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1 Demography

Notation

• Tx – random remaining lifetime of a person at age x,

• tqx = P (Tx ≤ t) – probability of dying,

• tpx = 1− tqx – probability of surviving,

• µx – force of mortality.

Do not forget that many of calculations in this collection use the fundamental as-
sumption L(Tx+t) = L(Tx − t|Tx > t).

Example 1.1. Let qx = 0.05 under basic level of the force of mortality µx+t. Assume
that µ′

x+t = µx+t + c and estimate c for which q′x = 0.07.

Solution:

For µx+t:

1− qx = exp (−
∫ 1

0

µx+s ds)

For µ′
x+t:

1− q′x = exp (−
∫ 1

0

µ′
x+s ds) = exp (−

∫ 1

0

µx+s + c ds)

= exp (−
∫ 1

0

µx+s ds) · exp (−c) = (1− qx) · exp (−c)

Therefore, we get

e−c =
1− q′x
1− qx

⇒ c = − ln

(
1− q′x
1− qx

)
= − ln

(
1− 0.07

1− 0.05

)
= 0.021.

Example 1.2. Let

tpx =
100− x− t

100− x
, 0 ≤ x ≤ 100, 0 ≤ t < 100− x.

Compute µ45.



Solution:

We can calculate µ45 using the following equation

µx+t = − d

dt
ln (tpx),

evaluated at t = 45− x.

The desired quantity µ45 is thus calculated as follows:

µ45 = − d

dt
ln

(
100− x− t

100− x

)∣∣∣∣
t=45−x

= − d

dt

[
ln (100− x− t)− ln (100− x)

]∣∣∣∣
t=45−x

= − d

dt
ln (100− x− t)

∣∣∣∣
t=45−x

= − 1

100− x− t
· (−1)

∣∣∣∣
t=45−x

=
1

100− x− (45− x)
=

1

55
.

Example 1.3. Consider a non-smoker with the force of mortality µx and remaining
lifetime Tx and a smoker with µ′

x = c · µx, c > 0 and T ′
x whose lives are independent.

Derive an explicit formula for the probability that the smoker will live longer than the
nonsmoker, i.e.

P (T ′
x > Tx).

Solution:

First of all, the joint distribution of (Tx, T
′
x) must be found. According to the fact that

the lives are independent, the joint density is just the product of marginal densities

f(t) = tpx · µx+t,

f ′(s) = sp
′
x · µ′

x+s = sp
′
x · c · µx+s = (spx)

c · c · µx+s,

where we used

sp
′
x = exp

(
−
∫ s

0

c · µx+u du

)
=

[
exp

(
−
∫ s

0

µx+u du

)]c
= (spx)

c .

The joint density (s for smoker and t for non-smoker) is then

f(t, s) = µx+t · tpx · c · µx+s · (spx)c .

The sought probability that the smoker will survive the non-smoker is obtained as
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follows:

P (T ′
x > Tx) =

∫∫
s>t

f(t, s) ds dt =

∫ ∞

0

∫ ∞

t

f(t, s) ds dt

=

∫ ∞

0

∫ ∞

t

f(t) · f ′(s) ds dt

=

∫ ∞

0

f(t) ·
(∫ ∞

t

f ′(s) ds

)
dt

=

∫ ∞

0

f(t) · (1− F ′(t)) dt =

∫ ∞

0

µx+t · tpx · tp′x dt

=

∫ ∞

0

µx+t · tpx · (tpx)c dt =
∫ ∞

0

µx+t · (tpx)c+1 dt︸ ︷︷ ︸
:= I

Per Partes
=

[
u = (tpx)

c v′ = tpx · µx+t

u′ = c · (tpx)c−1 · d
dt t

px = −c · (tpx)c · µx+t v = −tpx

]
=
[
− (tpx)

c+1]∞
0︸ ︷︷ ︸

=0−(−1)=1

−
∫ ∞

0

c · µx+t · (tpx)c+1 dt︸ ︷︷ ︸
:= c·I

.

We are in a situation where it should hold

P (T ′
x > Tx) = I = 1− c · I.

The last step is to calculate I:

I = 1− c · I ⇒ I =
1

c+ 1
= P (T ′

x > Tx).

Example 1.4. Assume that µx+t = µx for all t ∈ [0, 1]. Let 1qx = qx = 0.16.
Estimate t for which it holds tpx = 0.95.

Solution:

Under the assumption of constant force of mortality, it holds tpx = (px)
t.

tpx = (px)
t = (1− qx)

t ⇒ ln tpx = t · ln (1− qx)

⇒ t =
ln tpx

ln (1− qx)
=

ln 0.95

ln (1− 0.16)
= 0.294

Example 1.5. Consider u ∈ [0, 1]. Show that under

1. the assumption of linearity, it holds

x+up0 = (1− u) xp0 + u x+1p0,
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2. the assumption of constant force of mortality, it holds

x+up0 =
(
xp0
)1−u ·

(
x+1p0

)u
,

3. the assumption of linearity II (Balducci ass.), it holds

1

x+up0
=

1− u

xp0
+

u

x+1p0
.

Solution:

1)

x+up0 = xp0 · upx = (1− xq0) · (1− uqx)
Ass.
= (1− xq0) · (1− u · qx)

= 1− xq0 − u · qx + u · xq0 · qx = xp0 − u · (1− px) · xp0
= xp0 − u · xp0 + u · xp0 · px = xp0 − u · xp0 + u · x+1p0

= (1− u) · xp0 + u · x+1p0

2)

upx = exp

(
−
∫ u

0

µx+y dy

)
Ass.
= exp

(
−
∫ u

0

µx dy

)
= exp (−µx · u) = (px)

u

x+up0 = xp0 · upx = (xp0)
1+u−u · (px)u = (xp0)

1−u · (x+1p0)
u

3)

x+1p0 = x+up0 · 1−upx+u ⇒ 1

x+up0
=

1−upx+u

x+1p0
=

1− 1−uqx+u

x+1p0

Ass.
=

1− (1− u) · qx
x+1p0

=
1− (1− u) · (1− px)

x+1p0
=

px + u− u · px
x+1p0

=
(1− u) · px

x+1p0
+

u

x+1p0

=
(1− u) · px
px · xp0

+
u

x+1p0
=

1− u

xp0
+

u

x+1p0

Example 1.6. Consider the decomposition of Tx to curtate Kx and fractional Sx

remaining lifetime. Under the Balducci assumption, derive an explicit formula for
the conditional probability

P (Sx ≤ u|Kx = k), u ∈ [0, 1].

Solution:

P (Sx ≤ u|Kx = k) =
P (Sx ≤ u,Kx = k)

P (Kx = k)
=

P (k < Tx ≤ k + u)

P (k ≤ Tx < k + 1)
=

k+uqx − kqx

k+1qx − kqx

=
kpx · uqx+k

kpx · qx+k

=
1− upx+k

qx+k
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Taking into account the following relationship

px+k = upx+k · 1−upx+k+u ⇒ upx+k =
px+k

1−upx+k+u

,

we can write

P (S ≤ u|K = k) =
1− px+k

1−upx+k+u

qx+k

=
1− 1−qx+k

1−(1−u)·qx+k

qx+k

=

u·qx+k

1−(1−u)·qx+k

qx+k

=
u

1− (1− u) · qx+k

.

We can notice that the expression for the conditional distribution of Sx depends on
k. For this reason, the random variables Sx and Kx are not independent under the
Balducci assumption.
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2 Financial Mathematics

Example 2.1. Mrs Y will need 150,000 CZK after 5 years to pay for a transfer of the
”flat rights”. The bank offers a term account with nominal interest rate 4.4% credited
quarterly. How much money must Mrs Y save to cover the necessary amount for the
transfer?

Solution:

FV = 150,000; n = 5; m = 4; i(m) = 4.4%; PV =?

PV = FV ·

(
1

1 + i(m)

m

)m·n

= 150,000 ·
(

1

1 + 0.044
4

)4·5

= 120,522.5

Example 2.2. Mr Z bought a house for 3,600,000 CZK using mortgage loan of
amount 2,500,000 CZK. He will repay 16,000 CZK monthly in arrear over 25 years.
What is the nominal annual interest rate which the bank offered to Mr Z?

Solution:

PV = 2,500,000; P = 16,000; m = 12; n = 25; i(m) =?

