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7 Net Premium Reserve - Review

Example 7.1. Consider standard decreasing term insurance with duration n years
(DA)1x:n , where the annual net premium is paid m years (m < n). Derive the total
loss, the annual net premium and the net premium reserve.

Solution:

Firstly, the total loss has the following form:

L =


(n−K) · vK+1 − P ·

∑K
k=0 v

k, K = 0, 1, . . . ,m− 1

(n−K) · vK+1 − P ·
∑m−1

k=0 vk, K = m, . . . , n− 1

0− P ·
∑m−1

k=0 vk, K = n, n+ 1, . . .

Secondly, one can write the annual net premium as follows:

EL = 0 = (DA)1x:n − P · äx:m
⇓

P =
(DA)1x:n
äx:n

Finally, the net premium reserve can be written as:

kVx =

{
(DA) 1

x+k,n−k − P · äx+k:m−k , k = 0, . . . ,m− 1

(DA) 1
x+k,n−k , k = m, . . . , n− 1
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Example 7.2. Consider m-years deferred standard increasing temporary life annuity
in advance with duration n years m|(Iä)x:n , where the annual net premium is paid m′

years (m′ < m). Derive the total loss, the annual net premium and the net premium
reserve.

Solution:

Total loss:

L =


0− P ·

∑K
k=0 v

k, K = 0, 1, . . . ,m′ − 1

0− P ·
∑m′−1

k=0 vk, K = m′, . . . ,m− 1∑K
k=m(k −m+ 1) · vk − P ·

∑m′−1
k=0 vk, K = m, . . . ,m+ n− 1∑m+n−1

k=m (k −m+ 1) · vk − P ·
∑m′−1

k=0 vk, K = m+ n,m+ n+ 1, . . .

Annual net premium:

EL = 0 = m|(Iä)x:n − P · äx:m
⇓

P =
m|(Iä)x:n

äx:n

Net premium reserve:

kVx =


m−k|(Iä)x+k:n − P · äx+k:m′−k , k = 0, 1, . . . ,m′ − 1

m−k|(Iä)x+k:n , k = m′, . . . ,m− 1

(Iä)x+k:n+m−k + (k −m) · äx+k:n+m−k , k = m, . . . ,m+ n− 1

0, k = m+ n,m+ n+ 1, . . .

Example 7.3. Use the net premium reserve for conversion of an insurance and
reduction of the sum insured. Consider m-years deferred temporary life annuity in
arrear with duration n years, sum insured C1 and annual net premium paid yearly
over the deferment period. However, premium payment ended after m′ < m years,
but the contract continues with reduced sum insured C2. Derive an explicit formula
for C2.

Solution:

Premium calculated for the sum insured C1 has the following form

P =
C1 · m|ax:n

äx:m
.

At time m′, when the premium payments were stopped, the reserve is

m′Vx = C1 · m−m′|ax+m′:n − P · äx+m′:m−m′ .
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This reserve can be used as a single payment for the net single premium of the same
insurance with the sum insured C2 for the remaining years.

m′Vx = NSP = C2 · m−m′|ax+m′:n

⇓

C2 =
C1 · m−m′|ax+m′:n − P · äx+m′:m−m′

m−m′|ax+m′:n
= C1 ·

(
1− m|ax:n

äx:m
·
äx+m′:m−m′

m−m′|ax+m′:n

)

Example 7.4. Derive the net premium reserve for the term insurance contract for
n = 20 years of a person at age x = 40 when

1. the sum insured C = 10, 000 CZK is constant over the whole contract life,

2. the sum insured is constant over the first 10 years and than increases by 5, 000
CZK each year.

Assume that the premium is payed regularly over the whole contract duration.

Solution:

1)

In the first case, the sum insured is assumed to be a constant. Thus,

P =
10, 000 · A 1

40:20

ä40:20
.

The reserve at time k can be written as follows

kV40 = 10, 000 · A 1
40+k:20−k − P · ä40+k:20−k , k = 0, 1, ..., 19

2)

When assuming the adjustment of increasing the sum insured by 5, 000 each year
after first 10 years, the premium and the reserve must be changed to

P =
10, 000 · A 1

40:20 + 5, 000 · 10|(IA) 1
40:10

ä40:20

and

kV40 =


10, 000 · A 1

40+k:20−k + 5, 000 · 10−k|(IA)
1

40+k:10 − P · ä40+k:20−k , k = 0, ..., 9

10, 000 · A 1
40+k:20−k + 5, 000 ·

[
(IA) 1

40+k:20−k + (k − 10) · A 1
40+k:20−k

]
−P · ä40+k:20−k , k = 10, ..., 19
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Example 7.5. Consider a person at age x = 35 who has signed an insurance contract
for life annuity in advance deferred to age 65 with monthly payments of CZK 5000.
Moreover, assume that the premium refund agreement is active during the deferment
period. Derive the formula for the net premium reserve.

Solution:

First of all, it is worth reminding (when assuming a life annuity, but the concept

is similar also for the other usual types of insurance contracts) that ä
(m)
x is a sign for

a whole life annuity whose payments are of size 1
m

and are made m-times a year.

Since payments are made monthly, to obtain the sum insured, one has to multi-
ply 5, 000 by 12. We can write down the total loss and then derive the formula for
the premium.

L =

{
12 · (K + S(12)) · P · vK+S(12) − P ·

∑12·(K+S(12))−1
k=0 v

k
12 , K = 0, 1, . . . , 29

5, 000 ·
∑12·(K+S(12))−1

k=360 v
k
12 − P ·

∑359
k=0 v

k
12 , K = 30, 31, . . .

Therefore,

P =
5, 000 · 12 · 30|ä(12)35

12 · ä(12)
35:30

− 12 · (I(12)A(12)) 1
35:30

=
5, 000 · 30|ä(12)35

ä
(12)

35:30
− (I(12)A(12)) 1

35:30

,

is the value of monthly premium.

Values of the net premium reserve will be examined at the ends of years.

kV35 =


5, 000 · 12 · 30−k|ä

(12)
35+k + 12 · P · (I(12)A(12)) 1

35+k:30−k

+12 · P · k · A(12)
1

35+k:30−k
− 12 · P · ä(12)

35+k:30−k
, k = 0, 1, ..., 29

5, 000 · 12 · ä(12)35+k, k = 30, 31, ...
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8 General Net Premium Reserve

Example 8.1. Apply the general recursive formula for net premium reserve and
decompose the premium into savings and risk components. Consider

1. endowment with duration n years and net annual premium paid over the whole
contract duration,

2. m-years deferred temporary life annuity in arrear with duration n year and
annual net premium paid over the deferment period,

3. m-years deferred whole life annuity in advance with net single premium paid at
once at the beginning,

4. m-years deferred term insurance with duration n years and net annual premium
paid over first m1 < m.

