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Abstract. The EU-SILC database contains annually gathered rotating-panel data on
a household level covering indicators of monetary poverty, severe material deprivation
or low work household intensity. Data are obtained via questionnaires leading to
outcome variables of diverse nature: numeric, binary, ordinal being gathered at each
occasion in each household. Only limited number of approaches exist in the literature
to analyze such mixed-type panel data. We present a statistical model for such type
of data which is built on a thresholding approach to link binary or ordinal variables
to their latent numeric counterparts. All, possibly latent, numeric outcomes are
then jointly modelled using a multivariate version of the linear mixed-effects model.
A mixture of such models is then used to model heterogeneity in temporal evolution
of considered outcomes across households. A Bayesian variant of the Model Based
Clustering (MBC) methodology is finally exploited to classify households into groups
with similar evolution of indicators of monetary poverty, material deprivation or low
work household intensity. The method is applied to socially-economic focused dataset
of Czech households gathered in a time span 2005 – 2016.
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1 Data and research problem
Throughout the EU states the poverty and social exclusion is measured using indicators of monetary poverty, severe
material deprivation and very lowwork household intensity. Relevant data are gathered within The European Union
Statistics on Income and Living Conditionsproject (EU-SILC,https://ec.europa.eu/eurostat/web/microdata/european-
union-statistics-on-income-and-living-conditions. This is an instrument with the goal to collect timely and compa-
rable cross-sectional and longitudinal multidimensional microdata on income, poverty, social exclusion and living
conditions. Data are obtained via questionnaires leading to outcome variables of diverse nature: numeric (e.g.,
income), binary (e.g., affordability of paying unexpected expenses) and ordinal (e.g., level of ability to make ends
meet). It is our primary aim to use such longitudinally gathered outcomes towards segmentation of households
according to typical patterns of their temporal evolution.

To this end, we propose a statistical model capable of joint modelling of longitudinal outcomes of diverse
nature (numeric, binary, ordinal) while taking potential dependencies as well longitudinal as among different
outcomes obtained at each occasion into account. This is a topic of Section 2. Consequently, we use the model
within a Bayesian model based clustering (MBC) procedure to perform unsupervised classification of study units
(households) into groups whose characteristics are not known in advance. This part of methodology is described in
Section 3. The final Section 4 describes in detail the use of this methodology on the Czech subset of the EU-SILC
dataset. The paper is finalized by conclusions in Section 5

2 Joint model for mixed type panel data
In general, we have data on = units/panelmembers (e.g., households) at our disposal containing ' ≥ 1 longitudinally
gathered outcomes (e.g., income, affordability of week holiday and level of a financial burden of housing). Let
Y8 =

(
Y>
8,1, . . . , Y>

8,'

)> stand for a vector consisting of all the values Y8,A = (.8,A ,1, . . . , .8,A ,=8 )> of the Ath
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outcome (A = 1, . . . , ') of the 8th unit (8 = 1, . . . , =) obtained at =8 occasions. Let C8 stand for available covariates
(the times of measurements, possibly other explanatory variables) of 8-th unit. Finally, let 6(y8; C8 , )) represent
the assumed distribution of the outcome vector Y8 which possibly depends on the covariates C8 and also on a vector
) of unknown parameters. It is assumed that this distribution is built from the following hierarchical model.

First, if the Ath, A = 1, . . . , ', longitudinal outcome vector Y8,A is composed of ordinal or binary variables, we
will take a natural thresholding approach (see, e.g., Dunson [1]) and will assume that each element of Y8,A , .8,A , 9 ,
9 = 1, . . . , =8 , is determined by corresponding latent continuous variable .★

8,A , 9
, which is covered by one of the

intervals given by the set of thresholds $A . That is,

.8,A , 9 = ;, iff WA ,; < .
★
8,A , 9 ≤ WA ,;+1, ; = 0, . . . , !A , (1)

where $A =
(
WA ,1, . . . , WA ,!A

)> are unknown thresholds such that −∞ = WA ,0 < WA ,1 < · · · < WA ,!A < WA ,!A+1 = ∞.
In the following, denote these latent continuous counterparts by Y★

8,A
. In case the Ath longitudinal outcome is

directly observed as continuous, we set Y★
8,A

= Y8,A .