The formula for the calculation of the present value:

PV = P ·
m·n∑
t=1

(
1

1 + i(m)

m

)t

= P ·m · a(m)
n = P ·m · 1− vn

i(m)
,

where

vn =

(
1

1 + i(m)

m

)m·n

.

Therefore, we need to solve the equation

2,500,000 = 16,000 · 12 · 1− v25

i(12)
.

The solution is then i(12) = 0.059 = 5.9%.

Be careful with the notation. The term a
(m)
n denotes an annuity in arrear payable

m-thly. However, the payments are of size 1/m. Thus, it was necessary to multiply

a
(m)
n by m in our case.

Example 2.3. Mrs Y makes deposits of 100 at time 0, and x at time 3. The fund
grows at a force of interest

δt =
t2

100
, t > 0.

Let the amount of interest earned from time 3 to 6 is also equal to x. Calculate x.
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Solution:

C0 = 100; C3 = x; δt =
t2

100
t > 0

At time 3, after making a deposit, we have

FV3 = C0 · e{
∫ 3
0 δtdt} + C3 = 100 · e{

∫ 3
0

t2

100
dt} + x,

where ∫ 3

0

t2

100
dt =

1

100
·
[
t3

3

]3
0

=
1

300
· (27− 0) =

27

300
=

9

100
,

and therefore
FV3 = 100 · e

9
100 + x.

At time 6, there is

FV6 = FV3 · e{
∫ 6
3 δtdt}

in the fund, where∫ 6

3

t2

100
dt =

1

100
·
[
t3

3

]6
3

=
1

300
· (216− 27) =

189

300
=

63

100
.

The interest gained between times 3 and 6 should be equal to x and thus it ought to
hold

FV6 − FV3 = x ⇒ FV3 · e
63
100 − FV3 = x ⇒ FV3 · (e

63
100 − 1) = x

⇒ (100e
9

100 + x) · (e
63
100 − 1) = x.

After solving this equation, we obtain x = 784.59.

Example 2.4. Mr X wants to borrow 150,000$. He would like to repay this loan in
2 years by periodic semiannual payments. Bank offers the nominal interest rate
6.9%. Mr X has 45,000$ on his account where the interest is credited monthly under
nominal interest rate 2.5%. He can save 40,000$ every half a year from his salary.

a) What is the account balance after a half of year?

b) How much money should Mr X hold at the beginning to cover the loan
payments?

Solution:

PV = 150,000; m = 2; i(m) = 6.9%; n = 2
A0 = 45,000; p = 12; j(p) = 2.5%; S = 40,000

b)

PV = R ·
m·n∑
t=1

(
1

1 + i(m)

m

)t

⇒ R =
PV∑m·n

t=1

(
1

1+ i(m)

m

)t = 150,000∑2·2
t=1

(
1

1+ 0.069
2

)t = 40,789
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A0 = 45,000

A1/2 = A0 ·
(
1 +

j(p)

p

)p/2

−R + S = 45,000

(
1 +

0.025

12

)6

− 40,789 + 40,000 = 44,776

c)

A∗
2 = 0 =

[[[
A∗

0 ·
(
1 +

j(p)

p

)p/2

+ S −R
]
·
(
1 +

j(p)

p

)p/2

+ S −R

]
·
(
1 +

j(p)

p

)p/2

+ S −R

]
·
(
1 +

j(p)

p

)p/2

+ S −R

Our aim is to express A∗
0. The previous equation can be adjusted to the following

equation

A∗
0 =

4∑
t=1

R− S(
1 + j(p)

p

) p·t
2

= (40,789− 40,000)
4∑

t=1

(
1

1 + 0.025
12

)6·t

= 3,059.

Example 2.5. Mr X sold his car for 200,000 CZK. He paid this amount to his
account where the interest is credited monthly with nominal interest rate 2.8%. He
decided to buy a new car 9 months after. There was a necessary advance payment of
50,000 CZK taken from the account. Then, the debt was repaid by payments 9,000
CZK monthly. How long the money on the account can cover these payments?

Solution:

C0 = 200,000; m = 12; i(m) = 2.8%; C9/12 = −50,000; P = 9,000; n =?

C0

(
1 +

i(m)

m

)9

+ C9/12 = P ·m · a(m)
n

Now we need to express the term a
(m)
n .

a
(m)
n =

C0

(
1 + i(m)

m

)9
+ C9/12

P ·m
⇒ a

(12)
n =

200,000
(
1 + 0.028

12

)9 − 50,000

9,000 · 12
.
= 1.43

Assuming

a
(m)
n =

1− vn

i(m)
=

1−
(

1

1+ i(m)

m

)m·n

i(m)
,

we can express n as

n =
ln
(
1− i(m) · a(m)

n

)
m · ln

(
1

1+ i(m)

m

) =
ln (1− 0.028 · 1.43)

12 · ln
(

1
1+ 0.028

12

) = 1.46.

Since n is equal to 1.46 years, which is 17.5 months, the money can cover the
payments for 17 months.
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Example 2.6. Calculate the net present value for a bond with the nominal value
1,000 $, annual coupon rate 6% and term to maturity 3 years. Consider a yield
curve with annual spot/forward interest rates 3, 4, 5 %.

Solution:

N = 1,000; c = 6%; n = 3; i1 = 3%; i2 = 4%; i3 = 5%; PV =?

C = N · c = 1,000 · 0.06 = 60

PV =
C

1 + i1
+

C

(1 + i1)(1 + i2)
+

N + C

(1 + i1)(1 + i2)(1 + i3)

=
60

1 + 0.03
+

60

(1 + 0.03)(1 + 0.04)
+

1,000 + 60

(1 + 0.03)(1 + 0.04)(1 + 0.05)

= 1,056.69
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3 Capital Life Insurance

3.1 Capital life insurance with constant sum insured

Example 3.1. Consider a fund of 100 independent lives of age x with contracted
whole life insurance with sum insured SI. Derive the amount which is sufficient to
cover the future liabilities with 95 % probability. Consider

1. whole life insurance with SI payable at the end of the year of death (assume
that Ax is known),

2. whole life insurance with SI=100,000 CZK payable at the moment of death
under constant force of interest δ = 0.06 and constant force of mortality
µ = 0.04.

Solution:

a)

Let us denote:
H . . . random variable corresponding to net present value of all future payments
h . . . fund to cover liabilities

Our aim is to determine h. Since, it should hold P (H ≤ h) = 0.95, with the use of
Central Limit Theorem we obtain

P (H ≤ h) = P

(
H − EH√

VarH
≤ h− EH√

VarH

)
n→∞−−−→ Φ

(
h− EH√
VarH

)
= 0.95,

where Φ is the distribution function of the standard normal distribution.

Solution of the last equation is then as follows:

h = EH + u0.95 ·
√
VarH,

where u0.95 represents the 0.95 quantile of the normal distribution which is equal to
1.64.

The random variable H has the following form:

H = SI ·
100∑
i=1

vKi+1.

Therefore, the expected value of H is

EH = E

(
SI ·

100∑
i=1

vKi+1

)
= SI ·

(
100∑
i=1

E(vKi+1)

)
= 100 · SI · E(vK+1)

= 100 · SI · Ax,

10



and the variance is

VarH = Var

(
SI ·

100∑
i=1

vKi+1

)
= SI2 ·

(
100∑
i=1

Var(vKi+1)

)
= 100 · SI2 · Var(vK+1).

In the previous equations, the fact that Kis (representing the lifes) are independent
and identically distributed as a general random variable K, was used.

The only unknown quantity needed to calculate h is Var(vK+1). Since,

Var(vK+1) = E(vK+1)2 −
[
E(vK+1)

]2
= E(vK+1)2 − (Ax)

2,

we have to calculate E(vK+1)2, which is done as follows:

E(vK+1)2 =
∞∑
k=0

(v2k+2 · kpx · qx+k).

There exists also an approximative way, how to obtain E(vK+1)2. The discount
factor v2 can be rewrite as ( 1

1+i
)2 = 1

1+2i+i2
. The quantity i2 is very small and thus

v2 ≈ 1
1+2i

= 1
1+i∗

= v∗. The consequence of this approximation is that

E(vK+1)2 =
∞∑
k=0

(vk+1
∗ · kpx · qx+k) = Ax,∗,

where Ax,∗ is Ax calculated using i∗ = 2i.

