
V. Functions of several variables

V.1. Rn as a linear and metric space
Definition. The set Rn, n 2 N, is the set of all ordered n-tuples of real numbers, i.e.

Rn D fŒx1; : : : ; xn� W x1; : : : ; xn 2 Rg:

For x D Œx1; : : : ; xn� 2 Rn, y D Œy1; : : : ; yn� 2 Rn and ˛ 2 R we set

x C y D Œx1 C y1; : : : ; xn C yn�; ˛x D Œ˛x1; : : : ; ˛xn�:

Further, we denote o D Œ0; : : : ; 0� – the origin.

Definition. The Euclidean metric (distance) on Rn is the function � W Rn �Rn ! Œ0;C1/ defined by

�.x;y/ D

p
nX
iD1

.xi � yi /
2:

The number �.x;y/ is called the distance of the point x from the point y .

Theorem 1 (properties of the Euclidean metric). The Euclidean metric � has the following properties:

(i) 8x;y 2 Rn W �.x;y/ D 0, x D y ,

(ii) 8x;y 2 Rn W �.x;y/ D �.y;x/, (symmetry)

(iii) 8x;y; z 2 Rn W �.x;y/ � �.x; z/C �.z;y/, (triangle inequality)

(iv) 8x;y 2 Rn;8� 2 R W �.�x; �y/ D j�j�.x;y/, (homogeneity)

(v) 8x;y; z 2 Rn W �.x C z;y C z/ D �.x;y/. (translation invariance)

Definition. Let x 2 Rn; r 2 R; r > 0. The set B.x; r/ defined by

B.x; r/ D fy 2 RnI �.x;y/ < rg

is called an open ball with radius r centred at x or the neighbourhood of x.

Definition. Let M � Rn. We say that x 2 Rn is an interior point of M , if there exists r > 0 such that B.x; r/ �M .
The set of all interior points of M is called the interior of M and is denoted by IntM .
The set M � Rn is open in Rn, if each point of M is an interior point of M , i.e. if M D IntM .

Theorem 2 (properties of open sets).

(i) The empty set and Rn are open in Rn.

(ii) Let G˛ � Rn, ˛ 2 A ¤ ;, be open in Rn. Then
S
˛2AG˛ is open in Rn.

(iii) Let Gi � Rn, i D 1; : : : ; m, be open in Rn. Then
Tm
iD1Gi is open in Rn.

Remark.
(ii) A union of an arbitrary system of open sets is an open set.
(iii) An intersection of a finitely many open sets is an open set.

Definition. Let M � Rn and x 2 Rn. We say that x is a boundary point of M if for each r > 0

B.x; r/ \M ¤ ; and B.x; r/ \ .Rn nM/ ¤ ;:

The boundary of M is the set of all boundary points of M (notation bdM ).
The closure of M is the set M [ bdM (notation M ).
A setM � Rn is said to be closed in Rn if it contains all its boundary points, i.e. if bdM �M , or in other words ifM DM .

Definition. Let xj 2 Rn for each j 2 N and x 2 Rn. We say that a sequence fxj g1jD1 converges to x, if

lim
j!1

�.x;xj / D 0:

The vector x is called the limit of the sequence fxj g1jD1.
The sequence fyj g1jD1 of points in Rn is called convergent if there exists y 2 Rn such that fyj g1jD1 converges to y .
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Remark. The sequence fxj g1jD1 converges to x 2 Rn if and only if

8" 2 R; " > 0 9j0 2 N 8j 2 N; j � j0 W x
j
2 B.x; "/:

Theorem 3 (convergence is coordinatewise). Let xj 2 Rn for each j 2 N and let x 2 Rn. The sequence fxj g1jD1 converges

to x if and only if for each i 2 f1; : : : ; ng the sequence of real numbers fxji g
1
jD1 converges to the real number xi .