Further, for each Y★
8,A
, A = 1, . . . , ', a classical linear mixed model (LMM) is assumed. That is,

Y★8,A = X8,A #A + Z8,AB8,A + 98,A , (2)

where X8,A and Z8,A are model matrices derived from the covariate information C8 , #A is a vector of unknown
parameters. Further, B8,A is a vector of random effects related to the Ath longitudinal outcome and 98,A is an error
term vector for which a classical normality assumption is exploited, i.e., 98,A ∼ N=8

(
0, (gA )−1 I=8

)
. The residual

variance (gA )−1 is unknown.

Dependencies among the ' longitudinal outcomes Y8,1, . . . , Y8,' are taken into account by considering a joint
distribution for the random effects vector B8 =

(
B>
8,1, . . . , B>

8,'

)> which joins the random effect vectors from the
mixed models for all ' longitudinal measurements. Namely, a multivariate normal distribution is assumed here,
i.e., B8 ∼ N@

(
-, �

)
, where both the mean vector - and the covariance matrix � are unknown parameters.

Finally, let ' be the set of unknown parameters of interest, i.e. ' = {#, 3, -, �}, where # and 3 stand for sets of
parameters #A and gA across all outcomes A = 1, . . . , '. Then, the density of (latent) continuous outcomes of the
8-th individual is given by integration of product of a multivariate normal density related to the LMM and a density
of N@

(
-, �

)
, which is known to lead to the density 6★

(
y★
8
; C8 , '

)
of multivariate normal distribution. To obtain

the density of actually observed outcomes 6(y8; C8 , )) we need to separate y★
8
into numeric (N) and ordinal (O)

parts (including binary):

6 (y8; C8 , ' , $) =

∫
C

(
yO
8

��� yO,★
8
; $

)
6★

(
y★8 ; C8 , '

)
dyO,★
8
, (3)

where C (·|·) represents the thresholding procedure.

3 Model based clustering
Wefirst assume that (the number of groups intowhichwe intend to classify the units) is known in advance and ≥
2. The classification proceeds by using the model outlined in Section 2 within the Bayesian model based clustering
procedure (MBC, Fraley and Raftery [2]). Hence, it is assumed that the overall model, 5 , is given as a finite
mixture of certain group-specific models 5: , : = 1, . . . ,  . That is, 5 (y8; C8 , )) =

∑ 
:=1 F: 5: (y8; C8 , 7, 7: ),

where w =
(
F1, . . . , F 

)> are the mixture weights (proportions of the groups in the population), 7 is a vector
of unknown parameters common to all groups and 7: , : = 1, . . . ,  , are vectors of group-specific unknown
parameters. Hence the vector ) of all unknown parameters is ) ≡

{
w, 7, 71, . . . , 7 

}
.

Using the notation from previous section we set the group-specific density 5: to be the density 6, however,
depending on parameter ' : elements of which (#:A , g:A , -: , �: ) may (or may not) be group-specific, i.e. different
value of the parameter is considered to be in different groups. For example, if we suppose that the groups differ
only in the covariate effects, then

5 (y8; C8 , )) =

 ∑
:=1

F: 6

(
y8; C8 , 3, �, $︸  ︷︷  ︸

7

, #: , -:︸  ︷︷  ︸
7:

)
.

Further, let *8 ∈
{
1, . . . ,  

}
denote the unobserved allocation of the 8th unit into one of the  groups. As it is

usual with the mixture models, the group-specific distribution 5: (y8; C8 , 7, 7: ), : = 1, . . . ,  , can be viewed as
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a conditional distribution of the outcome Y8 given *8 = : while the mixture weights w determine the distribution
of the allocations, i.e., P(*8 = :) = F: , : = 1, . . . ,  . Classification of the 8th unit can then be based on suitable
estimates of the conditional individual allocation probabilities ?8,: ()), : = 1, . . . ,  , calculated by the Bayes rule:

?8,: ()) = P
(
*8 = :

�� Y8 = y8; C8 , )
)
=
F: 6

(
y8; C8 , 7, 7:

)
5 (y8; C8 , ))

. (4)

Calculation of such probabilities requires performing the integration (3), which is in fact the integration of
multivariate normal density over an (=8×# ordinal outcomes)-dimensional interval, bounds of which are determined
by the measured levels of ordinal outcomes yO

8
and threshold parameter $. A method for computing such possibly

highly dimensional integrals needs to be chosen carefully with respect to not only the precision but the computation
time as well, since for one set of parameters ) we need to use it at least (= ×  )-times. Moreover, we can limit
ourselves to first 9 observations only, 9 = 1, . . . , =8 , to capture the evolution of classification probability as the
amount of available information increases.

