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Abstract. We discuss several questions about Borel measurable functions on a topological space.

We show that two Lindenbaum composition theorems [13] proved for real line, hold in perfectly
normal topological space as well. As an application, we extend a characterization of a certain class

of topological spaces with hereditary Jayne-Rogers property for perfectly normal topological space.
Finally, we pose an interesting question about lower and upper ∆0

2-measurable functions.

1. Introduction

Let X be a topological space, f, g : X → [0, 1] being functions. If both f and g are continuous then
their composition f ◦ g is such as well. However, it may be more complex if we take f and g further in
the Baire or Young hierarchies. For instance, if f and g are lower semicontinuous then f ◦g need not be
even in the first Baire class. One can show that there is still an upper bound and f ◦g is a function from
the second Young class. A. Lindenbaum [13] in his extensive paper about compositions of functions
from various classes of Borel measurable functions showed that this upper bound is best possible for
functions on the real line. In Section 4, we show that Lindenbaum’s result holds in perfectly normal
topological space. The applied proof technique follows J. Cichoń, M. Morayne, J. Pawlikowski and
S. Solecki [5], who extended the result for Polish spaces.

B. Tsaban and L. Zdomskyy [19] investigated hereditary Hurewicz spaces including a survey on
the topic. By their main result and by L. Bukovský, I. Rec law and M. Repický [3] we have that
a perfectly normal topological space X is a QN-space if and only if X has Hurewicz property hereditarily
and every ∆0

2-measurable function onX is a discrete limit of continuous functions. The latter property is
called Jayne-Rogers property in [4] since J.E. Jayne and C.A. Rogers [9] showed that any analytic subset
of a Polish space has Jayne-Rogers property. However, it seems that the question which topological
spaces possess Jayne-Rogers property is an open problem. In Section 5, extending the result in [16], we
show that every lower semicontinuous function on a perfectly normal topological space X is a discrete
limit of continuous functions if and only if X has Jayne-Rogers property and X is a σ-set. Moreover, in
the same section we are investigating possible candidates for convergence like characterization of lower
and upper ∆0

2-measurable functions.
The paper begins with a preliminary Section 2 containing necessary notation and introducing a proof

tool from [5]. Section 3 contains a summary on Borel functions hierachies of our interest in perfectly
normal topological space. Section 4 is devoted to a proof of two Lindenbaum composition theorems
for perfectly normal topological space with our own observation of a case of a limit ordinal. The last
section was described in the preceding paragraph.

2. Preliminaries

All topological spaces are assumed to be infinite and Hausdorff. Basic set-theoretical and topological
terminology follows mainly [2] and [8].

Let X, Y and Z be sets, XY denotes the set of all functions from X to Y . For functions f : X → Y
and g : Y → Z by the composition of these functions g ◦ f : X → Z we mean (g ◦ f)(x) = g(f(x)). Let
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A ⊆ XY,B ⊆ Y Z be families of functions, then

B ◦A =
{
c ∈ XZ : (∃a ∈ A)(∃b ∈ B) b ◦ a = c

}
If a is a single function we abuse the notation and denote by a ◦B the set {a} ◦B.

A family of real-valued functions is called a lattice of functions if it is closed under the pointwise
maximum and minimum operation. As most of our investigation is concerned with functions attaining
values in [0, 1] we define pointwise addition, multiplication by a non-negative real constant, c, and the
additive inverse for such functions as follows

(f ⊕ g)(x) := min {1, (f + g)(x)} , (c� g)(x) := min {1, (c · g)(x)} , (	g)(x) := 1− g(x).

Let (fi)i∈ω be a sequence of real valued functions,

• we denote by fi → f the fact that the sequence converges to f pointwise, i.e. the set
{i ∈ ω : |fi(x)− f(x)| ≥ ε} is finite for every x ∈ X and ε > 0.

• by fi ↗ f we denote pointwise convergence of non-decreasing sequence, i.e. we have fi ≤ fi+1.
Similarly for fi ↘ f .