Remark. Theorem 3 says that the convergence in the space Rn is the same as the “coordinatewise” convergence. It follows that a
sequence fxj g1jD1 has at most one limit. If it exists, then we denote it by limj!1 xj . Sometimes we also write simply xj ! x

instead of limj!1 xj D x.

Theorem 4 (characterisation of closed sets). Let M � Rn. Then the following statements are equivalent:

(i) M is closed in Rn.

(ii) Rn nM is open in Rn.

(iii) Any x 2 Rn which is a limit of a sequence from M belongs to M .

Theorem 5 (properties of closed sets).

(i) The empty set and the whole space Rn are closed in Rn.

(ii) Let F˛ � Rn, ˛ 2 A ¤ ;, be closed in Rn. Then
T
˛2A F˛ is closed in Rn.

(iii) Let Fi � Rn, i D 1; : : : ; m, be closed in Rn. Then
Sm
iD1 Fi is closed in Rn.

Remark.
(ii) An intersection of an arbitrary system of closed sets is closed.
(iii) A union of finitely many closed sets is closed.

Theorem 6. Let M � Rn. Then the following holds:

(i) The set M is closed in Rn.

(ii) The set IntM is open in Rn.

(iii) The set M is open in Rn if and only if M D IntM .

Remark. The set IntM is the largest open set contained in M in the following sense: If G is a set open in Rn and satisfying
G �M , then G � IntM . Similarly M is the smallest closed set containing M .

Definition. We say that the set M � Rn is bounded if there exists r > 0 such that M � B.o; r/. A sequence of points in Rn is
bounded if the set of its members is bounded.

Theorem 7. A set M � Rn is bounded if and only if its closure M is bounded.

V.2. Continuous functions of several variables
Definition. Let M � Rn, x 2M , and f W M ! R. We say that f is continuous at x with respect to M , if we

8" 2 R; " > 0 9ı 2 R; ı > 0 8y 2 B.x; ı/ \M W f .y/ 2 B.f .x/; "/:

We say that f is continuous at the point x if it is continuous at x with respect to a neighbourhood of x, i.e.

8" 2 R; " > 0 9ı 2 R; ı > 0 8y 2 B.x; ı/ W f .y/ 2 B.f .x/; "/:

Theorem 8. Let M � Rn, x 2M , f W M ! R, g W M ! R, and c 2 R. If f and g are continuous at the point x with respect
to M , then the functions cf , f C g a fg are continuous at x with respect to M . If the function g is nonzero at x, then also the
function f=g is continuous at x with respect to M .

Theorem 9. Let r; s 2 N, M � Rs , L � Rr , and y 2M . Let '1; : : : ; 'r be functions defined on M , which are continuous at y
with respect to M and Œ'1.x/; : : : ; 'r .x/� 2 L for each x 2 M . Let f W L ! R be continuous at the point Œ'1.y/; : : : ; 'r .y/�
with respect to L. Then the compound function F W M ! R defined by

F.x/ D f
�
'1.x/; : : : ; 'r .x/

�
; x 2M;

is continuous at y with respect to M .
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Theorem 10 (Heine). Let M � Rn, x 2M , and f W M ! R. Then the following are equivalent.

(i) The function f is continuous at x with respect to M .

(ii) lim
j!1

f .xj / D f .x/ for each sequence fxj g1jD1 such that xj 2M for j 2 N and lim
j!1

xj D x.

Definition. Let M � Rn and f W M ! R. We say that f is continuous on M if it is continuous at each point x 2 M with
respect to M .

Remark. The functions �j W Rn ! R, �j .x/ D xj , 1 � j � n, are continuous on Rn. They are called coordinate projections.

Theorem 11. Let f be a continuous function on Rn and c 2 R. Then the following holds:

(i) The set fx 2 RnI f .x/ < cg is open in Rn.

(ii) The set fx 2 RnI f .x/ > cg is open in Rn.

(iii) The set fx 2 RnI f .x/ � cg is closed in Rn.

(iv) The set fx 2 RnI f .x/ � cg is closed in Rn.