Solution:

Recursive formula for general net-premium reserve can be written as

kVx =
∞∑
j=0

(
ck+j+1 · vj+1 · jpx+k · qx+k+j

)
−

∞∑
j=0

(
Πk+j · vj · jpx+k

)
.

The premium can be decomposed to the savings premium and the risk premium using
the following formulas

Πs
k = v · k+1Vx − kVx,

Πr
k = (ck+1 − k+1Vx) · v · qx+k.

1)

The endowment can be assumed in terms of the values cl and Πl as a general in-
surance with

c1 = · · · = cn = 1, cn+1 = cn+2 = · · · = 0

Π0 = · · · = Πn−1 = P =
Ax:n

äx:n
, Πn = −1, Πn+1 = Πn+2 = · · · = 0

Therefore, the reserve can be written as

kVx =
n−k−1∑
j=0

(
vj+1 · jpx+k · qx+k+j

)
−

Ax:n

äx:n
·
n−k−1∑
j=0

(
vj · jpx+k

)
+ vn−k

n−kpx+k, k = 0, . . . , n− 1

and for k = n the reserve would be nVx = 1.

The savings and risk premiums could be calculated now with the use of the for-
mulas stated above.
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2)

The temporary life annuity in arrear with duration n years deferred by m years
with annual premium paid over the deferment period can be assumed in terms of the
values cl and Πl as a general insurance with

c1 = c2 = · · · = 0

Π0 = · · · = Πm−1 = P =
m|ax:n
äx:m

, Πm = 0, Πm+1 = · · · = Πm+n = −1

Thus, the reserve can be written as

kVx = −m|ax:n
äx:m

·
m−k−1∑
j=0

(
vj · jpx+k

)
+

m−k+n∑
j=m−k+1

(
vj · jpx+k

)
.

It is also better to distinguish two forms of the reserve based on k. We can split this
formula into

kVx =


−m|ax:n

äx:m
·
m−k−1∑
j=0

(
vj · jpx+k

)
+

m−k+n,∑
j=m−k+1

(
vj · jpx+k

)
, k = 0, . . . ,m− 1

m−k+n∑
j=max{0,m−k+1}

(
vj · jpx+k

)
, k = m, . . . ,m+ n

and the savings and risk premiums could be calculated.

3)

The whole life annuity in advance deferred by m years with net single premium
paid at the beginning can be assumed in terms of the values cl and Πl as a general
insurance with

c1 = c2 = · · · = 0

Π0 = NSP = m|äx, Π1 = · · · = Πm−1 = 0, Πm = Πm+1 = · · · = −1

Hence, the reserve can be written as

kVx =


−m|äx +

∞∑
j=m

(
vj · jpx

)
, k = 0

∞∑
j=max{0,m−k}

(
vj · jpx+k

)
, k = 1, 2, . . .

and the savings and risk premiums could be calculated.
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4)

Considered m-years deferred term insurance with duration n years and net annual
premium paid over first m1 < m can be assumed in terms of the values cl and Πl as
a general insurance with

c1 = . . . = cm = 0, cm+1 = . . . = cm+n = 1, cm+n+1 = cm+n+2 = . . . = 0,

Π0 = . . . = Πm1−1 = P =
m|A1

x:n

äx:m1

, Πm1 = Πm1+1 = . . . = 0

The reserve is as follows

kVx =



m−k+n−1∑
j=m−k

(
vj+1 · jpx+k · qx+k+j

)
− m|A1

x:n

äx:m1

·
m1−k−1∑

j=0

(
vj · jpx+k

)
, k = 0, . . . ,m1 − 1

m−k+n−1∑
j=max{0,m−k}

(
vj+1 · jpx+k · qx+k+j

)
, k = m1, . . . ,m+ n− 1

Example 8.2. Consider a fully discrete 3-year insurance issued to life aged x for
which

k ck+1 qx+k

0 2 0.20
1 3 0.25
2 4 0.50

Level annual net premiums of 1 are paid at the beginning of each year while the person
is alive. The effective annual interest rate is i = 1

9
. Calculate the reserves at the end

of each year, allocate the total loss to policy years and calculate Var(Λ1).

Solution:

To calculate reserves we can use the following recursive formula

kVx +Πk = v · (ck+1 · qx+k + k+1Vx · px+k).

Since we know that 0Vx = 0, we can use this value for computing 1Vx.

For k = 0:

0Vx +Π0 = v · (c1 · qx + 1Vx · px)
⇓

1Vx =
Π0

v
− c1 · qx
px

=

1
1

1+1
9

− 2 · 0.2

0.8
= 0.8889.
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For k = 1:

1Vx +Π1 = v · (c2 · qx+1 + 2Vx · px+1)

⇓

2Vx =
1Vx+Π1

v
− c2 · qx+1

px+1

=

1
0.8889+1

1+1
9

− 3 · 0.25

0.75
= 1.7984.

For k = 2:

2Vx +Π2 = v · (c3 · qx+2 + 3Vx · px+2)

⇓

3Vx =
2Vx+Π2

v
− c3 · qx+2

px+2

=

1
1.7984+1

1+1
9

− 4 · 0.5

0.5
= 2.2186.

Loss incurred by insurer during year k + 1 (denoted as Λk) is defined as

Λk =


0, K < k,

ck+1 · v − (kVx +Πk), K = k,

v · k+1Vx − (kVx +Πk), K > k.

For k = 0:

Λ0 =

c1 · v − (0Vx +Π0) = 2 · 1
1+ 1

9

− (0 + 1) = 0.8, K = 0,

v · 1Vx − (0Vx +Π0) =
1

1+ 1
9

· 0.8889− (0 + 1) = −0.2, K > 0.

For k = 1:

Λ1 =


0, K < 1

c2 · v − (1Vx +Π1) = 3 · 1
1+ 1

9

− (0.8889 + 1) = 0.8111, K = 1,

v · 2Vx − (1Vx +Π1) =
1

1+ 1
9

· 1.7984− (0.8889 + 1) = −0.2703, K > 1.

For k = 2:

Λ2 =


0, K < 2

c3 · v − (2Vx +Π2) = 4 · 1
1+ 1

9

− (1.7984 + 1) = 0.8016, K = 2,

v · 3Vx − (2Vx +Π2) =
1

1+ 1
9

· 2.2186− (1.7984 + 1) = −0.8016, K > 2.

Calculation of Var(Λ1) can be done in two ways.