To infer on the model parameters and to perform related classification a Bayesian approach was adopted and
implemented in the R software in combination with the C language and routines from the R package mvtnorm to
calculate integrals (3). Monte Carlo Markov chain (MCMC) methods were used to obtain a sample from posterior
distribution of ) and consequently also from the posterior distribution of each of classification probabilities ?8,: ()).
Not only their posterior means but also their credible intervals were used for classification to quantify uncertainty
in allocation of the study units into the groups.

4 Application to EU-SILC data
The methodology was applied to Czech households from the EU-SILC data while considering jointly
• logarithm of lowest income to make ends meet (to pay for its usual necessary expenses),
• affordability of paying unexpected expenses (required expense faced without help of anybody - only own

resources used, e.g. surgery, a funeral, major repairs in the house, replacement of durables like washing
machine, car) - binary variable:
– Yes (household can afford unexpected expenses),
– No (household cannot afford unexpected expenses),

• ability to make ends meet (respondent’s feeling with respect to his household’s income) - ordinal variable
with six levels:
1. With great difficulty,
2. With difficulty,
3. With some difficulty,
4. Fairly easily,
5. Easily,
6. Very easily.

Each of the = = 20 299 Czech households had been followed for =8 = 4 years induced by rotational design which
replaces households that would exceed the 4-year limit with newly entering households. The set of households
included in the following analysis consists of households entering the study after 2005 and leaving the study before
2016.

This year span covers also the economical crisis in 2009 that is suspected to influence the prosperity and social
status of Czech households. In order to capture the possible change in the evolution of outcomes of interest we
were discouraged from using simple linear trend and, therefore, were forced to use more flexible parametrization
of time. Numeric (and the latent numeric counterparts of categorical outcomes) were modelled using B-spline
parametrization of order 3 with knots at years 2008 and 2011. This piecewise-cubic parametrization leads to
6 coefficients (including the intercept term) and forms the crucial part of the fixed effect part of the model.
Furthermore, it is extended by the weighted family size1 that potentially could affect the outcomes of interest.
Thus, the structure of fixed effects is in the form

X>8, 9 ,A #A = V0,A + V1,A B1(C8, 9 ) + · · · + V5,A B5(C8, 9 ) + V6,AF8, 9 ,

where C8 9 is the time (in years) that has passed since 2005 at which the 8-th household was interviewed for 9-th time,
B1(C), . . . , B5(C) then corresponds to above mentioned spline parametrization at time C and F8 9 is the corresponding
weighted family size at that time.

1 Each member of the household contributes to the family size by the following values: 1 for adult person in the role of the head of the family,
0.5 for other person older than 14 and 0.3 for person younger 14 years.
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All three outcomes are linked through household-specific random intercept term B0,8 that follows trivariate zero-
mean normal distribution with general covariance matrix �. Combining fixed and random effects part we obtain
the supposed mixed-effects model for each (latent) numeric outcome A:

.★8, 9,A = �0,8,A + X>8, 9 ,A #A + Y8, 9 ,A = �0,8,A + V0,A + V1,A B1(C8, 9 ) + · · · + V5,A B5(C8, 9 ) + V6,AF8, 9 + Y8, 9 ,A .

Moreover, each cluster : = 1, . . . ,  is defined by its own set of fixed effects # (:) for clustering purposes.
Other parameters like matrix � or precisions of the error terms gA are considered to be the same among clusters
and, therefore, do not help to differentiate them. Hence, the discovered clusters could be distinguished only by
interpretation of differences between V coefficients and the shape of the spline curve they correspond to.

4.1 Results
Gibbs sampling procedure was applied to data on Czech households for several values of the total number of
clusters  to determine which number will be the most suitable one. The choice of  ∈ {2, 3, 4, 5, 6} can be
supported by low values of deviance of the model defined as � ();Y1, . . . ,Y=) = −2

=∑
8=1
log 6 (Y8; C8 , )), which

involves integration of all latent variables. Figure 1 presents estimates of the posterior distribution of deviance
(viewed as a parametric function of )). The deviance appears to decrease with higher value of  , with the exception
of  = 5. Although, the choice of  = 6 seems to be the most beneficial, we should not blindly believe it. Let us
explore the behaviour (and interpretation) of these clusters first.

Focusing on the numeric variable only we plot the estimated spline curves for each choice of  including  = 1
which corresponds to general evolution when no clustering was applied. Curves in Figure 2 are plotted for
households of unit size (just one adult member) since the weighted family size should not be ignored as its effect
may differ among clusters. In general it seems that the need for higher income has been increasing till 2009, after
which this increasing trend has slowly stabilized or even begun to decrease.