(v) The set fx 2 RnI f .x/ D cg is closed in Rn.

Definition. We say that a set M � Rn is compact if for each sequence of elements of M there exists a convergent subsequence
with a limit in M .

Theorem 12 (characterisation of compact subsets of Rn). The set M � Rn is compact if and only if M is bounded and closed.

Lemma 13. Let fxj g1jD1 be a bounded sequence in Rn. Then it has a convergent subsequence.

Definition. Let M � Rn, x 2 M , and let f be a function defined at least on M (i.e. M � Df ). We say that f attains at the
point x its

� maximum on M if f .y/ � f .x/ for every y 2M ,

� local maximum with respect to M if there exists ı > 0 such that f .y/ � f .x/ for every y 2 B.x; ı/ \M ,

� strict local maximum with respect to M if there exists ı > 0 such that f .y/ < f .x/ for every y 2
�
B.x; ı/ n fxg

�
\M .

The notions of a minimum, a local minimum, and a strict local minimum with respect to M are defined in analogous way.

Definition. We say that a function f attains a local maximum at a point x 2 Rn if x is a local maximum with respect to some
neighbourhood of x.

Similarly we define local minimum, strict local maximum and strict local minimum.

Theorem 14 (attaining extrema). Let M � Rn be a non-empty compact set and f W M ! R a function continuous on M . Then
f attains its maximum and minimum on M .

Corollary. Let M � Rn be a non-empty compact set and f W M ! R a continuous function on M . Then f is bounded on M .

Definition. We say that a function f of n variables has a limit at a point a 2 Rn equal to A 2 R� if

8" 2 R; " > 0 9ı 2 R; ı > 0 8x 2 B.a; ı/ n fag W f .x/ 2 B.A; "/:

Remark.

� Each function has at a given point at most one limit. We write limx!a f .x/ D A.

� The function f is continuous at a if and only if limx!a f .x/ D f .a/.

� For limits of functions of several variables one can prove similar theorems as for limits of functions of one variable
(arithmetics, the sandwich theorem, . . . ).

Theorem 15. Let r; s 2 N, a 2 Rs , and let '1; : : : ; 'r be functions of s variables such that limx!a 'j .x/ D bj , j D 1; : : : ; r .
Set b D Œb1; : : : ; br �. Let f be a function of r variables which is continuous at the point b. If we define a compound function F
of s variables by

F.x/ D f .'1.x/; '2.x/; : : : ; 'r .x//;

then limx!a F.x/ D f .b/.
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V.3. Partial derivatives and tangent hyperplane
Set ej D Œ0; : : : ; 0; 1

j th coordinate
; 0; : : : ; 0�.

Definition. Let f be a function of n variables, j 2 f1; : : : ; ng, a 2 Rn. Then the number

@f

@xj
.a/ D lim

t!0

f .aC tej / � f .a/

t

D lim
t!0

f .a1; : : : ; aj�1; aj C t; ajC1; : : : ; an/ � f .a1; : : : ; an/

t

is called the partial derivative (of first order) of function f according to j th variable at the point a (if the limit exists).

Theorem 16 (necessary condition of the existence of local extremum). Let G � Rn be an open set, a 2 G, and suppose that a
function f W G ! R has a local extremum (i.e. a local maximum or a local minimum) at the point a. Then for each j 2 f1; : : : ; ng
the following holds:

The partial derivative
@f

@xj
.a/ either does not exist or it is equal to zero.

Definition. Let G � Rn be a non-empty open set. If a function f W G ! R has all partial derivatives continuous at each point
of the set G (i.e. the function x 7! @f

@xj
.x/ is continuous on G for each j 2 f1; : : : ; ng), then we say that f is of the class C1 on

G. The set of all of these functions is denoted by C 1.G/.

Remark. If G � Rn is a non-empty open set and and f; g 2 C 1.G/, then f C g 2 C 1.G/, f � g 2 C 1.G/, and fg 2 C 1.G/.
If moreover g.x/ ¤ 0 for each x 2 G, then f=g 2 C 1.G/.