1)

We know that Var(Λ1) = E(Λ2
1)− [E(Λ1)]

2.
Now it is necessary to calculate P(K < 1),P(K = 1) and P(K > 1).

P(K < 1) = P(K = 0) = qx = 0.2,

P(K = 1) = 1px · qx+1 = 0.8 · 0.25 = 0.2,

P(K > 1) = 1− P(K ≤ 1) = 1− (0.2 + 0.2) = 0.6.

8



Then

E(Λ1) = 0 · 0.2 + 0.8111 · 0.2− 0.2703 · 0.6 = 0,

E(Λ2
1) = 02 · 0.2 + 0.81112 · 0.2 + (−0.2703)2 · 0.6 = 0.1754,

Var(Λ1) = E(Λ2
1)− [E(Λ1)]

2 = 0.1754.

2)

We can also use knowledge resulting from the theorem proved during lectures. It
says that E(Λk) = 0 which corresponds to the result obtained in 1). Moreover, the
variance can be calculated directly as

Var(Λk) = (ck+1 − k+1Vx)
2 · v2 · k+1px · qx+k.

Hence,
Var(Λ1) = (c2 − 2Vx)

2 · v2 · 2px · qx+1,

and rewriting 2px as px · px+1, which is 0.8 · 0.75, we get

Var(Λ1) = (3− 1.7984)2 ·
(

1

1 + 1
9

)2

· 0.8 · 0.75 · 0.25 = 0.1754.
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9 Net Premium Reserve II - Continuous Model

Example 9.1. During lectures, there was constructed a retrospective relation for the
net premium reserve

kVx =
1

vk · kpx
·

(
k−1∑
j=0

Πj · vj · jpx −
k−1∑
j=0

cj+1 · vj+1 · jpx · qx+j

)
.

This construction is related to the discrete case. Consider now the continuous model,
assume Thiele’s differential equation and derive the retrospective relation for the re-
serve.

Solution:

Thiele’s differential equation:

Π(t) + δ · V (t) = V ′(t) + (c(t)− V (t)) · µx+t.

This can be rewritten as

V ′(t)− (δ + µx+t) · V (t) = Π(t)− c(t) · µx+t.

After multiplying both sides of the previous equation by vt · tpx, one get

vt · tpx · [V ′(t)− (δ + µx+t) · V (t)] = [Π(t)− c(t) · µx+t] · vt · tpx. (∗)

Since for the derivative of vt · tpx it holds

d

dt

(
vt · tpx

)
= vt · ln(v) · tpx − vt · tpx · µx+t

where ln(v) = −δ, the left-hand side of the equation (∗) corresponds to d
dt
(vt · tpx · V (t)).

Therefore, we can rewrite (∗) as
d

dt

(
vt · tpx · V (t)

)
= [Π(t)− c(t) · µx+t] · vt · tpx.

For the purpose of the next step we will replace t by r

d

dr
(vr · rpx · V (r)) = [Π(r)− c(r) · µx+r] · vr · rpx.

The next step is to integrate the previous equation from 0 to t:∫ t

0

d

dr
(vr · rpx · V (r)) dr =

∫ t

0

[Π(r)− c(r) · µx+r] · vr · rpx dr.

⇓

vt · tpx · V (t)− v0 · 0px · V (0) =

∫ t

0

[Π(r)− c(r) · µx+r] · vr · rpx dr.

Since V (0) = 0, the second term on the left-hand side of the previous equation is
equal to zero and after dividing both sides by vt · tpx, we obtain

V (t) =

∫ t

0
[Π(r)− c(r) · µx+r] · vr · rpx dr

vt · tpx
,

which is the continuous counterpart of the discrete retrospective relation for the net
premium reserve.
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Example 9.2. Consider the continuous (time) model for the net premium reserve
calculation. Show that

E
[
vT · V (T )

]
= E

[∫ T

0

Πs(t) · vt dt
]
,

i.e. that the expected value of discounted net premium reserve at the moment of
death is equal to the expected value of discounted savings component of the premium
cumulated until the moment of death.

Solution:

We assume the overall loss as

L = c(T ) · vT −
∫ T

0

Π(t) · vt dt.

Using the principle of equivalence EL = 0, we can prove the given relation as follows:

0 = EL = E
[
c(T ) · vT

]
− E

[∫ T

0

Π(t) · vt dt
]

= E
[
c(T ) · vT

]
− E

[∫ ∞

0

Π(t) · vt · I[T > t] dt

]
=

∫ ∞

0

c(t) · vt · tpxµx+t dt−
∫ ∞

0

Π(t) · vt · tpx dt

=

∫ ∞

0

[c(t) · µx+t − Π(t)] · vt · tpx dt

=

∫ ∞

0

[
V (t) · µx+t − V

′
(t) + δ · V (t)

]
· vt · tpx dt

=

∫ ∞

0

V (t) · vt · tpx · µx+t dt−
∫ ∞

0

Πs(t) · vt · tpx dt

= E
[
vT · V (T )

]
− E

[∫ T

0

Πs(t) · vt dt
]
.

We used the decomposition of the premium rate Π(t) into the saving component and
the risk component, which in the continuous model can be written as

Π(t) = V
′
(t)− δ · V (t)︸ ︷︷ ︸

Πs(t)

+(c(t)− V (t)) · µx+t︸ ︷︷ ︸
Πr(t)

.
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10 Multiple decrements

Notation

• J – cause of decrement (death, disability, cancellation, ...),

• m – number of decrements,

• T = Tx – time of leaving the original status due to one of mutually exclusive
decrements,

• tqj,x = P (T < t, J = j) – probability of leaving the original status due to
decrement j within t years,

• tpx = 1 −
∑m

j=1 tqj,x – probability of surviving in the original status at least t
years,

• µj,x+t = limh→0+
P (T<t+h,J=j|T>t)

h
– force of decrement j,

• µx+t =
∑m

j=1 µj,x+t,

• gj(t) = tpx · µj,x+t – probability density function

• qj,x+k = P (T < k + 1, J = j | T > k),

• qx+k =
∑m

j=1 qj,x+k,

• px+k = 1− qx+k,

• P (K = k, J = j) = kpx · qj,x+k – joint probability distribution of (K, J)

Example 10.1. Consider term insurance for n years which provides SI to a bene-
ficiary in the case of death of the insured person and 2 · SI in the case of death by
accident. Derive the net single premium if the death benefit is paid

a) at the end of the year of death,

b) immediately on death.

Derive the net annual premium which is paid during the whole contract life/until
death.

Solution:

We define two causes of decrement: J = 1 for death by accident, J = 2 for death
from other causes. Then the net single premium is equal to

a)

NSP =
n−1∑
k=0

2 · SI · vk+1 · kpx · q1,x+k +
n−1∑
k=0

SI · vk+1 · kpx · q2,x+k,
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b)

NSP =

∫ n

0

2 · SI · vt · tpx · µ1,x+t dt+

∫ n

0

SI · vt · tpx · µ2,x+t dt.