The very last step would be inserting these things into h = EH + u0.95 ·
√
VarH.

b)

Now, we will assume that the payment is paid immediately at the moment of death
(Z = vT ).

The relationship for the fund h is the same as in the previous case. However, the
random variable H has the following form:

H = 105 ·
100∑
i=1

vTi .

We will continue with calculations of EH and VarH.

EH = 105 · 100 · E(vT ) = 107 · E(vT ),

E(vT ) =
∫ ∞

0

vt · tpx · µx+t dt.

Now, we will use the assumption of constant force of mortality µx = µ.

tpx = e{−
∫ t
0 µx+y dy} = e{−

∫ t
0 µdy} = e−t·µ,
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E(vT ) =
∫ ∞

0

(1 + i)−t · e−t·µ · µ dt =

∫ ∞

0

e−δ·t · e−t·µ · µ dt = µ ·
∫ ∞

0

e−t·(δ+µ) dt

= µ ·
[
− 1

δ + µ
· e−t·(δ+µ)

]∞
0

= 0.04 · (− 1

0.06 + 0.04
) · (0− 1) =

0.04

0.1
= 0.4.

Therefore, the expected value of H is

EH = 107 · E(vT ) = 107 · 0.4 = 4 · 106.

Similarly with the variance:

VarH = (105)2 · 100 · Var(vT ) = 1012 ·
(
E(vT )2 − [E(vT )]2

)
,

E(vT )2 = E(v2·T ) =
∫ ∞

0

v2·t · tpx · µx+t dt =

∫ ∞

0

(1 + i)−2·t · e−t·µ · µ dt

=

∫ ∞

0

e−2·δ·t · e−t·µ · µ dt =

∫ ∞

0

e−t·(2·δ+µ) · µ dt = µ ·
[
− 1

2 · δ + µ
· e−t·(2·δ+µ)

]∞
0

= µ · 1

2 · δ + µ
= 0.04 · 1

2 · 0.06 + 0.04
=

0.04

0.16
= 0.25.

Therefore, the variance of H is

VarH = 1012 ·
(
E(vT )2 − [E(vT )]2

)
= 1012 · (0.25− 0.42) = 1012 · 0.09 = 9 · 1010.

If we substitute the calculated values into the equation for h, we get

h = EH+1.64 ·
√
VarH = 4 ·106+1.64 ·

√
(9 · 1010) = 4 ·106+4.92 ·105 = 4, 492, 000.

Example 3.2. Prove the following recursive formula

Ax = v qx + v px Ax+1.

Solution:

Ax =
∞∑
k=0

(
vk+1 · kpx · qx+k

)
= v · 0px · qx +

∞∑
k=1

(
vk+1 · kpx · qx+k

)
= v · qx + v ·

∞∑
k=1

(
vk · kpx · qx+k

)
= v · qx + v ·

∞∑
k=0

(
vk+1 · k+1px · qx+k+1

)
= v · qx + v ·

∞∑
k=0

(
vk+1 · px · kpx+1 · qx+k+1

)
= v · qx + v · px ·

∞∑
k=0

(
vk+1 · kpx+1 · qx+k+1

)
= v · qx + v · px · Ax+1
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Example 3.3. Prove the following relations between commutation functions:

1. Cx = vDx −Dx+1,

2. Mx = vNx −Nx+1,

3. Rx = vSx − Sx+1,

4. Mx = Dx − dNx,

5. Rx = Nx − dSx.

Solution:

1)

Cx = dx · vx+1 = (lx − lx+1) · vx+1 = lx · vx · v − lx+1 · vx+1 = v ·Dx −Dx+1

2)

Mx =
∞∑
k=0

Cx+k =
∞∑
k=0

(v ·Dx+k −Dx+k+1) = v ·
∞∑
k=0

Dx+k −
∞∑
k=0

Dx+k+1 = v ·Nx −Nx+1

3)

Rx =
∞∑
k=0

Mx+k =
∞∑
k=0

(v ·Nx+k −Nx+k+1) = v ·
∞∑
k=0

Nx+k −
∞∑
k=0

Nx+k+1 = v · Sx − Sx+1

4)

Mx = v ·Nx −Nx+1 = v ·Nx − (Nx −Dx) = Dx − (1− v) ·Nx = Dx − d ·Nx

5)

Rx = v · Sx − Sx+1 = v · Sx − (Sx −Nx) = Nx − (1− v) · Sx = Nx − d · Sx

Example 3.4. Using the commutation functions, derive explicit formulas for the
net single premiums of the following capital life insurances with sum insured equal
to one:

1. whole life insurance (net single premium is denoted by Ax),

2. term insurance with duration n years (A1
x:n ),

3. pure endowment with duration n years (Ax:
1
n ),

4. endowment with duration n years (Ax:n ),

5. m-years deferred whole life insurance (m|Ax),

6. m-years deferred term insurance with duration n years (m|A1
x:n ),
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7. m-years deferred pure endowment with duration n years (m|Ax:
1
n ),

8. m-years deferred endowments with duration n years (m|Ax:n ).

Solution:

1)

Z = vK+1, K = 0, 1, 2, . . .

Ax =
∞∑
k=0

(
vk+1 · kpx · qx+k

)
=

∞∑
k=0

(
vk+1 · lx+k

lx
· dx+k

lx+k

)
=

∞∑
k=0

dx+k · vx+k+1

lx · vx

=

∑∞
k=0Cx+k

Dx

=
Mx

Dx

2)

Z =

{
vK+1, K = 0, 1, . . . , n− 1

0, K = n, n+ 1, . . .

A1
x:n =

n−1∑
k=0

(
vk+1 · kpx · qx+k

)
=

n−1∑
k=0

(
vk+1 · dx+k

lx

)
=

n−1∑
k=0

Cx+k

Dx

=
∞∑
k=0

Cx+k

Dx

−
∞∑
k=n

Cx+k

Dx

=
Mx

Dx

−
∑∞

k=0Cx+n+k

Dx

=
Mx

Dx

− Mx+n

Dx

=
Mx −Mx+n

Dx

3)

Z =

{
0, K = 0, 1, . . . , n− 1

vn, K = n, n+ 1, . . .

Ax:
1
n = vn · npx = vn · lx+n

lx
=

vx+n · lx+n

vx · lx
=

Dx+n

Dx

4)

Z =

{
vK+1, K = 0, 1, . . . , n− 1

vn, K = n, n+ 1, . . .

Ax:n = A1
x:n + Ax:

1
n =

Mx −Mx+n

Dx

+
Dx+n

Dx

=
Mx −Mx+n +Dx+n

Dx
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5)

Z =

{
0, K = 0, 1, . . . ,m− 1

vK+1, K = m,m+ 1, . . .

m|Ax =
∞∑

k=m

(
vk+1 · kpx · qx+k

)
=

∞∑
k=0

(
vk+m+1 · k+mpx · qx+m+k

)
= vm · mpx ·

∞∑
k=0

(
vk+1 · kpx+m · qx+m+k

)
= vm · mpx · Ax+m

= vm · lx+m

lx
· Ax+m =

vx+m · lx+m

vx · lx
· Ax+m =

Dx+m

Dx

· Mx+m

Dx+m

=
Mx+m

Dx

Remark: The relationship for the deferment m|Ax = vm · mpx · Ax+m holds generally
even for other types of insurance.

6)

Z =


0, K = 0, 1, . . . ,m− 1

vK+1, K = m,m+ 1, . . . ,m+ n− 1

0, K = m+ n,m+ n+ 1, . . .

m|A1
x:n = vm · mpx · A1

x+m:n =
vx+m · lx+m

vx · lx
· A1

x+m:n

=
Dx+m

Dx

· Mx+m −Mx+m+n

Dx+m

=
Mx+m −Mx+m+n

Dx

7)

Z =

{
0, K = 0, 1, . . . ,m+ n− 1

vm+n, K = m+ n,m+ n+ 1, . . .

m|Ax:
1
n = vm+n · m+npx =

vx+m+n · lx+m+n

vx · lx
=

Dx+m+n

Dx

8)

Z =


0, K = 0, 1, . . . ,m− 1

vK+1, K = m,m+ 1, . . . ,m+ n− 1

vm+n, K = m+ n,m+ n+ 1, . . .

m|Ax:n = m|A1
x:n + m|Ax:

1
n =

Mx+m −Mx+m+n

Dx

+
Dx+m+n

Dx

=
Mx+m −Mx+m+n +Dx+m+n

Dx

Example 3.5. Consider TIR i = 3%, commutation functions D76 = 400,
D77 = 360, and net single premium for the whole life insurance A76 = 0.8. Derive
A77.
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Solution:

We can use the recursive formula from the previous example:

Ax = v · qx + v · px · Ax+1 ⇒ Ax+1 =
Ax − v · qx

v · px
,

where v = 1
1+i

.