• another type of convergence is discrete convergence, where we require that the following set
{i ∈ ω : fi(x) 6= f(x)} is finite for all x ∈ X.

If A is a family of functions, then we denote by A ↑ the set of all functions that are nondecreasing
limits of functions from A, analogously the class A ↓.

We shall use a tool developed in [5]1 to represent numbers from a particular dense subset of the unit
interval [0, 1] as sequences of numbers of another particular dense subset of [0, 1]. Indeed, let

S =

(
[0, 1] \

{
n∑
i=0

ai
2i+1

: n ∈ ω ∧ ai ∈ {0, 1}

})
∪ {0}.

By Φ we will denote the function from ωS to [0, 1], defined as

Φ
(
(ai)i∈ω

)
=

∞∑
n=0

a(π−1(n))

2n+1
,

where an =
∑∞
i=0

a(n,i)
2i+1 , n < ω and π : ω2 → ω is the bijection defined by π(n, k) = (n+k+1)(n+k)

2 + k.

Let T = Φ (ωS) ⊆ [0, 1]. We shall recall the following assertion from [5]1 which justifies to interpret ωS
equipped with Tychonoff product topology as a set of reals.

Lemma 2.1. The set T is dense in [0, 1], 0 ∈ T ⊆ S ⊆ [0, 1] and Φ : ωS→ T is an homeomorphism.

Let A be a family of subsets of X. A function f : X → [0, 1] is A-measurable, if f−1(U) ∈ A for
every U ⊆ [0, 1] open. A function f : X → [0, 1] is lower, upper A-measurable, if f−1((r, 1]) ∈ A,
f−1([0, r)) ∈ A, for every r ∈ [0, 1], respectively. The class of all A-measurable, lower A-measurable
and upper A-measurable functions, respectively, is denoted by MA, MA and MA.2 It is easy to see
that if A is a σ-topology3 then MA = MA ∩ MA. f : X → ωS is lower A-measurable and upper
A-measurable if the function Φ ◦ f : X → T is such, respectively, i.e., we inherit the order from reals.

3. Hierarchies

Hierarchies of Borel measurable functions are part of standard textbooks in topology or descriptive
set theory such as [10, 12]. However, the usual exposition takes care of Polish spaces. Therefore we
recall the hierachies with special focus on more general spaces including the corresponding references.
Useful sources in the realm of perfectly normal topological space are [7, 15].

Let X be a topological space. The Baire hierarchy was introduced by R. Baire in 1899 in his
dissertation [1], for more see [10, 2, 12]. We set B0(X) = C(X), where C(X) is the set of all continuous
functions from X to [0, 1], and for all 0 < α < ω1,

Bα(X) =

{
f ∈ X

[0, 1] : fn → f ∧ fn ∈
⋃
β<α

Bβ(X)

}
.

1See the proof of Theorem 4.4 in [5]
2We follow [5].
3I.e., A is closed under countable union, finite intersection, contains ∅, X, see [2].
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Next is the hierarchy we are most interested in, since in perfectly normal spaces it generalises semicontin-
uous functions. Young hierarchy was introduced by W.H. Young [17, 18]. Let L0(X) = U0(X) = C(X),
then for every 0 < α < ω1,

Lα(X) = (U<α(X)) ↑ Uα(X) = (L<α(X)) ↓ .
where U<α(X) =

⋃
β<αUβ(X) and similarly for L<α(X)

Basic properties are summarized in the following assertion which is for arbitrary topological space
proved in a monograph by R. Sikorski [15], mostly in Theorem V.10.1.4 In what follows for clarity we
do not denote the topological space.

Theorem 3.1. Let X be a topological space, α, β < ω1. Then

(1) f ∈ Lα if and only if 	f ∈ Uα.
(2) Bα = Lα+1 ∩Uα+1

(3) If β < α, then Uβ ⊂ Lα, Lβ ⊂ Uα, Uβ ⊂ Uα, Lβ ⊂ Lα, Lβ ⊂ Bα, Uβ ⊂ Bα, Bβ ⊂ Bα.
Thus Uα+1 = Lα ↓ and Lα+1 = Uα ↑.