The net annual premium can be derived in the standard form (using the equivalence
principle)

NAP =
NSP

äxn
,

where äxn is the NSP for the standard life annuity due (=based on life tables without
special decrements, i.e. with death only) for n years.

Example 10.2. Consider special life tables with two causes of decrement for extreme
sports and four races:

year prob. of death prob. of disability survival prob.
0 0.15 0.25 0.60
1 0.10 0.20 0.70
2 0.05 0.15 0.80
3 0.00 0.10 0.90

In the beginning, 1,000 extreme (iid) sportsmen start. Compute/estimate

a) expected number and variance of survivors over four races,

b) expected number and variance of deaths during four races,

c) distribution of the causes of decrement J ,

d) conditional distribution of ending the season during third race.

Solution:

We will consider three causes of decrement: J = 1 death, J = 2 disability, J = 3
finishing the season. In this case, we must slightly modify our table1

k q1,k q2,k q3,k pk
0 0.15 0.25 0 0.60
1 0.10 0.20 0 0.70
2 0.05 0.15 0 0.80
3 0.00 0.10 0.90 0

a)

Let X1 denote the r.v. of the number of survivors over four races. We can solve
it directly or we can realize that we work with binomial distribution with parameters

n = 1000, p(a) = p0 · p1 · p2 · q3,3 = 0.3024.

Therefore, EX1 = n · p(a) = 302.4 and Var(X1) = n · p(a) · (1− p(a)) = 210.95.

1You must be always sure that you are working with probability distribution.
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b)

Let X2 denote the r.v. of the number of deaths over four races. Again we can
employ the binomial distribution

n = 1000, p(b) = q1,0 + p0 · q1,1 + p0 · p1 · q1,2 + p0 · p1 · p2 · q1,3 = 0.231.

Hence, EX2 = n · p(b) = 231 and Var(X2) = n · p(b) · (1− p(b)) = 177, 64.

c)

We have already some of the marginal probabilities, namely P (J = 1) = p(b) and
P (J = 3) = p(a). Therefore,

P (J = 2) = 1− p(a) − p(b) = q2,0 + p0 · q2,1 + p0 · p1 · q2,2 + p0 · p1 · p2 · q2,3 = 0.4666.

d)

In general, we can derive the conditional probabilities as

P (J = j|K = k) =
P (J = j,K = k)

P (K = k)
=

kpx · qj,x+k

kpx · qx+k

=
qj,x+k

qx+k

.

Thus, in our case we have

P (J = 1|K = 2) =
q1,2
q2

=
0.05

0.20
= 0.25,

P (J = 2|K = 2) =
q2,2
q2

=
0.15

0.20
= 0.75,

P (J = 3|K = 2) =
q3,2
q2

=
0

0.20
= 0.

Example 10.3. Pension plan for employees: Consider a person at age x = 30 and
the following insurance:

• In the case of death in the original employment, there is a single payment of 5
mil. CZK to a beneficiary at the end of the year of death.

• If the employee stays with the same employer up to 70 years, he/she is entitled
an annuity with annual payment 3000times number of years in employment.

• if the employee leaves before reaching the age of 70, he/she is entitled an annuity
with annual payment 3000times number of finished years in employment with
payments starting at the age of 70.

Define a proper probabilistic model and derive a formula for the net single premium.

Solution:

We can consider two causes of decrement: J = 1 death, J = 2 leaving the employer,
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i.e., m = 2. We can use slightly generalized formula for the net single premium
(inspired by the general formula for net premium reserve at time 0, i.e. by 0Vx):

NSP =
m∑
j=1

∞∑
k=0

cj,k+1 · vk+1 · kpx · qj,x+k −
∞∑
k=0

πk · vk · kpx.

In our case, we set

• c1,k+1 =

{
5 · 106, k = 0, . . . , 39,

0, k ≥ 40,

• c2,k+1 =

{
3000 · k · 39−k|ä31+k, k = 0, . . . , 39,

0, k ≥ 40,

• πk =

{
−3000 · 40 · ä70, k = 40,

0, otherwise.

It is important to realize that the NSP for the annuities are based on the standard
life tables (= with the cause of decrement death only).

We can consider also the third cause of decrement J = 3 for staying with the original
employer up to 70 years, but the situation is then much more difficult. You must be
very careful with the definition of the probability distribution, compare with Example
10.2.

Example 10.4. Consider a person at age x = 30 and the following insurance valid
until reaching the age of 65:
In the case of death, there is a single payment of 5 mil. CZK at the end of the year
of death. In the case of disability, an annuity of 0.5 mil. CZK is paid until reaching
the age 65 from which age it is increased by 50 thousand CZK every year until the
death. However, the payment in the case of death is not further valid.
Define a proper probabilistic model and derive a formula for the net single premium.

Solution:

We can consider two causes of decrements: J = 1 death, and J = 2 disability,
i.e. m = 2. Using the general formula, we can set

• c1,k+1 =

{
5 · 106, k = 0, . . . , 34,

0, otherwise,

• c2,k+1 =

{
0.5 · 106 · ä31+k + 5 · 104 · 34−k|(Iä)31+k, k = 0, . . . , 34,

0, otherwise,

• πk = 0 for all k.

The NSP for the annuities are based on the standard life tables (= with the cause of
decrement death only).
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11 Construction of life tables with multiple decre-

ments

When we want to prepare a new life insurance product based on multiple decrements,
we must construct suitable life tables (with all considered causes of decrement). How-
ever, very often the causes of decrements are parametrized separately. Then, our goal
is to mix them. You can find the proper way below.

Consider (continuous) compound model with one decrement where we consider only
one cause of decrement. Then, the probability of surviving over time t without ob-
serving the cause of decrement j is

tp
′
j,x = exp

{
−
∫ t

0

µj,x+s ds

}
,

and we set

tq
′
j,x = 1− tp

′
j,x.

Example 11.1. Show that

a) tpx ≤ tp
′
j,x,

b) tqx ≥ tq
′
j,x,

c) tqj,x ≤ tq
′
j,x.

Solution:

a)

tpx = exp

{
−
∫ t

0

µx+s ds

}
= exp

{
−
∫ t

0

m∑
j=1

µj,x+s ds

}

=
m∏
j=1

exp

{
−
∫ t

0

µj,x+s ds

}

=
m∏
j=1

tp
′
j,x.

Since tp
′
j,x ∈ (0, 1) for all j, we obtain the inequality.

b)

It is a consequence of a) if we realize that tqx = 1− tpx and tq
′
j,x = 1− tp

′
j,x.
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c)

It is again a consequence of a) if we realize

tqj,x =

∫ t

0
spx · µj,x+s ds ≤

∫ t

0
sp

′
j,x · µj,x+s ds = tq

′
j,x.