Next step would be to express px and qx using the commutation functions:

px =
lx+1

lx
=

lx+1 · vx+1

lx · vx+1
=

Dx+1

v ·Dx

,

qx = 1− px = 1− Dx+1

v ·Dx

=
v ·Dx −Dx+1

v ·Dx

.

Thus, Ax+1 can be calculated as

Ax+1 =
Ax − v · v·Dx−Dx+1

v·Dx

v · Dx+1

v·Dx

=

Ax·Dx−v·Dx+Dx+1

Dx

Dx+1

Dx

=
Ax ·Dx − v ·Dx +Dx+1

Dx+1

which corresponds numerically to

A77 =
A76 ·D76 − v ·D76 +D77

D77

=
A76 ·D76 − D76

1+i
+D77

D77

=
0.8 · 400− 400

1+0.03
+ 360

360
= 0.8101.

3.2 Capital life insurance with variable sum insured

Example 3.6. Prove that the net single premium for the whole life insurance with
variable sum insured can be expressed as

NSP = c1 Ax + (c2 − c1) 1|Ax + (c3 − c2) 2|Ax + . . . .

Solution:

Z = cK+1 · vK+1, K = 0, 1, 2, . . .

EZ =
∞∑
k=0

(
ck+1 · vk+1 · kpx · qx+k

)
= c1 ·

[
∞∑
k=0

(
vk+1 · kpx · qx+k

)
−

∞∑
k=1

(
vk+1 · kpx · qx+k

)]

+ c2 ·

[
∞∑
k=1

(
vk+1 · kpx · qx+k

)
−

∞∑
k=2

(
vk+1 · kpx · qx+k

)]
+ . . .

= c1 · (Ax − 1|Ax) + c2 · (1|Ax − 2|Ax) + . . . = c1 · Ax + (c2 − c1) · 1|Ax + . . . .
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Example 3.7. Prove that the net single premium for the term insurance with
variable sum insured, i.e. ck+1 = 0 for k ≥ n, can be expressed as

NSP = cn A1
x:n + (cn−1 − cn)A1

x:n−1 + · · ·+ (c1 − c2)A1
x:1 .

Solution:

Z =

{
cK+1 · vK+1, K = 0, 1, . . . , n− 1

0, K = n, n+ 1, . . .

EZ =
n−1∑
k=0

(
ck+1 · vk+1 · kpx · qx+k

)
= cn ·

[
n−1∑
k=0

(
vk+1 · kpx · qx+k

)
−

n−2∑
k=0

(
vk+1 · kpx · qx+k

)]

+ cn−1 ·

[
n−2∑
k=0

(
vk+1 · kpx · qx+k

)
−

n−3∑
k=0

(
vk+1 · kpx · qx+k

)]
...

+ c2 ·

[
1∑

k=0

(
vk+1 · kpx · qx+k

)
−

0∑
k=0

(
vk+1 · kpx · qx+k

)]
+ c1 ·

0∑
k=0

(
vk+1 · kpx · qx+k

)
= cn · (A1

x:n − A1
x:n−1 ) + cn−1 · (A1

x:n−1 − A1
x:n−2 ) + . . .+ c2 · (A1

x:2 − A1
x:1 ) + c1 · A1

x:1

= cn · A1
x:n + (cn−1 − cn) · A1

x:n−1 + . . .+ (c1 − c2) · A1
x:1 .

Example 3.8. Consider a whole life insurance with variable sum insured, whose
value is given according to the following table:

k 0 1 2 3 4 5 6 7 8 ≥ 9
ck+1 10 10 9 9 9 8 8 8 8 7

Find an explicit formula for the net single premium.

Solution:

We can use the alternative expression of net single premium from Example 3.7.

NSP = 10 · Ax − 1 · 2|Ax − 1 · 5|Ax − 1 · 9|Ax =
10 ·Mx −Mx+2 −Mx+5 −Mx+9

Dx

Example 3.9. Using the commutation functions, derive explicit formulas for the
net single premiums of the following capital life insurances:

1. standard increasing whole life insurance (net single premium is denoted by
(IA)x),

2. standard increasing term insurance with duration n years (IA)1x:n ,

3. standard increasing endowments with duration n years (IA)x:n ,
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4. m-years deferred standard increasing whole life insurance m|(IA)x,

5. standard decreasing term insurance with duration n years (DA)1x:n .

Solution:

1)

Z = (K + 1) · vK+1, K = 0, 1, 2, . . .

(IA)x =
∞∑
k=0

[
(k + 1) · vk+1 · kpx · qx+k

]
=

∞∑
k=0

[
(k + 1) · vk+1 · dx+k

lx

]
=

∞∑
k=0

[
(k + 1) · dx+k · vx+k+1

lx · vx

]
=

∑∞
k=0 [(k + 1) · Cx+k]

Dx

=
Cx + 2 · Cx+1 + 3 · Cx+2 + . . .

Dx

=

∑∞
k=0Cx+k +

∑∞
k=0Cx+1+k + . . .

Dx

=
Mx +Mx+1 + . . .

Dx

=
Rx

Dx

2)

Z =

{
(K + 1) · vK+1, K = 0, 1, . . . , n− 1

0, K = n, n+ 1, . . .

(IA)1x:n =
n−1∑
k=0

[
(k + 1) · vk+1 · kpx · qx+k

]
=

∞∑
k=0

[
(k + 1) · vk+1 · kpx · qx+k

]
−

∞∑
k=n

[
(k + 1) · vk+1 · kpx · qx+k

]
= (IA)x −

∞∑
k=0

[
(k + n+ 1) · vk+n+1 · k+npx · qx+k+n

]
= (IA)x −

∞∑
k=0

[
(k + n+ 1) · dx+k+n · vx+k+n+1

lx · vx

]
= (IA)x −

∑∞
k=0 [(k + n+ 1) · Cx+n+k]

Dx

=
Rx

Dx

− (n+ 1) · Cx+n + (n+ 2) · Cx+n+1 + (n+ 3) · Cx+n+2 + . . .

Dx

=
Rx

Dx

− (n+ 1) ·Mx+n +Mx+n+1 +Mx+n+2 + . . .

Dx

=
Rx

Dx

− n ·Mx+n +Rx+n

Dx

=
Rx − n ·Mx+n −Rx+n

Dx

Remark: Alternatively, the following relationship could be used:

(IA)1x:n = Ax + 1|Ax + 2|Ax + . . .+ n−1|Ax − n · n|Ax
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3)

Z =

{
(K + 1) · vK+1, K = 0, 1, . . . , n− 1

n · vn, K = n, n+ 1, . . .

(IA)x:n = (IA)1x:n + (IA)x:
1
n = (IA)1x:n + n · Ax:

1
n

=
Rx − n ·Mx+n −Rx+n

Dx

+ n · Dx+n

Dx

=
Rx − n ·Mx+n −Rx+n + n ·Dx+n

Dx

4)

Z =

{
0, K = 0, 1, . . . ,m− 1

(K −m+ 1) · vK+1, K = m,m+ 1, . . .

m|(IA)x =
∞∑

k=m

[
(k −m+ 1) · vk+1 · kpx · qx+k

]
=

∞∑
k=0

[
(k + 1) · vk+m+1 · k+mpx · qx+k+m

]
=

∞∑
k=0

[
(k + 1) · dx+k+m · vx+k+m+1

lx · vx

]
=

∑∞
k=0 [(k + 1) · Cx+m+k]

Dx

=
Cx+m + 2 · Cx+m+1 + 3 · Cx+m+2 + . . .

Dx

=
Mx+m +Mx+m+1 +Mx+m+2 + . . .