Proposition 17 (weak Lagrange theorem). Let n 2 N, I1; : : : ; In � R be open intervals, I D I1 � I2 � � � � � In, f 2 C 1.I /,
and a;b 2 I . Then there exist points �1; : : : ; �n 2 I with � ij 2 Œaj ; bj � for each i; j 2 f1; : : : ; ng, such that

f .b/ � f .a/ D

nX
iD1

@f

@xi
.�i /.bi � ai /:

Definition. Let G � Rn be an open set, a 2 G, and f 2 C 1.G/. Then the graph of the function

T W x 7! f .a/C
@f

@x1
.a/.x1 � a1/C

@f

@x2
.a/.x2 � a2/C � � � C

@f

@xn
.a/.xn � an/; x 2 Rn;

is called the tangent hyperplane to the graph of the function f at the point Œa; f .a/�.

Theorem 18 (tangent hyperplane). Let G � Rn be an open set, a 2 G, f 2 C 1.G/, and let T be a function whose graph is the
tangent hyperplane of the function f at the point Œa; f .a/�. Then

lim
x!a

f .x/ � T .x/

�.x; a/
D 0:

Theorem 19. Let G � Rn be an open non-empty set and f 2 C 1.G/. Then f is continuous on G.

Theorem 20 (derivative of a compound function; chain rule). Let r; s 2 N and let G � Rs , H � Rr be open sets. Let
'1; : : : ; 'r 2 C

1.G/, f 2 C 1.H/ and Œ'1.x/; : : : ; 'r .x/� 2 H for each x 2 G. Then the compound function F W G ! R
defined by

F.x/ D f
�
'1.x/; '2.x/; : : : ; 'r .x/

�
; x 2 G;

is of the class C1 on G. Let a 2 G and b D Œ'1.a/; : : : ; 'r .a/�. Then for each j 2 f1; : : : ; sg we have

@F

@xj
.a/ D

rX
iD1

@f

@yi
.b/

@'i

@xj
.a/:

Definition. Let G � Rn be an open set, a 2 G, and f 2 C 1.G/. The gradient of f at the point a is the vector

rf .a/ D

�
@f

@x1
.a/;

@f

@x2
.a/; : : : ;

@f

@xn
.a/

�
:

Definition. LetG � Rn be an open set, a 2 G, f 2 C 1.G/, and rf .a/ D o. Then the point a is called a stationary (or critical)
point of the function f .
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Definition. Let G � Rn be an open set, f W G ! R, i; j 2 f1; : : : ; ng, and suppose that @f
@xi
.x/ exists finite for each x 2 G.

Then the partial derivative of the second order of the function f according to i th and j th variable at a point a 2 G is defined by

@2f

@xi@xj
.a/ D

@
�
@f
@xi

�
@xj

.a/

If i D j then we use the notation @2f

@x2
i

.a/.

Similarly we define higher order partial derivatives.

Remark. In general it is not true that @2f
@xi@xj

.a/ D @2f
@xj @xi

.a/.

Theorem 21 (interchanging of partial derivatives). Let i; j 2 f1; : : : ; ng and suppose that a function f has both partial deriva-
tives @2f

@xi@xj
and @2f

@xj @xi
on a neighbourhood of a point a 2 Rn and that these functions are continuous at a. Then

@2f

@xi@xj
.a/ D

@2f

@xj @xi
.a/:

Definition. Let G � Rn be an open set and k 2 N. We say that a function f is of the class Ck on G, if all partial derivatives of
f of all orders up to k are continuous on G. The set of all of these functions is denoted by C k.G/.

We say that a function f is of the class C1 on G, if all partial derivatives of all orders of f are continuous on G. The set of
all of these functions is denoted by C1.G/.