(4) Lα and Uα are lattices of functions and
(a) Uα = Uα ↓
(b) Lα = Lα ↑
(c) Uα+1 = Bα ↓
(d) Lα+1 = Bα ↑

(5) Lα, Uα and Bα are closed under taking uniform limits.
(6) If {fi : i ∈ ω} ⊆ Lα(X) then sup {fi : i ∈ ω} ∈ Lα(X).

The standard relations between Baire and Young functions are depicted in the following diagram:5

C(X) = B0 B1 B2 Bα

L1 L2 Lα

U1 U2 Uα

· · · · · ·

Lα(X) and Uα(X) are lattices of functions and are closed under addition, and multiplication by non-
negative real numbers, Bα(X) is a lattice of functions and a vector space over R, see [15, 7].

The notation for Borel hierarchy follows [10, 2], i.e., Σ0
0(X) = Π0

0(X) are clopen sets of a topological
space X, Σ0

1(X), Π0
1(X) are open, closed, respectively, and for α > 1 we denote

Σ0
α(X) =

{ ⋃
n∈ω

An : An ∈
⋃
β<α

Π0
β(X)

}
Π0
α(X) =

{ ⋂
n∈ω

An : An ∈
⋃
β<α

Σ0
β(X)

}
.

Moreover, we put ∆0
α(X) = Σ0

α(X) ∩Π0
α(X). In an arbitrary topological space we have

Σ0
1 Σ0

2 Σ0
3 Σ0

4
...

Π0
1 Π0

2 Π0
3 Π0

4
...

The missing horizontal arrows are present in any perfectly normal topological space. Functions in
MΣ0

1(X), MΣ0
1(X), are called lower, upper, semicontinuous, respectively. By B we will denote the family

M(
⋃
α<ω1

Σ0
α(X)), i.e., the Borel measurable functions.

The following theorem is commonly considered for metric spaces, see [2, 10, 12, 5]. The third part
is commonly attributed to H. Lebesgue, F. Hausdorff or S. Banach. For perfectly normal spaces the
result follows from [15], Theorem V.10.1, using Tong’s theorem characterising perfectly normal spaces,
see [8], 1.7.15.(c), and also partially from [7], Proposition 3.14.

Theorem 3.2. Let X be a perfectly normal topological space, 0 < α < ω1. Then the following equalities
hold

Lα(X) = MΣ0
α(X) Uα(X) = MΣ0

α(X) Bα(X) = MΣ0
α+1(X).

4We concern ourselves with functions taking values only in the closed unit interval as opposed to R. Sikorski [15], who
proved the results for real valued functions. This is however not a drawback since results for our functions follow from

the real valued ones, only a minor change is needed in defining addition.
5An arrow indicates inclusion.
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A proof of the following can be found in [5], Lemma 4.3. Although the assertion is stated there for
Polish spaces the proof for perfectly normal spaces is the same.

Lemma 3.3. Let X be a perfectly normal topological space, α < ω1, f ∈ Lα(X), H ⊆ [0, 1] dense and
0 ∈ H. Then there exists a sequence (fi)i∈ω of functions from U<α(X,H) such that fn ↗ f .

Let the set
ω

[0, 1] be equipped with the Tychonoff product topology. The projection function prn :
ω

[0, 1]→ [0, 1] defined by prn((ti)i∈ω) = tn is in C(
ω

[0, 1]) and the supremum function s :
ω

[0, 1]→ [0, 1]

defined by s((ti)i∈ω) = sup {ti : i ∈ ω} is in L1(
ω

[0, 1]).

4. Composition of functions and convergence

We begin with a simple fact that the equalities

Uα(X) ◦C(X,X) = Uα(X), Lα(X) ◦C(X,X) = Lα(X)

hold in an arbitrary topological space. One can easily think out an example showing that the composi-
tion in reversed order need not preserve the equality. However, restricting to the class of non-decreasing
continuous functions on R would preserve the equalities even if the order of the composition was re-
versed.