Dx

=
Rx+m

Dx

5)

Z =

{
(n−K) · vK+1, K = 0, 1, . . . , n− 1

0, K = n, n+ 1, . . .

(DA)1x:n =
n−1∑
k=0

[
(n− k) · vk+1 · kpx · qx+k

]
=

n−1∑
k=0

[
(n− k) · dx+k · vx+k+1

lx · vx

]
=

∑n−1
k=0 [(n− k) · Cx+k]

Dx

=
n · Cx + (n− 1) · Cx+1 + . . .+ Cx+n−1

Dx

=
n ·Mx −Mx+1 − . . .−Mx+n

Dx

=
n ·Mx −Rx+1 +Rx+n+1

Dx

3.3 Capital life insurance payable at the moment of death
and at the end of m-th part of the year of death

Example 3.10. Consider a whole life insurance with variable SI when the sum
insured is incremented m times a year, by 1/m each time. We assume that the sum
insured is payable

1. at the end of the m-th part of the year in which death occurs (I(m)A(m))x,
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2. immediately at the moment of death (I(m)A)x.

Derive the net single premium under the assumption of linearity.

Solution:

Under the assumption of linearity it holds:

K ⊥⊥ S, S ∼ U(0, 1),

where K = ⌊T ⌋, T = K+S and U(0, 1) is the uniform distribution on (0, 1) and also

K ⊥⊥ S(m), S(m) ∼ UD(
1

m
, . . .

m

m
),

where S(m) = ⌊m·S+1⌋
m

, ⌊·⌋ is the floor function and UD( 1
m
, . . . m

m
) is the discrete

uniform distribution.

1)

Assume
Z(m) = (K + S(m)) · vK+S(m)

.

Then

(I(m)A(m))x = EZ(m) = E
[
(K + S(m)) · vK+S(m)

]
= E

[
((K + 1) + (S(m) − 1)) · v(K+1)+(S(m)−1)

]
= E

[
(K + 1) · vK+1

]︸ ︷︷ ︸
(IA)x

·E
[
vS

(m)−1
]
+ E

[
(S(m) − 1) · vS(m)−1

]
· E
[
vK+1

]︸ ︷︷ ︸
Ax

= (IA)x · E
[
v−(1−S(m))

]
− Ax · E

[
(1− S(m)) · v−(1−S(m))

]
= (IA)x · E

[
v−(1−S(m))

]
︸ ︷︷ ︸

(1)

−Ax · E
[
v−(1−S(m))

]
︸ ︷︷ ︸

(1)

+Ax · E
[
S(m) · v−(1−S(m))

]
︸ ︷︷ ︸

(2)

.

We have to calculate the remaining terms (1) and (2) in the previous equation.

E
[
v−(1−S(m))

]
= E

[
(1 + i)1−S(m)

]
= (1 + i) · E

[
(1 + i)−S(m)

]
= (1 + i) ·

m∑
k=1

[
(1 + i)−

k
m · 1

m

]
=

1 + i

m
·
[
(1 + i)−

1
m

]
·
1−

[
(1 + i)−

1
m

]m
1− (1 + i)−

1
m

=
1 + i

m
· 1

(1 + i)
1
m

· 1− (1 + i)−1

1− (1 + i)−
1
m

=
i

m ·
[
(1 + i)

1
m − 1

] =
i

i(m)

For the calculation of the term (2) we will use the following relationship.

m∑
k=1

(
k · ak−1

)
=

(
m∑
k=1

ak

)′

=

(
a · 1− am

1− a

)′

=
1− (m+ 1) · am +m · am+1

(1− a)2
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Using this relationship for a = v
1
m we obtain

E
[
S(m) · v−(1−S(m))

]
=

1

m
·

m∑
k=1

[
k

m
· v

k
m
−1

]
=

1

m2
· v

1
m
−1

m∑
k=1

[
k ·
(
v

1
m

)k−1
]

=
1

m2
· v

1
m
−1 · 1− (m+ 1) · v +m · vm+1

m(
1− v

1
m

)2
=

v
1
m

m2
· (1 + i)− (m+ 1) +m · v 1

m(
1− v

1
m

)2
= v

1
m ·

i−m ·
(
1− v

1
m

)
[
m ·
(
1− v

1
m

)]2 .
Since m ·

(
1− v

1
m

)
= d(m), we have

E
[
S(m) · v−(1−S(m))

]
= v

1
m · i− d(m)

[d(m)]
2 .

Furthermore, it holds
v

1
m

d(m)
=

1

i(m)
.

Therefore

E
[
S(m) · v−(1−S(m))

]
=

i− d(m)

i(m) · d(m)
.

Now we are able to complete the required form for (I(m)A(m))x as

(I(m)A(m))x =
i

i(m)
· (IA)x −

i

i(m)
· Ax +

i− d(m)

i(m) · d(m)
· Ax.

2)

Assume
Z = (K + S(m)) · vT .

Then

(I(m)A)x = EZ = E
[
(K + S(m)) · vT

]
= E

[(
(K + 1) + S(m) − 1

)
· vT
]

= E
[
(K + 1) · vT

]
+ E

[
S(m) · vT

]
− EvT

= (IA)x + E
[
S(m) · v(K+1)−(1−S)

]
− Ax = (IA)x + E

[
S(m) · v−(1−S)

]
· Ax − Ax.

Similarly as in the first part, where

E
[
S(m) · v−(1−S(m))

]
=

i− d(m)

i(m) · d(m)
,

it can be shown that in this case it holds

E
[
S(m) · v−(1−S)

]
=

i− d(m)

δ · d(m)
.
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Since it also holds

Ax =
i

δ
· Ax,

and

(IA)x =
i

δ
(IA)x,

the final form for (I(m)A)x is

(I(m)A)x =
i

δ
(IA)x +

i− d(m)

δ · d(m)
· Ax −

i

δ
· Ax.

Example 3.11. Consider a whole life insurance with continuously increasing sum
insured, i.e. c(t) = t, which is payable immediately on death. Derive the net single
premium (IA)x under the assumption of linearity.

Solution:

Assume
Z = T · vT .

Then under the assumption of linearity

(IA)x = EZ =
∞∑
k=0

{
E
[
Z|K = k

]
· P (K = k)

}
=

∞∑
k=0

{
E
[
vK+1 · vS−1 · (K + S)|K = k

]
· P (K = k)

}
=

∞∑
k=0

{
vk+1 · E

[
(k + S) · vS−1] · P (K = k)

}
.

E
[
(k + S) · vS−1] =

∫ 1

0

(k + s) · vs−1 ds = k ·
∫ 1

0

vs−1 ds+

∫ 1

0

s · vs−1 ds,

where ∫ 1

0

vs−1 ds =
1

v
·
∫ 1

0

es·ln(v) ds =
1

v
·
[

1

ln(v)
· es·ln(v)

]1
0

=
v − 1

v · ln(v)
=

i

δ
,

and∫ 1

0

s · vs−1 ds
Per Partes

=

[
u = s v′ = vs−1

u′ = 1 v = 1
v·ln(v) · v

s

]
=

[
s · vs

v · ln(v)

]1
0

−
∫ 1

0

1

v · ln(v)
· vs ds

=
1

ln(v)
− 1

ln(v)
·
∫ 1

0

vs−1 ds = −1

δ
+

1

δ
· i
δ
= −1

δ
+

i

δ2
.

Together, we get

E
[
(k + S) · vS−1] = k · i

δ
− 1

δ
+

i

δ2
=

k · i− 1

δ
+

i

δ2
.
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Therefore

(IA)x =
∞∑
k=0

[
vk+1 ·

(
k · i− 1

δ
+

i

δ2

)
· P (K = k)

]
=

i

δ
· E
(
K · vK+1

)
− 1

δ
· E
(
vK+1

)
+

i

δ2
· E
(
vK+1

)
=

i

δ
· E
[
(K + 1) · vK+1

]
− i

δ
· E
(
vK+1

)
− 1

δ
· E
(
vK+1

)
+

i

δ2
· E
(
vK+1

)
=

i

δ
· (IA)x −

i

δ
· Ax −

1

δ
· Ax +

i

δ2
· Ax =

i · (IA)x − (1 + i) · Ax

δ
+

i

δ2
· Ax.
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4 Life Annuities

Example 4.1. Using the commutation functions, derive explicit formulas for the
net single premiums of the following life annuities with sum insured equal to one:

1. whole life annuity in advance (net single premium is denoted by äx),

2. whole life annuity in arrear ax,

3. temporary life annuity in advance with duration n years äxn ,

4. temporary life annuity in arrear with duration n years axn ,

5. m-years deferred whole life annuity in advance m|äx,

6. m-years deferred whole life annuity in arrear m|ax,

7. m-years deferred temporary life annuity in advance with duration n years

m|äxn ,

8. m-years temporary life annuity in arrear with duration n years m|axn .