V.4. Implicit function theorem
Theorem 22 (implicit function). Let G � RnC1 be an open set, F W G ! R, and Qx 2 Rn, Qy 2 R such that Œ Qx; Qy� 2 G. Suppose
that

(i) F 2 C 1.G/,

(ii) F. Qx; Qy/ D 0,

(iii)
@F

@y
. Qx; Qy/ ¤ 0.

Then there exist a neighbourhood U � Rn of the point Qx and a neighbourhood V � R of the point Qy such that for each x 2 U
there exists a unique y 2 V satisfying F.x; y/ D 0. If we denote this y by '.x/, then the resulting function ' is in C 1.U / and

@'

@xj
.x/ D �

@F
@xj
.x; '.x//

@F
@y
.x; '.x//

for x 2 U , j 2 f1; : : : ; ng.

Theorem 23 (implicit functions). Letm; n 2 N, k 2 N[f1g,G � RnCm an open set, Fj W G ! R for j D 1; : : : ; m, Qx 2 Rn,
Qy 2 Rm, Œ Qx; Qy� 2 G. Suppose that

(i) Fj 2 C k.G/ for all j 2 f1; : : : ; mg,

(ii) Fj . Qx; Qy/ D 0 for all j 2 f1; : : : ; mg,

(iii)

ˇ̌̌̌
ˇ̌̌̌ @F1

@y1
. Qx; Qy/ : : : @F1

@ym
. Qx; Qy/

:::
: : :

:::
@Fm

@y1
. Qx; Qy/ : : : @Fm

@ym
. Qx; Qy/

ˇ̌̌̌
ˇ̌̌̌ ¤ 0.

Then there are a neighbourhood U � Rn of Qx and a neighbourhood V � Rm of Qy such that for each x 2 U there exists a unique
y 2 V satisfying Fj .x;y/ D 0 for each j 2 f1; : : : ; mg. If we denote the coordinates of this y by 'j .x/, then the resulting
functions 'j are in C k.U /.

Remark. The symbol in the condition (iii) of Theorem 23 is called a determinant. The general definition will be given later.
For m D 1 we have

ˇ̌
a
ˇ̌
D a, a 2 R. In particular, in this case the condition (iii) in Theorem 23 is the same as the condition

(iii) in Theorem 22.

For m D 2 we have
ˇ̌̌̌
a b

c d

ˇ̌̌̌
D ad � bc, a; b; c; d 2 R.
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V.5. Lagrange multipliers theorem
Theorem 24 (Lagrange multiplier theorem). Let G � R2 be an open set, f; g 2 C 1.G/, M D fŒx; y� 2 GI g.x; y/ D 0g and
let Œ Qx; Qy� 2M be a point of local extremum of f with respect to M . Then at least one of the following conditions holds:

(I) rg. Qx; Qy/ D o,

(II) there exists � 2 R satisfying

@f

@x
. Qx; Qy/C �

@g

@x
. Qx; Qy/ D 0;

@f

@y
. Qx; Qy/C �

@g

@y
. Qx; Qy/ D 0:

Theorem 25 (Lagrange multipliers theorem). Let m; n 2 N, m < n, G � Rn an open set, f; g1; : : : ; gm 2 C 1.G/,

M D fz 2 GI g1.z/ D 0; g2.z/ D 0; : : : ; gm.z/ D 0g

and let Qz 2M be a point of local extremum of f with respect to the set M . Then at least one of the following conditions holds:

(I) the vectors

rg1.Qz/;rg2.Qz/; : : : ;rgm.Qz/

are linearly dependent,

(II) there exist numbers �1; �2; : : : ; �m 2 R satisfying

rf .Qz/C �1rg1.Qz/C �2rg2.Qz/C � � � C �mrgm.Qz/ D o:

Remark.

� The notion of linearly dependent vectors will be defined later.

For m D 1: One vector is linearly dependent if it is the zero vector.

For m D 2: Two vectors are linearly dependent if one of them is a multiple of the other one.

� The numbers �1; : : : ; �m are called the Lagrange multipliers.