Example 11.2. Under the assumption of linearity for each cause of decrement, i.e.,

uq
′
j,x = u · q′j,x, u ∈ (0, 1),

derive an exact relation between qj,x and q′j,x.

Solution:

q′j,x = 1− p′j,x

= 1− exp

{
−
∫ 1

0

µj,x+u du

}
with the use of the ass. of linearity : µj,x+u =

qj,x
1− u qx

= 1− exp

{
−qj,x ·

∫ 1

0

1

1− u qx
du

}
= 1− exp

{
−qj,x ·

[
−1

qx
· ln(1− u qx)

]1
0

}

= 1− exp

{
qj,x
qx

· ln(1− qx)

}
= 1− (1− qx)

qj,x
qx .

Then, we can express

qj,x = qx ·
ln(1− q′j,x)

ln(1− qx)
= qx ·

ln p′j,x
ln px

.

Example 11.3. Under the assumption of constant force of decrement for each cause,
i.e. µj,x+u = µj,x+ 1

2
, u ∈ (0, 1), derive an exact relation between qj,x and q′j,x.

Solution:

The assumption stays valid also for the aggregate force of decrement, i.e., µx+u =
µx+ 1

2
, u ∈ (0, 1).
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Then

qj,x =

∫ 1

0
upx · µj,x+u du

=

∫ 1

0
upx · µj,x+ 1

2
du

=
µj,x+ 1

2

µx+ 1
2

·
∫ 1

0
upx · µx+ 1

2
du

=
µj,x+ 1

2

µx+ 1
2

·
∫ 1

0
upx · µx+u du

=
µj,x+ 1

2

µx+ 1
2

· qx.

Moreover, under our assumption

p′j,x = exp

{
−
∫ 1

0

µj,x+u du

}
= exp

{
−µj,x+ 1

2

}
,

px = exp

{
−
∫ 1

0

µx+u du

}
= exp

{
−µx+ 1

2

}
,

i.e., we get the ratio
µj,x+ 1

2

µx+ 1
2

=
− ln p′j,x
− ln px

.

Thus, we get the same formula as in the previous example

qj,x = qx ·
ln(1− q′j,x)

ln(1− qx)
= qx ·

ln p′j,x
ln px

.

We can summarize the construction of multiple decrement life tables from m com-
pound models with one decrement:

1. Compute q′j,x and p′j,x = 1− q′j,x for all j.

2. Derive

px =
m∏
j=1

p′j,x and qx = 1− px.

3. Apply the formula

qj,x = qx ·
ln p′j,x
ln px

.

Example 11.4. Using the above introduced approach, construct the multiple decre-
ment life table with m = 3 given the following compound models with one decrement:

x q′1,x q′2,x q′3,x
25 0.020 0.030 0.200
26 0.022 0.034 0.100
27 0.028 0.040 0.120
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i.e., compute q1,x, q2,x, q3,x.

Solution:

x q′1,x q′2,x q′3,x px qx q1,x q2,x q3,x
25 0.020 0.030 0.200 0.760 0.240 0.018 0.027 0.195
26 0.022 0.034 0.100 0.850 0.150 0.021 0.032 0.097
27 0.028 0.040 0.120 0.821 0.179 0.026 0.037 0.116
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12 Multiple Life Insurance

We consider m independent2 lives with (random) future lifetimes

T1 := Tx1 , . . . , Tm := Txm .

Notation

• Joint-life status

– status u = x1 : x2 : · · · : xm = all m participating lives survive,

– failure time
T (u) = min{T1, . . . , Tm},

– survival probability

tpx1:x2:···:xm = P (T (u) > t) =
m∏
k=1

P (Tk > t) =
m∏
k=1

tpxk
,

and

tqx1:x2:···:xm = 1− tpx1:x2:···:xm .

Under independence, we set

lx1:x2:···:xm =
m∏
k=1

lxk
, dx1:x2:···:xm = lx1:x2:···:xm − lx1+1:x2+1:···:xm+1.

Then

tpx1:x2:···:xm =
lx1+t:x2+t:···:xm+t

lx1:x2:···:xm

.

• Last-survivor status

– status u = x1 : x2 : · · · : xm = at least one of the m lives survives,

– failure time
T (u) = max{T1, . . . , Tm},

– survival probability

tpx1:x2:···:xm = P (T (u) > t) = St
1 − St

2 + · · · (−1)m−1 · St
m,

where
St
k =

∑
(j1,...,jk)⊂{1,...,m}

tpxj1
:xj2

:···:xjk
,

and

tqx1:x2:···:xm = 1− tpx1:x2:···:xm .

2The independence is quite questionable assumption, especially when we consider a family in-
surance. There are several approaches how to elaborate the dependence, e.g., copula functions or
conditional forces of mortality.
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Example 12.1. Consider the following insurances for a pair of independent lifes at
ages x and y:

a) joint-life whole life insurance payable on the first death,

b) joint-life life annuity-due.

c) joint-life life annuity-due for n years.

Derive a reasonable generalization of the commutation functions which enable you to
simplify the computation of the net single premiums.

Solution:

a)

Under the independence of lifes

Ax:y =
∞∑
k=0

vk+1 · kpx:y · qx+k:y+k

=
∞∑
k=0

vk+1 · lx+k:y+k

lx:y
· dx+k:y+k

lx+k:y+k

=
∞∑
k=0

vf(x+k+1,y+k+1)

vf(x,y)
· dx+k:y+k

lx:y
.

There are several possible choices of f :

f(x, y) =
x+ y

2
, f(x, y) = max{x, y}, f(x, y) = min{x, y}.

On the other hand, it is not possible to use simple sum of the ages as f , because we
need a transformation which preserves vk. So, if we define the commutation functions
as

Cx:y = vf(x+1,y+1) · dx:y, Dx:y = vf(x,y) · lx:y,

Mx:y =
∞∑
k=0

Cx+k:y+k, Nx:y =
∞∑
k=0

Dx+k:y+k,

Rx:y =
∞∑
k=0

Mx+k:y+k, Sx:y =
∞∑
k=0

Nx+k:y+k,

we can get the standard expression for NSP

Ax:y =
∞∑
k=0

Cx+k:y+k

Dx:y

=
Mx:y

Dx:y

.
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b)

For the life annuity-due, we obtain

äx:y =
∞∑
k=0

vk · kpx:y

=
∞∑
k=0

vk · lx+k:y+k

lx:y

=
∞∑
k=0

vf(x+k,y+k)

vf(x,y)
· lx+k:y+k

lx:y

=
∞∑
k=0

Dx+k:y+k

Dx:y

=
Nx:y

Dx:y

.

c)

For the life annuity-due for n years, we have

äx:yn =
n−1∑
k=0

vk · kpx:y

=
n−1∑
k=0

Dx+k:y+k

Dx:y

=
Nx:y −Nx+n:y+n

Dx:y

.