Solution:

1)

Y = 1 + v + v2 + · · ·+ vK , K = 0, 1, 2, . . .

äx = EY =
∞∑
k=0

k∑
l=0

[
vl · P (K = k)

]
=

∞∑
k=0

[
vk · P (K ≥ k)

]
=

∞∑
k=0

(
vk · kpx

)
=

∞∑
k=0

(
lx+k · vx+k

lx · vx

)
=

∞∑
k=0

Dx+k

Dx

=
Nx

Dx

2)

Y = v + v2 + · · ·+ vK , K = 1, 2, . . .

ax = äx − 1 =
Nx

Dx

− 1 =
Nx −Dx

Dx

=
Nx+1

Dx

3)

Y =

{
1 + v + · · ·+ vK , K = 0, 1, . . . , n− 1

1 + v + · · ·+ vn−1, K = n, n+ 1, . . .

äx:n =
n−1∑
k=0

(
vk · kpx

)
=

n−1∑
k=0

Dx+k

Dx

=
Nx −Nx+n

Dx
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4)

Y =


0, K = 0

v + · · ·+ vK , K = 1, 2 . . . , n

v + · · ·+ vn, K = n+ 1, n+ 2, . . .

ax:n =
n∑

k=1

(
vk · kpx

)
=

n∑
k=1

Dx+k

Dx

=
n−1∑
k=0

Dx+1+k

Dx

=
Nx+1 −Nx+1+n

Dx

5)

Y =

{
0, K = 0, 1, . . . ,m− 1

vm + · · ·+ vK , K = m,m+ 1, . . .

m|äx =
∞∑

k=m

(
vk · kpx

)
=

∞∑
k=m

(
lx+k · vx+k

lx · vx

)
=

1

Dx

·
∞∑

k=m

Dx+k =
1

Dx

·
∞∑
k=0

Dx+m+k

=
Nx+m

Dx

6)

Y =

{
0, K = 0, 1, . . . ,m

vm+1 + · · ·+ vK , K = m+ 1,m+ 2, . . .

m|ax =
∞∑

k=m+1

(
vk · kpx

)
=

∞∑
k=m+1

(
lx+k · vx+k

lx · vx

)
=

1

Dx

·
∞∑

k=m+1

Dx+k

=
1

Dx

·
∞∑
k=0

Dx+m+1+k =
Nx+m+1

Dx

7)

Y =


0, K = 0, 1, . . . ,m− 1

vm + · · ·+ vK , K = m, . . . ,m+ n− 1

vm + · · ·+ vm+n−1, K = m+ n,m+ n+ 1, . . .

m| äx:n =
m+n−1∑
k=m

(
vk · kpx

)
=

m+n−1∑
k=m

(
lx+k · vx+k

lx · vx

)
=

1

Dx

·
m+n−1∑
k=m

Dx+k

=
1

Dx

·

[
∞∑

k=m

Dx+k −
∞∑

k=m+n

Dx+k

]
=

1

Dx

·

[
∞∑
k=0

Dx+m+k −
∞∑
k=0

Dx+m+n+k

]

=
Nx+m −Nx+m+n

Dx
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8)

Y =


0, K = 0, 1, . . . ,m

vm+1 + · · ·+ vK , K = m+ 1, . . . ,m+ n

vm+1 + · · ·+ vm+n, K = m+ n+ 1,m+ n+ 2, . . .

m|ax:n =
m+n∑

k=m+1

(
vk · kpx

)
=

m+n∑
k=m+1

(
lx+k · vx+k

lx · vx

)
=

1

Dx

·
m+n∑

k=m+1

Dx+k

=
1

Dx

·

[
∞∑

k=m+1

Dx+k −
∞∑

k=m+n+1

Dx+k

]
=

1

Dx

·

[
∞∑
k=0

Dx+m+1+k −
∞∑
k=0

Dx+m+n+1+k

]

=
Nx+m+1 −Nx+m+n+1

Dx

Example 4.2. Prove the following recursive formula

äx = 1 + v px äx+1.

Solution:

äx =
∞∑
k=0

(
vk · kpx

)
= 1 +

∞∑
k=1

(
vk · kpx

)
= 1 +

∞∑
k=0

(
vk+1 · k+1px

)
= 1 + v ·

∞∑
k=0

(
vk · px · kpx+1

)
= 1 + v · px ·

∞∑
k=0

(
vk · kpx+1

)
= 1 + v · px · äx+1

Example 4.3. Consider ex = E[K]. Show that

1. Ax > vex+1,

2. äx < äex+1 .

Solution:

1)
Ax = E[vK+1]

If we denote f(z) = vz+1 then

vex+1 = f [E(K)]

and
Ax = E[f(K)].

Since f(z) is a strictly convex function
[
f

′′
(z) > 0

]
, due to Jensen inequality it holds

E[f(K)] > f [E(K)].

Therefore
Ax > vex+1.
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2)

äx =
1− Ax

d
=

1− Ax

1− v
=

1− E
[
vK+1

]
1− v

äex+1 = äE(K)+1 =
1− vE(K)+1

1− v

If we denote g(z) = 1−vz+1

1−v
then

äex+1 = g[E(K)]

and
äx = E[g(K)].

For g(z) we can calculate

g(z) =
1− vz+1

1− v
=

1

1− v
− v

1− v
· vz,

g
′
(z) = − v

1− v
· vz · ln(v),

g
′′
(z) = − v

1− v
· vz · (ln(v))2.

The first term is negative since it is equal to −1
i
. The remaining two terms are

positive and, hence, g
′′
(z) < 0.

Since g(z) is a concave function
[
g

′′
(z) < 0

]
, due to Jensen inequality it holds

E[g(K)] < g[E(K)].

Therefore
äx < äex+1 .

Remark: Relation än = 1−vn

1−v
is possible to use even when n is not an integer. Let’s

assume n = k + s where k is an integer and s is not. It can be shown that the
formula holds and it corresponds to the situation when the first k payments are paid
regularly and are of amount one, and at time n there is an additional payment with
a different amount.

Example 4.4. Using the commutation functions, derive explicit formulas for the
net single premiums of:

1. standard increasing whole life annuity in advance (Iä)x,

2. standard increasing temporary life annuity in advance with duration n years
(Iä)xn ,

3. m-years deferred standard increasing whole life annuity in advance m|(Iä)x.
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Solution:

1)

Y = 1 + 2 · v + · · ·+ (K + 1) · vK , K = 0, 1, 2, . . .

(Iä)x =
∞∑
k=0

[
(k + 1) · vk · kpx

]
=

∞∑
k=0

[
(k + 1) · lx+k · vx+k

lx · vx

]
=

∞∑
k=0

(k + 1) ·Dx+k

Dx

=
Dx + 2 ·Dx+1 + 3 ·Dx+2 + · · ·

Dx

=
Nx +Nx+1 +Nx+2 + · · ·

Dx

=
Sx

Dx

2)

Y =

{
1 + 2 · v + · · ·+ (K + 1) · vK , K = 0, 1, . . . , n− 1

1 + 2 · v + · · ·+ n · vn−1, K = n, n+ 1, . . .

