimensions
30cm x 13.8cm x 5cm is subject to the applied stress that starts at ¢ = 0 at the top of the
brick according to Figure 1 and it moves to the right and then back (this is one cycle) with
a constant velocity. The dimensions of the contact area are equal to 2.5cm X 6cm and 1000
cycles are performed. The experiment is performed with two different applied stresses 540 kPa
and 800 kPa moving with two different speeds 1km/h and 10km/h. The experimental setup is
depicted in Figure 1, the dashed line shows the trajectory of the applied stress.
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Figure 1: Schematic description of the experimental setup.

3 Mathematical model

Asphalt concrete is simulated by the viscoelastic fluid-like Burgers model that is capable of
capturing two different relaxation mechanisms that appear in asphalt concrete. It is assumed
that the density p of the material is constant, then the balance of mass and balance of linear and
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angular momentum are in the form

divv =0, (1)
ov

p <8t + (v - V)v> =divT, T=TT, (2)

where v is the fluid velocity. Next, T is the symmetric Cauchy stress tensor in the form
T = —pl+ s (Vv + (Vv)T) + G1(B1 — 1) + Go(By — 1), (3)

where s is the solvent viscosity, G; and G are the elastic moduli and By, By are the additional
stress tensors. They satisfy the set of evolution differential equations (fully coupled through the
velocity field v)

v 1

B1 +—(B1 —1I) =0, (4)
Ty

v 1

B2 +—(B2—1I)=0, (5)
T2

v 0B
where B= v +v-VB - (Vv)B —B(Vv)" is the objective upper convected Oldroyd derivative

and 71, 7o are two relaxation times describing two different relaxation mechanisms of the material.

It is worth mentioning that the Burgers model can be derived using the framework of thermome-
chanics of continuum based on two notions that assure that the second law of thermodynamics
is automatically satisfied. The first notion is the principle of the maximum rate of entropy
production and the other one is the natural configuration that splits the total deformation into
the dissipative part and the purely elastic part that corresponds to that of the compressible
neo-Hookean solid. For more details see [1].

We obtain the material parameters us, G1, G2, 71, 72 by comparing the predictions of the model
to the simple compression experiment. The fitting procedure is based on the minimization of
the difference between the measured experimental data and the numerical simulation, for more
details see [2, 3|. Fitted material parameters us = 2.81 MPa s, G1 = 52.4 MPa, G2 = 9.81 MPa,
71 = 101.38, 79 = 109.3 s are then used in the simulation of the wheel tracker test.

4 Numerical implementation

In the present experiment the top boundary of the asphalt concrete brick was deforming. In order
to simulate it, the arbitrary Lagrangian-Eulerian (ALE) method is employed. By using a new
unknown  arbitrary deformation i the standard weak formulation in deforming Eulerian
domain (), is transformed to a fixed ALE domain €2,. It is assumed that all points on the
boundaries are material points, i.e. the time derivative of 11 is equal to the fluid velocity v. For
more details on the transformation to the ALE domain see [4, 5], where this method is applied
in two spacial dimensions.

In three dimensional space the weak formulation in €2, € R3 is in the form
ﬁ‘zI—i—VXfL J =detF, / Jtr ((va)f‘fl)quz(),
QX

/ Jp |y oy (B (v 28 .qu+/ jTF*T.quxz/ £, - qdsS,,
o, ot ot o .

X

T = —pI+ p ((vxv)f‘*l + F*T(vxv)T) 4+ G1(By — 1) + Go(By — 1),
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/ J {aBi + (V4 By) (F*l (v - %‘;)) — (VyVF'B, - B,F T(V,v)" + %(Bi - 1)} .Qidx =0, i=1,2,
[ i

/ Vya-Vrdyx =0,
QX

which holds for all admissible test functions ¢,q, Qi, Q2 and r. The vector t,, is used for pre-
scribing the time-dependent Neumann boundary condition, i.e. for prescribing the moving com-
pression on the top side of the domain. All other sides of the domain are fixed, i.e. described by
zero Dirichlet boundary conditions for v and .

The numerical implementation is based on this weak formulation and is has been performed
using AceGen/AceFFEM system [6, 7|. AceGen is a code generation system and AceFEM is
a finite element environment that uses the generated code. The system provides the automatic
differentiation to compute the exact tangent matrix from the residuum which implies the efficient
and robust implementation of the Newton solver.

Due to the symmetry of the problem with respect to the dashed line in Figure 1 only one half
is computed. The symmetric part of €2, is discretized by regular hexahedra, pressure p, parts of
the Cauchy stress tensor Q; and Q, are approximated by piecewise discontinuous linear P14
elements, the velocity v is approximated by piecewise triquadratic H2 elements, and in order
to decrease the size of the problem the arbitrary deformation 1 is approximated by piecewise
trilinear H1 elements. The time derivatives are approximated by backward Euler method, non-
linearities are solved with the Newton method and the consequent set of linear equations are
solved with the iterative CGS solver with a LU decomposition used as a constant preconditioner
(MKL Pardiso). The linear iterations are stopped when the relative residuum reaches 10~* and
the stopping condition for the Newton iterations is 1077.

5 Results

The results are computed on the mesh containing 1680 hexahedra and described by 88052
degrees of freedom. The problem is calculated parallely with 24 threads on the system with
two Intel Xeon E5-2620 v2, the typical time of the assembly of the residuum and the tangent
matrix is 0.85s, LU decomposition that is needed only once takes 5.8 s and because the solution
between two Newton iterations is not changing a lot, usually it is enough to perform only two
CGS iterations which take 0.13s. One compression cycle is approximated by 200 time steps,
hence all together 200 000 time steps has to be performed to compute the whole simulation.

Figure 2 shows the snapshot in the 1000t cycle at the time when the 800 kPa compression is at
the top in the middle going to the left with the lower speed 1km/h. The pressure is localized
mainly under the compression area. The cumulated deformation of the domain is very small and
thus the dependence of the deformation on the cycle number Figure 3a) and also coordinate x
Figure 3b) are plotted. The graph in 3b) shows that the upper side is mostly depreciated at
2 = 16 cm which is on the right from the middle and which shows the inertia of the material.
The graph in 3a) shows that the deformation of the material is bigger when it is pressed with
higher stress or when it moves with a slower speed.

In the next step of our research the simulation will be compared to the experimental results.
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Figure 2: A snapshot of the asphalt concrete pressed with 800 kPa and the speed 1km /h in cycle
1000 going to the left, displacement u, [m] (left) and pressure p [kPa] (right).
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Figure 3: Graph of the dependence of the displacement u, on the number of the cycle measured
at the top in the middle for different speeds and applied pressures (left), and the dependence of
the displacement u, on the position = obtained for the applied pressure 800kPa and the speed
1km/h (right).
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