Remark
The generalization of the commutation functions to m lifes is straightforward, e.g.,

Cx1:x2:···:xm = vf(x1+1,...,xm+1) · dx1:x2:···:xm ; Dx1:x2:···:xm = vf(x1,...,xm) · lx1:x2:···:xm ,

where

f(x1, . . . , xm) =

∑m
k=1 xk

m
,

or
f(x1, . . . , xm) = max{x1, . . . , xm},

or
f(x1, . . . , xm) = min{x1, . . . , xm}.

Note that also the relations between CF which we know from the univariate case are
valid, e.g.,

Mx:y = Dx:y − d ·Nx:y.

Example 12.2. Consider the following insurances for a pair of independent lifes at
ages x and y:

a) last-survival life annuity-due.

b) last-survival whole life insurance payable on the last death,
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Using the above introduced commutation functions derive the net single premiums.

Solution:

a)

äx:y =
∞∑
k=0

vk · kpx:y

=
∞∑
k=0

vk · (kpx + kpy − kpx:y)

=
∞∑
k=0

vk · kpx +
∞∑
k=0

vk · kpy −
∞∑
k=0

vk · kpx:y

=
Nx

Dx

+
Ny

Dy

− Nx:y

Dx:y

.

b)

We can use the previous example to get

Äx:y = 1− d äx:y

= 1 + 1− 1− d ·
(
Nx

Dx

+
Ny

Dy

− Nx:y

Dx:y

)
=

Dx − dNx

Dx

+
Dy − dNy

Dy

− Dx:y − dNx:y

Dx:y

=
Mx

Dx

+
My

Dy

− Mx:y

Dx:y

.

Example 12.3. Consider

a) widow’s annuity-due (asymmetric) – payment stream of rate 1 starts at the
death of husband x and terminates at the death of wife y.

b) widow’s and widower’s annuity-due (symmetric) – payment stream starts at the
death of husband x or wife y and terminates at the death of wife y or husband
x.

c) orphan’s annuity-due – payment stream starts at the death of parents x, y and
terminates at the death of child z or by reaching the age of 18.

Solution:

a)

Denote by u the status when wife is living and husband died

kp
(a)
u = kpy · (1− kpx).
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Then

ä(a)u =
∞∑
k=0

vk · kp(a)u

=
∞∑
k=0

vk · kpy · (1− kpx)

= äy − äx:y.

b)

Denote by u the status when the wife is living and the husband died or vice versa

kp
(b)
u = kpy · (1− kpx) + kpx · (1− kpy).

Then

ä(b)u =
∞∑
k=0

vk · kp(b)u

=
∞∑
k=0

vk · [kpy · (1− kpx) + kpx · (1− kpy)]

= äx + äy − 2 · äx:y.

c)

Denote by u the status when the child is living and the parents died and set n = 18−z.
Then

kp
(c)
u = kpz · (1− kpx) · (1− kpy),

and

ä(c)u =
n−1∑
k=0

vk · kp(c)u

=
n−1∑
k=0

vk · kpz · (1− kpx) · (1− kpy)

= äzn − äx:zn − äy:zn + äx:y:zn .

Example 12.4. Consider orphan’s annuity-due where payment stream starts at the
death of parents x, y and terminates when both children z, w reach the age of 18 or
at the death of last child.

Solution:

Denote by u the status when at least one child is living and both parents died and
set n = 18− z and t = 18− w. Moreover, let us assume that child z is the younger
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one.
Then

kpu = kqx:y · kpz:w.

If the age restriction were not considered then we could write

kqx:y = 1− kpx:y = 1− (kpx + kpy − kpx:y) = 1− kpx − kpy + kpx · kpy

and

kpz:w = kpz + kpw − kpz:w = kpz + kpw − kpz · kpw,

and therefore

kpu =kpz + kpw − kpz · kpw − kpx · kpz − kpx · kpw + kpx · kpz · kpw
− kpy · kpz − kpy · kpw + kpy · kpz · kpw + kpx · kpy · kpz
+ kpx · kpy · kpw − kpx · kpy · kpz · kpw.

Since there is the age limit, we can distinguish three situations, now without consid-
ering parents because those will be included afterwards.

1. only z is living (u is valid with a maximum of n years): kp
1 = kpz · (1− kpw),

2. only w is living (u is valid with a maximum of t years): kp
2 = kpw · (1− kpz),

3. both z and w are living (u is valid with a maximum of n years): kp
3 = kpw · kpz.

Therefore, the considered annuity can be rewritten as follows:

äu =
n−1∑
k=0

vk · kqx:y · kp1 +
t−1∑
k=0

vk · kqx:y · kp2 +
n−1∑
k=0

vk · kqx:y · kp3

=
n−1∑
k=0

vk · kqx:y · kpz +
t−1∑
k=0

vk · kqx:y · (kpw − kpz:w)

= äzn + äwt − äz:wt − äx:zn − äx:wt + äx:z:wt

− äy:zn − äy:wt + äy:z:wt + äx:y:zn + äx:y:wt − äx:y:z:wt .
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13 Expense-Loaded Premium and Reserve

Expenses can be classified into following groups3:

Expenses Abbreviation Charged Proportional to

acquisition α at the beginning SI
collection β when premium is collected premium
administration γ during the entire contract period4 SI
annuity δ when annuity is paid annuity repayment

Expense-loaded annual premium is estimated using the (generalized) equivalence prin-
ciple: the expected present value of the premium payments must be equal to the
expected present value of the benefits and the incurred costs (expenses).

Expense-loaded premium reserve is defined as the difference between the expected
present value of future benefits plus expenses minus expense-loaded premium related
to the end of year k.

Example 13.1. Consider the whole life insurance with the annual premium paid
during the whole contract period. Derive the expense-loaded premium and reserve.

i) Decompose the reserve.

ii) Do not decompose the reserve.

Solution:

The expense-loaded annual premium PB must satisfy the following (generalized)
equivalence principle

PB äx = Ax + α + β · PB äx + γ · äx.

If we divide the equation by äx, we obtain the decomposition of the premium in the
form

PB = P + Pα + P β + P γ,

where in our case it holds

P =
Ax

äx
, Pα =

α

äx
, P β =

β · PB · äx
äx

= β · PB, P γ =
γ · äx
äx

= γ.

where P is the net annual premium and the remaining components correspond to the
expense groups. We can derive the expense-loaded annual premium in an explicit
form

PB =
Ax + α + γ · äx
(1− β) · äx

.