(Iä)x:n =
n−1∑
k=0

[
(k + 1) · vk · kpx

]
=

n−1∑
k=0

[
(k + 1) · lx+k · vx+k

lx · vx

]
=

n−1∑
k=0

(k + 1) ·Dx+k

Dx

=
1

Dx

·

[
∞∑
k=0

(k + 1) ·Dx+k −
∞∑
k=n

[(k + 1) ·Dx+k]

]

= (Iä)x −
1

Dx

·
∞∑
k=n

[(k + 1) ·Dx+k] = (Iä)x −
1

Dx

·
∞∑
k=0

[(k + n+ 1) ·Dx+n+k]

= (Iä)x −
(n+ 1) ·Dx+n + (n+ 2) ·Dx+n+1 + · · ·

Dx

=
Sx

Dx

− n ·Nx+n + Sx+n

Dx

=
Sx − Sx+n − n ·Nx+n

Dx

3)

Y =

{
0, K = 0, 1, . . . ,m− 1

vm + · · ·+ (K −m+ 1) · vK , K = m,m+ 1, . . .

m|(Iä)x =
∞∑

k=m

[
(k −m+ 1) · vk · kpx

]
=

∞∑
k=m

[
(k −m+ 1) · lx+k · vx+k

lx · vx

]
=

1

Dx

·
∞∑

k=m

[(k −m+ 1) ·Dx+k] =
1

Dx

·
∞∑
k=0

[(k + 1) ·Dx+m+k]

=
Dx+m + 2 ·Dx+m+1 + 3 ·Dx+m+2 + · · ·

Dx

=
Nx+m +Nx+m+1 +Nx+m+2 + · · ·

Dx

=
Sx+m

Dx

Example 4.5. Prove the following relation between the net single premiums:

(IA)x = äx − d (Iä)x.
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Solution:

There are two ways how to prove this relation.

1) Using commutation functions

Transforming the relation into the form using the commutation functions, we want
to prove that

Rx

Dx

=
Nx

Dx

− d · Sx

Dx

.

This can be directly seen from the result from Example 3.3 (5.).

2) Trick

K∑
k=0

vk · (k + 1) =
K∑
k=0

vk
k∑

l=0

1 =
K∑
l=0

K∑
k=l

vk =
K∑
l=0

(
vl · 1− vK+1−l

1− v

)

=
1

d

K∑
l=0

(
vl − vK+1

)
=

1

d
·
[
1− vK+1

1− v
− (K + 1) · vK+1

]
and after applying the expectation on both sides of the last equation, we obtain

(Iä)x =
1

d
· [äx − (IA)x] ,

which is after an adjustment the same as the desired form.

Example 4.6. Consider standard increasing whole life annuity payable m-times a
year in advance where the payments are incremented once a year, by 1/m each time.
Derive an explicit formula for the net single premium using the commutation
functions.

Solution:

In this case we assume the following payments

Time: 0 1
m

2
m

· · · m−1
m

1 1 + 1
m

· · ·
Payment 1

m
1
m

1
m

· · · 1
m

2
m

2
m

· · ·

(Iä)(m)
x =

∞∑
k=0

k|ä
(m)
x =

∞∑
k=0

[
vk · kpx · ä(m)

x+k

]
Now we can use the approximation from the lecture

ä(m)
x ≈ äx −

m− 1

2 ·m
.
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Using this approximation we get

(Iä)(m)
x ≈

∞∑
k=0

[
vk · kpx · äx+k

]
− m− 1

2 ·m
·

∞∑
k=0

[
vk · kpx

]
=

∞∑
k=0

[
Dx+k

Dx

· Nx+k

Dx+k

]
− m− 1

2 ·m
·

∞∑
k=0

Dx+k

Dx

=
∞∑
k=0

Nx+k

Dx

− m− 1

2 ·m
·

∞∑
k=0

Dx+k

Dx

=
Sx

Dx

− m− 1

2 ·m
· Nx

Dx

Alternatively, we can derive the formula without this approximation. In that case
we have

(Iä)(m)
x =

∞∑
k=0

k|ä
(m)
x =

∞∑
k=0

[
vk · kpx · ä(m)

x+k

]
=

∞∑
k=0

[
vk · kpx · (α(m) · äx+k − β(m))

]
= α(m) ·

∞∑
k=0

[
vk · kpx · äx+k

]
− β(m) ·

∞∑
k=0

[
vk · kpx

]
= α(m) · (Iä)x − β(m) · äx,

where

α(m) =
d · i

d(m) · i(m)
, β(m) =

i− i(m)

d(m) · i(m)
.

Therefore

(Iä)(m)
x =

d · i
d(m) · i(m)

· (Iä)x −
i− i(m)

d(m) · i(m)
· äx =

d · i
d(m) · i(m)

· Sx

Dx

− i− i(m)

d(m) · i(m)
· Nx

Dx

.

Let’s compare results when using and not using the approximation. Assume that
i = 1%. Then i(m) = 0.99545%, d = 0.99009% and d(m) = 0.99462%.

Therefore,

d · i
d(m) · i(m)

= 1.00001 which can be compared to 1,

i− i(m)

d(m) · i(m)
= 0.45998 which can be compared to

m− 1

2 ·m
= 0.45833.
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5 Annual Net Premium

Example 5.1. Using the actuarial symbols and commutation functions, derive
explicit formulas for the annual net premiums paid during the deferment period of
the following life insurances and annuities (with sum insured equal to one):

1. m-years deferred whole life insurance,

2. m-years deferred pure endowment with duration n years,

3. m-years deferred whole life annuity in advance,

4. m-years deferred temporary life annuity in arrear with duration n years,

Solution:

1)

L =

{
0− P ·

∑K
k=0 v

k, K = 0, 1, . . . ,m− 1

vK+1 − P ·
∑m−1

k=0 vk, K = m,m+ 1, . . .

EL = 0 = m|Ax − P · äx:m
⇓

P =
m|Ax

äx:m

⇓

P =

Mx+m

Dx

Nx−Nx+m

Dx

=
Mx+m

Nx −Nx+m

2)

L =


0− P ·

∑K
k=0 v

k, K = 0, 1, . . . ,m− 1

0− P ·
∑m−1

k=0 vk, K = m,m+ 1, . . . ,m+ n− 1

vm+n − P ·
∑m−1

k=0 vk, K = m+ n,m+ n+ 1, . . .

EL = 0 = m|Ax:
1
n − P · äx:m

⇓

P =
m|Ax:

1
n

äx:m

⇓

P =

Dx+m+n

Dx

Nx−Nx+m

Dx

=
Dx+m+n

Nx −Nx+m

3)

L =

{
0− P ·

∑K
k=0 v

k, K = 0, 1, . . . ,m− 1∑K
k=m vk − P ·

∑m−1
k=0 vk, K = m,m+ 1, . . .
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EL = 0 = m|äx − P · äx:m
⇓

P =
m|äx
äx:m

⇓

P =

Nx+m

Dx

Nx−Nx+m

Dx

=
Nx+m

Nx −Nx+m

4)

L =


0− P ·

∑K
k=0 v

k, K = 0, 1, . . . ,m− 1

0− P ·
∑m−1

k=0 vk, K = m∑K
k=m+1 v

k − P ·
∑m−1

k=0 vk, K = m+ 1, . . . ,m+ n∑m+n
k=m+1 v

k − P ·
∑m−1

k=0 vk, K = m+ n+ 1,m+ n+ 2, . . .

EL = 0 = m|ax:n − P · äx:m
⇓

P =
m|ax:n
äx:m

⇓

P =

Nx+m+1−Nx+m+n+1

Dx

Nx−Nx+m

Dx

=
Nx+m+1 −Nx+m+n+1

Nx −Nx+m

Example 5.2. Consider pure endowment with duration n years where the annual
net premium is paid during the whole insurance duration. Moreover, the premium
refund agreement is active. i.e. in the case of death of the insured person the
premium paid until the death is paid to a beneficiary at the end of the year. Derive
the total loss and the annual net premium. Compare the premiums for the insurance
contracts with and without the premium refund.

Solution:

First, we have to calculate the premium for the insurance without the refund.

L1 =

{
0− P1 ·

∑K
k=0 v

k, K = 0, 1, . . . , n− 1

vn − P1 ·
∑n−1

k=0 v
k, K = n, n+ 1, . . .

EL1 = 0 = Ax:
1
n − P1 · äx:n

⇓

P1 =
Ax:

1
n

äx:n
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Now, when the premium refund is added, we obtain

L2 =

{
P2 · (K + 1) · vK+1 − P2 ·

∑K
k=0 v

k, K = 0, 1, . . . , n− 1

vn − P2 ·
∑n−1

k=0 v
k, K = n, n+ 1, . . .

EL2 = 0 = Ax:
1
n + P2 · (IA)1x:n − P2 · äx:n

⇓

P2 =
Ax:

1
n

äx:n − (IA)1x:n

When comparing obtained premiums, it is obvious that when the premium refund is
included, the corresponding premium must be higher, which is achieved by
subtracting the term (IA)1x:n in the denominator.