Let X be a set. The coding function F is a function

F :
ω(

X
[0, 1]

)
→ X

(
ω

[0, 1])

defined by F(fi)i∈ω
(x) = (fi(x))i∈ω. Exactly the same coding function F was used in [5] since it does

not raise the complexity of functions of the input sequence. The following was proved for Polish spaces
in [5].1 We state it for the classes Lα although it is valid for Uα as well.

Lemma 4.1. Let X be a perfectly normal topological space and α < ω1.

(1) If (fi)i∈ω is a sequence of functions from Lα(X,S), then F(fi)i∈ω
∈ Lα(X, ωS).

(2) If (fi)i∈ω is a sequence of functions from L<α(X,S), then F(fi)i∈ω
∈ MΣ0

α(X, ωS).

Proof. (1) We define a function Tn : S→ T for every n ∈ ω and ci ∈ {0, 1} as

Tn

( ∞∑
i=0

ci2
−i

)
=

∞∑
i=0

ci2
−π(n,i).

Tn is increasing and continuous thus Tn◦fn ∈ Lα(X). We also have (Φ◦F(fi)i∈ω
)(x) =

∑∞
n=0(Tn◦fn)(x)

for every x ∈ X. Using the Weierstrass M-test for the series
∑∞
n=0(Tn ◦ fn) on X it is easy to see that

this sum is uniformly convergent, whence Φ ◦ F(fi)i∈ω
∈ Lα(X)

The proof of (2) is almost the same as (1). Using the inclusion L<α(X) ⊆ MΣ0
α(X) and the

fact that classes of measurable functions are closed under taking uniform limits we readily get that
Φ ◦ F(fi)i∈ω

∈ MΣ0
α(X). �

The main essence of a proof of Lindenbaum theorem lies in a simple fact that if X is a topological

space and f ∈ X
[0, 1], then for any sequence (fi)i∈ω of functions such that fn ↗ f we have

f = s ◦ F(fi)i∈ω
.

Thus any function f ∈ Lα+1(X) can be represented as a composition of the lower semicontinuous
function s and a function F(fi)i∈ω

∈ Uα(X, ωS), even though s◦Lα(X, ωS) = Lα(X, ωS). Consequently

we obtain

Theorem 4.2 (A. Lindenbaum). Let X be a perfectly normal topological space, α < ω1. Then there
exists a g ∈ L1([0, 1]) such that

(1) Lα+1(X) ⊆ g ◦Uα(X,T).
(2) Lα(X) ⊆ g ◦MΣ0

α(X,T).

Proof. To construct g we simply extend the function s ◦ Φ−1 on [0, 1], e.g., by Proposition 1.1 in [6].
We shall prove part (1), the proof of part (2) is analogous using the second assertion from Lemma 4.1.

(1) Let f ∈ Lα+1(X), using Lemma 3.3 we get a sequence of functions (fi)i∈ω, such that fi ∈ Uα(X),

rng (f) ⊆ S and fi ↗ f . Thus f = s◦Φ−1◦Φ◦F(fi)i∈ω
= g◦(Φ◦F(fi)i∈ω

) and Φ◦F(fi)i∈ω
∈ Uα(X). �
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In the part concerning the decomposition of Lα, for α limit, we cannot straightforwardly generalise
the first part, i.e. in Polish spaces the following holds

Lα(X) * L1 ◦U<α(X).

To see this suppose otherwise and let f ∈ Lα(X)\L<α(X). We would get that f = g ◦h, where g ∈ L1

and h ∈ Uβ(X), for some β < α. Thus f ∈ Lβ+1(X), a contradiction.
Before stating Corollary 4.3 we stress that the inclusion Lα([0, 1]) ◦ Lβ(X) ⊆ Lβ+α(X) holds in an

arbitrary topological space X.