3We follow the notation by Gerber. Prof. Cipra is using different notation for collection expenses
γ (instead of β) and administration expenses β (instead of γ).

4In case of the life annuity, γ is considered for the entire contract period as well (different from
the lecture).
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i)

Now, we will focus on the expense-loaded premium reserve, which can be also decom-
posed as

kV
B
x = kVx + kV

α
x + kV

β
x + kV

γ
x

where the net premium reserve is equal to

kVx = Ax+k − P · äx+k, k = 0, 1, . . .

the reserve for the acquisition expenses is equal to

kV
α
x = I(k = 0) · α− Pα · äx+k, k = 0, 1, . . .

the reserve for the collection expenses is

kV
β
x = β · PB äx+k − P β · äx+k = 0, k = 0, 1, . . .

which is (nearly) always equal to zero, and the reserve for the administration expenses
is

kV
γ
x = γ · äx+k − P γ · äx+k = 0, k = 0, 1, . . .

which is equal to zero only if the premium collection period is the same as the whole
contract period (for cases without δ). Realize that the last two components are equal
to zero and at the same time the α component is negative (nonpositive). Therefore,
in this case, the expense-loaded premium reserve is lower or equal to the net premium
reserve.

ii)

When we are not interested into the decomposition and particular components, we
can derive the expense-loaded premium reserve directly

kV
B
x = Ax+k + I(k = 0) · α + β · PB · äx+k + γ · äx+k − PB · äx+k, k = 0, 1 . . .

Example 13.2. Consider the m year deferred life annuity due for n years with pre-
mium paid during the deferment period. Derive the expense-loaded premium and
reserve

1. without premium refund,

2. with premium refund (= paid premium is returned to a beneficiary at the end
of the year of death of the insured person during the deferment period).
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Solution:

i)

The (generalized) equivalence principle is

PB · äx:m = m|äx:n + α + β · PB · äx:m + γ · äx:m + δ · m|äx:n ,

i.e., we get the components

P =
m|äx:n
äx:m

, Pα =
α

äx:m
, P β =

β · PB · äx:m
äx:m

= β · PB,

P γ =
γ · äx:m
äx:m

= γ, P δ =
δ · m|äx:n
äx:m

,

and the expense-loaded annual premium

PB = P + Pα + P β + P γ + P δ,

or

PB =
(1 + δ) · m|äxn + α + γ · äx:m

(1− β) · äx:m
.

The components of the expense-loaded premium reserve are:
the net premium reserve

kVx =

{
m−k|äx+k:n − P · äx+k:m−k , k = 0, . . . ,m− 1,

äx+k:n+m−k , k = m, . . . ,m+ n− 1

the reserve for the acquisition expenses

kV
α
x =

{
I(k = 0) · α− Pα · äx+k:m−k , k = 0, . . . ,m− 1,

0, k = m, . . . ,m+ n− 1

the reserve for the collection expenses

kV
β
x =

{
β · PB · äx+k:m−k − P β · äx+k:m−k = 0, k = 0, . . . ,m− 1,

0, k = m, . . . ,m+ n− 1

the reserve for the administration expenses

kV
γ
x =

{
γ · äx+k:m−k − P γ · äx+k:m−k = 0, k = 0, . . . ,m− 1,

0, k = m, . . . ,m+ n− 1

and the reserve for the annuity expenses

kV
δ
x =

{
δ · m−k|äx+k:n − P δ · äx+k:m−k , k = 0, . . . ,m− 1,

δ · äx+k:n+m−k , k = m, . . . ,m+ n− 1
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Then we have

kV
B
x = kVx + kV

α
x + kV

β
x + kV

γ
x + kV

δ
x , k = 0, . . . ,m+ n− 1

We provide also the non-decomposed formula for the expense-loaded premium reserve:

kV
B
x =


(1 + δ) · m−k|äx+k:n + I(k = 0) · α + β · PB · äx+k:m−k

+γ · äx+k:m−k − PB · äx+k:m−k , k = 0, . . . ,m− 1,

(1 + δ) · äx+k:n+m−k , k = m, . . . ,m+ n− 1

ii)

We will modify only the net premium component where the premium refund is in-
corporated. The (generalized) equivalence principle is

P̂B · äx:m = m|äx:n + P̂B · (IA)1x:m + α + β · P̂B · äx:m + γ · äx:m + δ · m|äx:n ,

i.e., the premium refund is modeled using the standard increasing term insurance
component, so the net annual component is

P̂ =
m|äx:n + P̂B (IA)1x:m

äx:m
,

and the expense-loaded annual premium equals to

P̂B =
(1 + δ) · m|äx:n + α + γ · äx:m

(1− β) · äx:m − (IA)1x:m
.

The premium refund influences the net premium reserve component as follows

kV̂x =


m−k|äx+k:n + P̂B · (IA) 1

x+k:m−k + k · P̂B · A 1
x+k:m−k

−P̂ · äx+k:m−k , k = 0, . . . ,m− 1,

äx+k:n+m−k , k = m, . . . ,m+ n− 1

where we must use the correction term k · P̂B · A 1
x+k:m−k to get the right premium

refund level after k years. In principle, the β component is also influenced (it contains
new P̂B), but it is again equal to zero. Thus, we have obtained

kV̂
B
x = kV̂x + kV

α
x (+kV

β
x ) + kV

γ
x + kV

δ
x

Example 13.3. Consider the m year deferred standard increasing term insurance for
n years with premium paid during the deferment period. Derive the expense-loaded
premium and reserve
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1. using the standard definition of expenses,

2. using the modified definition of expenses as follows5 (assume m ≥ 3):

– acquisition expenses are divided into three consecutive payments,

– collection expenses are standard decreasing,

– administration expenses differ between deferment period and subsequent
period.

Solution:

i)

The (generalized) equivalence principle is

PB · äx:m = m|(IA)1x:n + α + β · PB · äx:m + γ · äx:m+n ,

i.e., we get components of the expense-loaded annual premium

P =
m|(IA)1x:n

äx:m
, Pα =

α

äx:m
, P β =

β · PB · äx:m
äx:m

= β · PB, P γ =
γ · äx:m+n

äx:m
,

and the expense-loaded annual premium

PB = P + Pα + P β + P γ,

or

PB =
m|(IA)1x:n + α + γ · äx:m+n

(1− β) · äx:m
.