Example 5.3. Consider m-years deferred whole life annuity in advance where the
annual net premium is paid during the deferment period. Moreover, the premium
refund agreement is active. i.e. in the case of death of the insured person during the
deferment period the premium paid until the death is paid to a beneficiary at the end
of the year. Derive the total loss and the annual net premium.
Consider also the case when the annual net premium is paid over m′ < m years, but
the premium refund is active over the whole deferment period.

Solution:

We can start with the case, when the annual premium is paid over m years.

L1 =

{
P1 · (K + 1) · vK+1 − P1 ·

∑K
k=0 v

k, K = 0, 1, . . . ,m− 1∑K
k=m vk − P1 ·

∑m−1
k=0 vk, K = m,m+ 1, . . .

EL1 = 0 = m|äx + P1 · (IA)1x:m − P1 · äx:m
⇓

P1 =
m|äx

äx:m − (IA)1x:m

When the premium is paid only over m′ years, the total loss has the following form:

L2 =


P2 · (K + 1) · vK+1 − P2 ·

∑K
k=0 v

k, K = 0, 1, . . . ,m′ − 1

P2 ·m′ · vK+1 − P2 ·
∑m′−1

k=0 vk, K = m′,m′ + 1 . . . ,m− 1∑K
k=m vk − P2 ·

∑m′−1
k=0 vk, K = m,m+ 1, . . .

EL2 = 0 = m|äx + P2 · (IA)1x:m′ + P2 ·m′ · m′|A1
x:m−m′ − P2 · äx:m′

⇓

P2 =
m|äx

äx:m′ − (IA)1x:m′ −m′ · m′|A1
x:m−m′
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6 Net Premium Reserve

Example 6.1. Derive the net premium reserve for the pure endowment contract for
n years when premium is paid

1. at once at the beginning as the net single premium,

2. at the beginning of each year over the whole insurance duration as the annual
net premium,

3. at the beginning of each year over first n′ < n years as the annual net
premium.

Solution:

1)
NSP = Ax:

1
n

kVx =

{
0, k = 0

Ax+k:
1

n−k , k = 1, 2, . . . , n− 1

Remark: Time 0 is assumed before the payment of the net single premium. After the
premium payment, it holds 0+Vx = NSP = Ax:

1
n for the reserve.

2)

P =
Ax:

1
n

äx:n

kVx = Ax+k:
1

n−k − P · äx+k:n−k , k = 0, 1, ..., n− 1

Remark: If we assume k = 0 then 0Vx = 0 (this corresponds to the principle of
equivalence). For k = n, the reserve would be nVx = 1 (the insurer must pay the sum
insured to the beneficiary).

3)

P =
Ax:

1
n

äx:n′

kVx =

{
Ax+k:

1
n−k − P · äx+k:n′−k , k = 0, 1, . . . , n′ − 1

Ax+k:
1

n−k , k = n′, n′ + 1, . . . , n− 1

Example 6.2. Derive the net premium reserve for whole life insurance with
variable sum insured:

c1 = 50, c2 = 55, . . . , c10 = 95, c11 = 100, c12 = 100, . . .

Consider standard increasing premium paid yearly over the whole insurance
duration, i.e. P, 2P, 3P, . . . .
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Solution:

First of all, we should derive the total loss and the formula for the annual net
premium.

L =

{
45 · vK+1 + 5 · (K + 1) · vK+1 − P ·

∑K
k=0

[
(k + 1) · vk

]
, K = 0, 1, . . . , 10

100 · vK+1 − P ·
∑K

k=0

[
(k + 1) · vk

]
, K = 11, 12, . . .

EL = 0 = 45 · Ax + 5 · (IA)1x:11 + 55 · 11|Ax − P · (Iä)x
⇓

P =
45 · Ax + 5 · (IA)1x:11 + 55 · 11|Ax

(Iä)x

Now, we can proceed to the derivation of the formula for the reserve.

kVx =


45 · Ax+k + 5 · (IA) 1

x+k:11−k + 5 · k · A 1
x+k:11−k

+55 · 11−k|Ax+k − P · (Iä)x+k − P · k · äx+k, k = 0, 1, . . . , 10

100 · Ax+k − P · (Iä)x+k − P · k · äx+k, k = 11, 12, . . .

Remark: Be careful with the standard increasing term insurance and life annuity
because, when dealing with reserves, a special term must be added. For example,
when assuming the term insurance, (IA) 1

x+k:11−k starts again with payment 1, but at
time k we already need to begin with payment k + 1.

Example 6.3. Derive the net premium reserve for the insurance with premium
refund introduced in Example 5.2.

Solution:

kVx =Ax+k:
1

n−k + P · (IA) 1
x+k:n−k + P · k · A 1

x+k:n−k

− P · äx+k:n−k , k = 0, 1, . . . , n− 1

where the premium P was calculated in Example 5.2.

Example 6.4. Derive the net premium reserve for the insurance with premium
refund introduced in Example 5.3.

Solution:

We can assume again two cases. In the first case, the premium is paid during the
whole deferment period.

kVx =


m−k|äx+k + P1 · (IA) 1

x+k:m−k + P1 · k · A 1
x+k:m−k

−P1 · äx+k:m−k , k = 0, 1, . . . ,m− 1

äx+k, k = m,m+ 1, . . .
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where the premium P1 was calculated in Example 5.3.

Similarly, we can derive the reserve for the second case, in which the premium is
paid only over m′ years.

kVx =



m−k|äx+k + P2 · (IA) 1
x+k:m′−k + P2 · k · A 1

x+k:m′−k

+P2 ·m′ · m′−k|Ax+k:m−m′ − P2 · äx+k:m′−k , k = 0, 1, . . . ,m′ − 1

m−k|äx+k + P2 ·m′ · A 1
x+k:m−k , k = m′,m′ + 1, . . . ,m− 1

äx+k, k = m,m+ 1, . . .

where also the premium P2 was calculated in Example 5.3.

Example 6.5. Use the net premium reserve for conversion of an insurance and
reduction of the sum insured1. Consider

1. endowment with duration n years with sum insured C1 and annual net
premium paid yearly over the whole contract duration. However, premium
payment ended after n′ < n years, but the contract continues with reduced sum
insured C2. Derive a formula for C2.

2. m-years deferred standard increasing whole life annuity in advance with sum
insured C1 and annual net premium paid yearly over the deferment period.
However, premium payment ended after m′ < m years, but the contract
continues with reduced sum insured C2. Derive a formula for C2.

Solution:

1)

Premium calculated for sum insured C1 has the following form

P =
C1 · Ax:n

äx:n
.

At time n′, when the premium payments were stopped, the value of the reserve is

n′Vx = C1 · Ax+n′:n−n′ − P · äx+n′:n−n′ .

This reserve turns to the net single premium for an endowment with sum insured
C2 for the remaining n− n′ years.

n′Vx = NSP = C2 · Ax+n′:n−n′

⇓

C2 =
C1 · Ax+n′:n−n′ − P · äx+n′:n−n′

Ax+n′:n−n′
= C1 ·

(
1−

Ax:n

äx:n
·
äx+n′:n−n′

Ax+n′:n−n′

)
1The current value of the net premium reserve belongs to the insured person and can be used to

modify the insurance policy.
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2)

Premium calculated at the beginning of the contract is

P =
C1 · m|(Iä)x

äx:m
.

At time m′, when the premium payments were stopped, the value of the reserve is

m′Vx = C1 · m−m′|(Iä)x+m′ − P · äx+m′:m−m′ .

We can use this reserve as the net single premium for this annuity with sum insured
C2.

m′Vx = NSP = C2 · m−m′|(Iä)x+m′

⇓

C2 =
C1 · m−m′|(Iä)x+m′ − P · äx+m′:m−m′

m−m′|(Iä)x+m′
= C1 ·

(
1− m|(Iä)x

äx:m
·

äx+m′:m−m′

m−m′|(Iä)x+m′

)

37


	Demography
	Financial Mathematics
	Capital Life Insurance
	Capital life insurance with constant sum insured
	Capital life insurance with variable sum insured
	Capital life insurance payable at the moment of death and at the end of m-th part of the year of death 

	Life Annuities
	Annual Net Premium
	Net Premium Reserve