Corollary 4.3. Let X be a perfectly normal topological space, α < ω1. Then we have

Lα+1(X) = L1([0, 1]) ◦Uα(X) = L1([0, 1]) ◦ Lα(X) = L1([0, 1]) ◦Bα(X)

Uα+1(X) = U1([0, 1]) ◦ Lα(X) = U1([0, 1]) ◦Uα(X) = U1([0, 1]) ◦Bα(X)

Lα(X) = L1([0, 1]) ◦MΣ0
α(X) Uα(X) = U1([0, 1]) ◦MΣ0

α(X)

Theorem 4.4 (A. Lindenbaum). Let X be a perfectly normal topological space, 0 < α, β < ω1. Then

Lβ+α(X) = Lα([0, 1]) ◦Uβ(X) = Lα([0, 1]) ◦ Lβ(X),

Uβ+α(X) = Uα([0, 1]) ◦Uβ(X) = Uα([0, 1]) ◦ Lβ(X).

Proof. We shall prove Lβ+α(X) ⊆ Lα([0, 1]) ◦Lβ(X,T) using transfinite induction on α. The reversed
inclusion holds in arbitrary topological space. The case α = 1 is Theorem 4.2.

Let α = γ + 1. By Corollary 4.3 and the induction hypothesis we have

Lβ+α(X) = L1([0, 1]) ◦ Lβ+γ(X) ⊆ L1([0, 1]) ◦ Lγ([0, 1]) ◦ Lβ(X,T) = Lα([0, 1]) ◦ Lβ(X,T).

Now let α = sup {αi : i ∈ ω} and f ∈ Lβ+α(X). There exists (pi)i∈ω such that pi ∈ Lβ+αi(X,S)
and pi ↗ f . Using the induction hypothesis on the functions pi we get a decomposition

pi = gi ◦ hi,

where gi ∈ Lαi
(Ti,S) and hi ∈ Lβ(X,T), Ti = rng hi. Note that gi ◦ pri ∈ Lαi

(
∏
j∈ω Tj ,S).

Thus F(gi◦ pri)i∈ω
∈ Lα(

∏
i∈ω Ti,

ωS) and consequently s ◦ F(gi◦ pri)i∈ω
∈ Lα(

∏
i∈ω Ti, [0, 1]). Since

F(hi)i∈ω
∈ Lβ(X, ωT) and

f = (s ◦ F(gi◦ pri)i∈ω
) ◦ F(hi)i∈ω

we are almost done except the domain of s ◦ F(gi◦pri)i∈ω
is
∏
i∈ω Ti ⊆ ωS. To that end we can take an

element g ∈ Lα([0, 1], [0, 1]) to be an extension of s◦F(gi◦ pri)i∈ω
◦Φ−1 and h = Φ◦F(hi)i∈ω

∈ Lβ(X,T).
One can see that f = g ◦ h. �

5. Jayne-Rogers property

In addition to pointwise and pointwise monotone limits, this section treats several questions related
to discrete limits and (lower, upper) ∆0

2-measurable functions. We can construct the following diagram
of relations in an arbitrary topological space.

C MΣ0
2

MΣ0
1

MΣ0
1

M∆0
2

M∆0
2

M∆0
2

By Theorem 3.2 we have MΣ0
1 = L1, MΣ0

1 = U1, MΣ0
2 = B1 in any perfectly normal space.

Let B
(d)
1 (X) denote the family of all discrete limits of continuous functions on X. Note that the ter-

minology may differ, see [11] for the survey on the topic. J.E. Jayne and C.A. Rogers [9] investigate
piecewise continuous functions, i.e., f is piecewise continuous if there is a sequence 〈Fn; n ∈ ω〉 of
closed subsets of X such that f |Fn is continuous on Fn for any n ∈ ω and X =

⋃
n∈ω Fn. However, if

X is a normal space then

f ∈ B
(d)
1 if and only if f is piecewise continuous.6

6For more see Proposition 4.3 in [16].
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One can easily see that for a topological space X we have

B
(d)
1 ⊆ M∆0

2.

M∆0
2 = B

(d)
1 in every analytic subset of a Polish space by J.E. Jayne and C.A. Rogers [9] and in

any perfectly normal QN-space by L. Bukovský, I. Rec law and M. Repický [3] and B. Tsaban and
L. Zdomskyy [19].7 It seems that in general the equality is an open problem.