V.6. Concave and quasiconcave functions

Definition. Let M � Rn. We say that M is convex if

8x;y 2M 8t 2 Œ0; 1� W tx C .1 � t /y 2M:

Definition. Let M � Rn be a convex set and f a function defined on M . We say that f is

� concave on M if
8a;b 2M 8t 2 Œ0; 1� W f .taC .1 � t /b/ � tf .a/C .1 � t /f .b/;

� strictly concave on M if

8a;b 2M; a ¤ b 8t 2 .0; 1/ W f .taC .1 � t /b/ > tf .a/C .1 � t /f .b/:

Remark. By changing the inequalities to the opposite we obtain a definition of a convex and a strictly convex function.

Remark. A function f is convex (strictly convex) if and only if the function �f is concave (strictly concave).
All the theorems in this section are formulated for concave and strictly concave functions. They have obvious analogies that

hold for convex and strictly convex functions.

Remark.

� If a function f is strictly concave on M , then it is concave on M .

� Let f be a concave function on M . Then f is strictly concave on M if and only if the graph of f “does not contain a
segment”, i.e.

:
�
9a;b 2M; a ¤ b; 8t 2 Œ0; 1� W f .taC .1 � t /b/ D tf .a/C .1 � t /f .b/

�
:
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Theorem 26. Let f be a function concave on an open convex set G � Rn. Then f is continuous on G.

Theorem 27. Let f be a function concave on a convex set M � Rn. Then for each ˛ 2 R the set Q˛ D fx 2 M I f .x/ � ˛g
is convex.

Theorem 28 (characterisation of concave functions of the class C1). Let G � Rn be a convex open set and f 2 C 1.G/. Then
the function f is concave on G if and only if

8x;y 2 G W f .y/ � f .x/C

nX
iD1

@f

@xi
.x/.yi � xi /:

Corollary 29. Let G � Rn be a convex open set and let f 2 C 1.G/ be concave on G. If a point a 2 G is a critical point of f
(i.e. rf .a/ D o), then a is a point of maximum of f on G.

Theorem 30 (characterisation of strictly concave functions of the class C1). Let G � Rn be a convex open set and f 2 C 1.G/.
Then the function f is strictly concave on G if and only if

8x;y 2 G;x ¤ y W f .y/ < f .x/C

nX
iD1

@f

@xi
.x/.yi � xi /:

Definition. Let M � Rn be a convex set and let f be a function defined on M . We say that f is

� quasiconcave na M if
8a;b 2M 8t 2 Œ0; 1� W f .taC .1 � t /b/ � minff .a/; f .b/g;

� strictly quasiconcave on M if

8a;b 2M; a ¤ b; 8t 2 .0; 1/ W f .taC .1 � t /b/ > minff .a/; f .b/g:

Remark. By changing the inequalities to the opposite and changing the minimum to a maximum we obtain a definition of a
quasiconvex and a strictly quasiconvex function.

Remark. A function f is quasiconvex (strictly quasiconvex) if and only if the function �f is quasiconcave (strictly quasicon-
cave).

All the theorems in this section are formulated for quasiconcave and strictly quasiconcave functions. They have obvious
analogies that hold for quasiconvex and strictly quasiconvex functions.

Remark.

� If a function f is strictly quasiconcave on M , then it is quasiconcave on M .

� Let f be a quasiconcave function on M . Then f is strictly quasiconcave on M if and only if the graph of f “does not
contain a horizontal segment”, i.e.

:
�
9a;b 2M; a ¤ b; 8t 2 Œ0; 1� W f .taC .1 � t /b/ D f .a/

�
:

Remark. Let M � Rn be a convex set and f a function defined on M .

� If f is concave on M , then f is quasiconcave on M .

� If f is strictly concave on M , then f is strictly quasiconcave on M .

Theorem 31 (a uniqueness of an extremum). Let f be a strictly quasiconcave function on a convex set M � Rn. Then there
exists at most one point of maximum of f .

Corollary. Let M � Rn be a convex, closed, bounded and nonempty set and f a continuous and strictly quasiconcave function
on M . Then f attains its maximum at exactly one point.