As we begin to distinguish hidden clusters we always find a pair of clusters sharing the same shape of the evolution
described above differing only in the level. It seems that sorting in more than two clusters in similar way is
inefficient since curves of other clusters follow completely different shape. These clusters usually represent a very
low percentage of households that behave extremely in some specific sense. For example violet cluster groups
households with extreme growth of lowest income to make ends meet in years 2005 – 2008. However, the same
cluster groups households with rapid decrease in the time span 2008 – 2010. Analogously, we could interpret even
the blue and the brown cluster. This is not caused just by our chosen spline parametrization but mainly by the nature
of the gathered data. We have to keep in mind, that households were questioned only four times in consecutive
years. Therefore, for  > 3 we discover clusters of extreme behaviour which is usually limited to a certain time
span. Moreover, we should not forget that discovered clusters differ in the evolution of categorical outcomes as well
which may be even more extreme. Unless we are interested in these extremes, we should limit ourselves to lower
count of clusters which still represent a considerable fractions of households and can characterize households in
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Figure 1: Estimated posterior distribution of deviances under several choices of number of clusters = 2, 3, 4, 5, 6.

4



the whole time span. For this reason, we would recommend to use either  = 2 or  = 3.

Let us examine more the case of  = 3 which seems to be the most reasonable. Using Figures 2 (unit weighted
family size) and 3 (weighted family size of 2) we can describe the found clusters in the following way:
2 This cluster (blue) represents about 7 % of households that used to have very high living standard until the

crisis in year 2009 came after which households in this cluster have the lowest lowest income to make ends
meet. The need for higher income does not rise with enlarging the family size as fast as in other two clusters,
since the estimated V (2)6,1 � 0.36 corresponding to weighted family size is the lowest among all V (:)6,1 parameters.
This is supported by a gap between blue and other spline curves in Figure 3 compared to 2. On the other hand,
about one third of households in this cluster could not afford to pay unexpected expenses in 2005 – 2010. After
2010 almost all households in this cluster were prepared to unfavourable circumstances. Similarly, after 2010
they were more able to make ends meet as the proportion of households easily making ends meet increased
which relates to the low living standard.

1,3 Cluster 1 (red) shares the same evolution of the lowest income to make ends meet as the cluster 3 (green). In
both clusters it seems to have increased until the crisis came and after which the actually needed amount of
income stabilizes (maybe slightly decreases). Households in this cluster differ from the third one in the much
higher increase of the needed income for an additional family member: V (1)6,1 � 0.61 > 0.41 � V

(3)
6,1 , which is

supported by the switch of the red and the green spline curves in Figures 2 and 3. Clusters 1 and 3 can be
further distinguished by the evolution of proportions of categorical variables. In 2005 – 2011, the cluster 1
represents households with increasing probability of being able to pay for unexpected expenses, whereas, this
probability decreases in cluster 3. After 2011, clusters 1 and 3 switched the monotonicity in the evolution
of this probability. Similarly, cluster 1 represents households with increasing difficulties to make ends meet
until 2011, after which year these difficulties fade away. The cluster 3 reflects this behaviour in the completely
opposite way as around 2011 it consists of households having no difficulties to make ends meet.

Households were classified by the rule based on highest posterior density intervals (HPD). If the lower bound for
the maximal posterior probability of belonging to cluster is higher than upper bounds for all other probabilities,
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Figure 2: Spline curves for logarithm of the lowest income to make ends meet of households of unit weighted
family size for different choice of the number of clusters  .
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then the household is classified into the cluster that maximizes this probability. Otherwise, the household remains
unclassified, which occurred in almost 23 % of cases.

5 Conclusions
We have developed a statistical model dealing with panel data of a mixed type. It was achieved by application of
multivariate mixed effects model on numeric outcomes together with latent numeric outcomes which give rise to
observed binary and ordinal outcomes. Mixture of such models was further used to discover different patterns in
evolution of outcomes of interest. Using a fully Bayesian approach we were able to sort Czech households into
three substantially different groups according to their ability to afford to pay for unexpected expenses, ability to
make ends meet and the lowest needed income to do so.
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Figure 3: Longitudinal profiles of numeric, binary and ordinal outcomes of = = 1 000 randomly selected Czech
households. Bold curves on the left represent the estimated conditional expectation of response within  = 3
discovered groups for a household of weighted family size of 2. Categorical outcomes are presented by the
proportions of categories in each year separately for the discovered groups. Some households remain unclassified.
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