Question 1. Is there X ⊆ R such that M∆0
2(X) 6= B

(d)
1 (X)?

Inspired by Question 1, the property of topological space “any function from family F is a discrete
limit of a sequence of functions from family G” is studied in [16].8 Naturally, for an arbitrary topological
space X we have

L1 ⊆ B
(d)
1 ⇔ U1 ⊆ B

(d)
1 , U1 ⊆ B

(d)
1,L1
⇔ L1 ⊆ B

(d)
1,U1

.9

Moreover, both properties are hereditary and a topological space with any of them is a σ-set, see Corol-
lary 4.6 and Proposition 4.7 in [16]. Let us recall that a topological space X is a σ-set if Π0

2(X) = Σ0
2(X).

Part (b) of Theorem 4.1 in [16] has been proved for separable metric spaces. However, the only
constraint in a proof for a more general topological space was Lindenbaum’s Theorem which was
known to be valid in separable metric spaces. Due to our Theorem 4.2 we can strengthen part (b)
of Theorem 4.1 in [16] to perfectly normal spaces.

Theorem 5.1. Let X be a perfectly normal space. Then

L1 ⊆ B
(d)
1,U1

⇔ L1 ⊆ B
(d)
1 ⇔ B1 = B

(d)
1 ⇔ B = B

(d)
1 ⇔

(
M∆0

2 = B
(d)
1 ∧X is a σ-set

)
.

By T. Natkaniec and W. Sieg [14], the family M∆0
2 is large in some sense since they show that if X

is complete metric space then the family of all pointwise limits of sequences of functions from M∆0
2(X)

is the family B2(X).
In the following we focus on a question whether also lower and upper ∆0

2-measurable functions admit
nice characterisations using convergence. We introduce a new type of convergence for a sequence (fi)i∈ω
of functions on X by

fn ↗∗ f ⇔ (∀x ∈ X)(∀ε > 0)(∃n0)(∀n ∈ ω)
(
n ≥ n0 → f(x)− ε < fn(x) ≤ f(x)

)
,

fn ↘∗ f ⇔ (∀x ∈ X)(∀ε > 0)(∃n0)(∀n ∈ ω)
(
n ≥ n0 → f(x) ≤ fn(x) < f(x) + ε

)
.

We begin with an observation.

Lemma 5.2. If f is a discrete limit of a sequence (fi)i∈ω, gi ↗ g and hi ↘ h then fi ⊕ gi ↗∗ f ⊕ g
and fi ⊕ hi ↘∗ f ⊕ h.

Proof. Let the assumption of assertion be true and x ∈ X, ε > 0. There is nf,g such that fn(x) = f(x)
and g(x) − ε < gn(x) ≤ g(x) for n ≥ nf,g. Thus f(x) + g(x) − ε < fn(x) + gn(x) ≤ f(x) + g(x) for
n ≥ nf,g. Similarly for the other case. �

We introduce the respective classes

L∗1(X) =

{
f ∈ X

[0, 1] : fn ↗∗ f ∧ fn ∈ C(X)

}
, U∗1(X) =

{
f ∈ X

[0, 1] : fn ↘∗ f ∧ fn ∈ C(X)

}
.

We summarize their basic properties.

Proposition 5.3. Let X be a topological space.

(1) If X is perfectly normal and not a σ-set then U1 6⊆ L∗1 ( B1 and L1 6⊆ U∗1 ( B1.

(2) If X is uncountable Polish then B
(d)
1 ∪ L1 ( L∗1 and B

(d)
1 ∪U1 ( U∗1.

(3) If X is perfectly normal then L∗1 ⊆ M∆0
2 and U∗1 ⊆ M∆0

2.
10

(4) If f, g ∈ L∗1(X) then 	f ∈ U∗1, max {f, g} ∈ L∗1, min {f, g} ∈ L∗1, f ⊕ g ∈ L∗1 and f � g ∈ L∗1.

7The equality M∆0
2 = B

(d)
1 is called Jayne-Rogers property in [4, 16].