The components of the expense-loaded premium reserve are

kVx =

{
m−k|(IA)

1
x+k:n − P · äx+k:m−k , k = 0, . . . ,m− 1,

(IA) 1
x+k:n+m−k + (k −m) · A 1

x+k:n+m−k , k = m, . . . ,m+ n− 1

kV
α
x =

{
I(k = 0) · α− Pα · äx+k:m−k , k = 0, . . . ,m− 1,

0, k = m, . . . ,m+ n− 1

kV
β
x =

{
β · PB · äx+k:m−k − P β · äx+k:m−k = 0, k = 0, . . . ,m− 1,

0, k = m, . . . ,m+ n− 1

kV
γ
x =

{
γ · äx+k:m+n−k − P γ · äx+k:m−k , k = 0, . . . ,m− 1,

γ · äx+k:m+n−k , k = m, . . . ,m+ n− 1

Then we have

kV
B
x = kVx + kV

α
x + kV

β
x + kV

γ
x , k = 0, . . . ,m+ n− 1

5This can really happen in practice, so always check the definition of expenses.
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ii)

The (generalized) equivalence principle with the modified expenses

PB · äx:m = m|(IA)1x:n + α · äx:3 + β · PB · (Dä)x:m + γ1 · äx:m + γ2 · m|äx:n .

We can derive the components of the expense-loaded annual premium

P =
m|(IA)1x:n

äx:m
, Pα =

α · äx:3
äx:m

, P β =
β · PB · (Dä)x:m

äx:m
, P γ =

γ1 · äx:m + γ2 · m|äx:n
äx:m

,

The components of the expense-loaded premium reserve:

kVx =

{
m−k|(IA)

1
x+k:n − P · äx+k:m−k , k = 0, . . . ,m− 1,

(IA) 1
x+k:n+m−k + (k −m) · A 1

x+k:n+m−k , k = m, . . . ,m+ n− 1

kV
α
x =


α · äx+k:3−k − Pα · äx+k:m−k , k = 0, . . . , 2,

−Pα · äx+k:m−k , k = 3, . . . ,m− 1,

0, k = m, . . . ,m+ n− 1

kV
β
x =

{
β · PB · (Dä)x+k:m−k − P β · äx+k:m−k , k = 0, . . . ,m− 1,

0, k = m, . . . ,m+ n− 1

which is not equal to zero in this case, and

kV
γ
x =

{
γ1 · äx+k:m−k + γ2 · m−k|äx+k:n − P γ · äx+k:m−k , k = 0, . . . ,m− 1,

γ2 · äx+k:m+n−k , k = m, . . . ,m+ n− 1

Then, we have the expense-loaded premium reserve

kV
B
x = kVx + kV

α
x + kV

β
x + kV

γ
x , k = 0, . . . ,m+ n− 1
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14 Lee-Carter model

You can read more about the Lee-Carter model here (this text was also used for the
preparation of this chapter). In this collection we provide only a brief introduction.

With the improvement of medical technologies, life expectancies world over have
seen a remarkable improvement across various age groups. This particular exposure
to risk is called longevity risk. With life insurance and pensions often lasting for
decades it leads to increased payouts and survival benefits to retirees and annuitants.
Also, improvements in computational processing has also aided in carrying out inten-
sive statistical algorithms but virtue of which more sophisticated modes of analysis
can be carried with greater degrees of accuracy and efficiency.

The widely cited model for projecting mortality rates is the Lee-Carter (1992) model.
This model was developed by the namesakes of the model to forecast mortality pro-
jections for the US population. The explicit form of the model is given by:

ln(mx,t) = ax + bx · kt + εx,t,

where

• x . . . age (group),

• t . . . time,

• mx,t . . . mortality rate at age x during year t,

• ax, bx . . . age specific constants,

• kt . . . unobservable time specific index,

• εx,t . . . white noise ∼ WN(0, σ2
ε) (often problem with heteroskedasticity).

Certain constraints need to be imposed on the model for accurate results. The con-
straints put forward were as follows:

xm∑
x=x1

bx = 1,

tn∑
t=t1

kt = 0,

where x ∈ {x1, . . . , xm} and t ∈ {t1, . . . , tn}.

Mortality rate can be calculated in the following way:

mx =

∫ 1

0
S0(x+ u) · µx+u du∫ 1

0
S0(x+ u) du

,
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where Sx(t) = P(Tx > t) = tpx is the survival function

The integral in the numerator can be rewritten as∫ 1

0

S0(x+ u) · µx+u du =

∫ 1

0
x+up0 · µx+u du = P(T0 < x+ 1|T0 > x) = P(Tx < 1)

= S0(x)− S0(x+ 1) = xp0 − x+1p0 = xp0 · (1− px) = xp0 · qx,

and the integral in the denominator can be approximated by∫ 1

0

S0(x+ u) du ≈ S0(x) + S0(x+ 1)

2
=

xp0 · (1 + px)

2
=

xp0 · (2− qx)

2
.

Therefore, the approximation of the mortality rate is

mx ≈ 2 · qx
2− qx

.

Parameter estimation

1) Ordinary least squares (OLS)

OLS(a, b, k) =
∑
x

∑
t

(ln mx,t − ax − bx · kt)2

and is minimized such that the normalization conditions hold.
Parameters αx can be estimated as

âx =
1

tn − t1 + 1

tn∑
t=t1

ln mx,t.

These estimates are then used for calculation of Zx,t, where

Zx,t = ln mx,t − âx

for all x and t.

These values are used for

ÕLS(b, k) =
∑
x

∑
t

(Zx,t − bx · kt)2.

The estimates b̂ and k̂ are obtained with the use of singular value decomposition
(SVD). The values Zx,t are formed into a matrix A = {Zx,t}x,t of size m× n.

Singular value decomposition: A = UΣV T , where

• U is a matrix of eigenvectors of AAT ,

• V is a matrix of eigenvectors of ATA,
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• Σ =

(
S 0
0 0

)
m×n

, where S = diag(
√
λ1, . . . ,

√
λr) with r = min{m,n}, where

λ1 ≥ λ2 ≥ · · · ≥ λr are the eigenvalues.

One can construct the best rank 1 approximation ofA via estimates b̂ and k̂ computed
as

b̂ =
u1∑xm−x1+1

j=1 u1,j

,

k̂ =
√

λ1 · v1 ·

(
xm−x1+1∑

j=1

u1,j

)
,

where software performs some additional normalization.

2) Maximum-likelihood method and generalized GLM

Let us assume

• Dx,t . . . number of deaths at age x,

• Ex,t . . . number of living at age x,

and further
Dx,t ∼ Po(Ex,t · exp{ax + bx · kt}),

where Ex,t is an offset (=exposure).

Newton-Raphson algorithm and normalization is then used for estimation of the
parameters.

Remark: In Renshaw and Haberman (2006) an unobservable cohort effect cx · it−x

(which corresponds to the age of birth) is added to ax + bx · kt.

In terms of prediction, we need a prediction of kt for t > tn. It is possible to work
with kt as with a time series and predict with the help of ARIMA model.
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