Mathematics of Life Insurance 2 - HW2

Part 1 (5 points)

Assume the following compound model with one decrement:

x	$q'_{1,x}$	$q'_{2,x}$	$q'_{3,x}$
65	0.020	0.02	0.04
66	0.025	0.02	0.06
67	0.030	0.02	0.08
68	0.035	0.02	0.10
69	0.040	0.02	0.12

- 1. Under the assumption of linearity for each cause of decrement compute $q_{1,x}, q_{2,x}$ and $q_{3,x}$.
- 2. Now, assume that columns $q'_{1,x}$, $q'_{2,x}$ and $q_{3,x}$ are known. Derive $q'_{3,x}$.

Hint for task 2.: Realize that $q_{j,x} = \int_0^1 {}_t p_x \cdot \mu_{j,x+t} dt$. Use the ass. of linearity to get rid of $\mu_{j,x+t}$.

Part 2 (5 points)

Consider random variables T_x and T_y that have the joint probability density function in the following form

$$f_{T_xT_y}(s,t) = \frac{(n-1)(n-2)}{(1+s+t)^n}, \qquad s > 0, t > 0, n > 2.$$

Derive the prob. density function and distribution function of $T_{\overline{x}:\overline{y}}$, $E(T_{\overline{x}:\overline{y}})$ for n > 3 and $\mu_{\overline{x+t}:\overline{y+t}}$.

Part 3 (4 points)

Use the life tables that you created in the winter semester and the assumed i = 2% to calculate the joint life annuity $a_{x:y}$ and the last survivor annuity $a_{\overline{x:y}}$ for independent lives age x = 65 (male) and y = 60 (female).

Part 4 (6 points)

Compute and plot the gross premium reserves for

- 1. the endowment insurance until 70 years with the net annual premium collected during the whole period with SI=1,000,000,
- 2. the life annuity in advance deferred until the age 70 years with the net annual premium collected during the deferment period with SI=120,000.

Consider the input ages x = 25,30 and 35 years. Use the unisex life tables (TIR=2%) and the corresponding commutation functions. The expenses values are

- $\alpha = 5\%$
- $\beta = 0.8\%$ (collection expenses)
- $\gamma = 2\%$ (collected over the entire contract period, even when annuity payments are made)
- $\delta = 0.5\%$

Add a few words about the obtained results and include also the general formulas for the premium and reserves in your solution.

Send a PDF file *surname_name_HW2.pdf* to vejmelp@karlin.mff.cuni.cz until April 30, 2024.