8The property is denoted DL(F , G). For instance, X has DL(M∆0
2, C(X)) if and only if B

(d)
1 (X) = M∆0

2(X).
9Discrete limits of lower and upper semicontinuous functions, respectively.
10Functions from the classes L∗

1 and U∗
1 are obviously Σ0

2-measurable.
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Proof. (1), (2) One can easily see that the inclusions B
(d)
1 ∪ L1 ⊆ L∗1 ⊆ B1 and B

(d)
1 ∪U1 ⊆ U∗1 ⊆ B1

hold in any topological space. To prove that U1 6⊆ L∗1 and L∗1 6= B1, we shall construct function
h ∈ U1 \ (L∗1∪M∆0

2). Let A ∈ Π0
2 \Σ0

2 and A =
⋂
n∈ω An such that A0 = X and (Ai)i∈ω is a decreasing

sequence of open sets. We define a function h : X → [0, 1] as follows

h(x) =

{
1

n+1 x ∈ An \An+1

0 x ∈ A.

One can easily see that h ∈ U1 \ (L1 ∪M∆0
2). We shall show that h /∈ L∗1. Indeed, let hn → h. Put

Dm = {x ∈ X : (∀n ≥ m) hn(x) ≤ 0}.
Dm is a closed set for every m ∈ ω. If hn ↗∗ h then

⋃
m∈ωDm = A which is a contradiction.

Finally, to prove that B
(d)
1 ∪ L1 6= L∗1 and B

(d)
1 ∪ U1 6= U∗1 hold, we shall construct a function

f ∈ U∗1 \ (U1 ∪M∆0
2). Let F ⊆ X be an uncountable closed subset of X, z ∈ X \ F an accumulation

point of X \ F , U, V ⊆ X being open and disjoint in X such that F ⊆ U and z ∈ V . There is
A ∈ Π0

2(F )\Σ0
2(F ). Since F is closed, we have A ∈ Π0

2(X)\Σ0
2(X), and A =

⋂
n∈ω An such that A0 = X,

A1 = U and (Ai)i∈ω is a decreasing sequence of open sets in X. Defining an upper semicontinuous
function h in the same manner as before we obtain a sequence (hi)i∈ω of continuous functions such that
hi ↘ h. Note that hi(x) = 1 for x ∈ X \U . On the other hand, let us set g(x) = 0 for x ∈ X \ {z} and
g(z) = 1. Thus h ≥ g. There is a sequence (gi)i∈ω of continuous functions converging discretely to g.

We may assume that gi(x) = 0 for x ∈ X \V to obtain hi ≥ gi. Since (h−g)−1({0}) = A∪{z} /∈ Σ0
2(X)

and (h − g)−1([0, 1/2)) = A2 ∪ {z} /∈ Σ0
1(X) we have f = h − g 6∈ U1 ∪M∆0

2. Finally, by Lemma 5.2
and part (4) of this proposition we have hi − gi ↘∗ h− g, since h− g = 	((	h)⊕ g) and similarly for
hi − gi.

(3) Let (fi)i∈ω be a sequence of continuous functions such that fi ↗∗ f . We want to show that for

any r ∈ [0, 1] we have f−1((r, 1]) ∈ Σ0
2 ∩Π0

2. Since

f−1((r, 1]) =
⋃
i∈ω
⋃
j∈ω

⋂
n>j fn

−1([r + 2−i, 1]) and f−1([0, r]) =
⋃
i∈ω
⋂
n>i fn

−1 ([0, r])

we obtain f−1((r, 1]) ∈ Σ0
2 and f−1([0, r]) ∈ Σ0

2. �

The following relations among convergence classes hold in an arbitrary topological space, compare
with the earlier diagram in this section.

C(X) B1

L1

U1

B
(d)
1

L∗1

U∗1

We ask whether the inclusions in part (3) of Proposition 5.3 can be reversed, thus putting the diagrams
in a one-to-one correspondence.

Question 2. Are the equalities M∆0
2 = L∗1 and M∆0

2 = U∗1 true in any Polish space?
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