Theorem 32 (characterization of quasiconcave functions using level sets). LetM � Rn be a convex set and f a function defined
on M . Then f is quasiconcave on M if and only if for each ˛ 2 R the set Q˛ D fx 2M I f .x/ � ˛g is convex.
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VI. Matrix calculus

VI.1. Basic operations with matrices
Definition. A table of numbers ˙

a11 a12 : : : a1n
a21 a22 : : : a2n
:::

:::
: : :

:::

am1 am2 : : : amn

�

;

where aij 2 R, i D 1; : : : ; m, j D 1; : : : ; n, is called a matrix of typem�n (shortly, anm-by-nmatrix). We also write .aij /iD1::m
jD1::n

for short.
An n-by-n matrix is called a square matrix of order n.
The set of all m-by-n matrices is denoted by M.m � n/.

Definition. Let

A D

˙
a11 a12 : : : a1n
a21 a22 : : : a2n
:::

:::
: : :

:::

am1 am2 : : : amn

�

:

The n-tuple .ai1; ai2; : : : ; ain/, where i 2 f1; 2; : : : ; mg, is called the i th row of the matrix A.

The m-tuple

0@ a1j
a2j

:::
amj

1A, where j 2 f1; 2; : : : ; ng, is called the j th column of the matrix A.

Definition. We say that two matrices are equal, if they are of the same type and the corresponding elements are equal, i.e. if A D

.aij /iD1::m
jD1::n

and B D .buv/uD1::r
vD1::s

, then A D B if and only if m D r , n D s and aij D bij 8i 2 f1; : : : ; mg;8j 2 f1; : : : ; ng.

Definition. Let A;B 2 M.m � n/, A D .aij /iD1::m
jD1::n

, B D .bij /iD1::m
jD1::n

, � 2 R. The sum of the matrices A and B is the matrix

defined by

A CB D

˙
a11 C b11 a12 C b12 : : : a1n C b1n
a21 C b21 a22 C b22 : : : a2n C b2n

:::
:::

: : :
:::

am1 C bm1 am2 C bm1 : : : amn C bmn

�

:

The product of the real number � and the matrix A (or the �-multiple of the matrix A) is the matrix defined by

�A D

˙
�a11 �a12 : : : �a1n
�a21 �a22 : : : �a2n
:::

:::
: : :

:::

�am1 �am2 : : : �amn

�

:

Proposition 33 (basic properties of the sum of matrices and of a multiplication by a scalar). The following holds:

� 8A;B;C 2M.m � n/ W A C .B C C / D .A CB/C C , (associativity)

� 8A;B 2M.m � n/ W A CB D B CA, (commutativity)

� 9ŠO 2M.m � n/ 8A 2M.m � n/ W A CO D A, (existence of a zero element)

� 8A 2M.m � n/ 9CA 2M.m � n/ W A C CA D O, (existence of an opposite element)

� 8A 2M.m � n/ 8�;� 2 R W .��/A D �.�A/,

� 8A 2M.m � n/ W 1 �A D A,

� 8A 2M.m � n/ 8�;� 2 R W .�C �/A D �A C �A,

� 8A;B 2M.m � n/ 8� 2 R W �.A CB/ D �A C �B.

Remark.

� The matrix O from the previous proposition is called a zero matrix and all its elements are all zeros.
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� The matrix CA from the previous proposition is called a matrix opposite to A. It is determined uniquely, it is denoted by
�A, and it satisfies �A D .�aij /iD1::m

jD1::n
and �A D �1 �A.

Definition. Let A 2 M.m � n/, A D .ais/iD1::m
sD1::n

, B 2 M.n � k/, B D .bsj /sD1::n
jD1::k

. Then the product of matrices A and B is

defined as a matrix AB 2M.m � k/, AB D .cij /iD1::m
jD1::k

, where

cij D

nX
sD1

aisbsj :

Theorem 34 (properties of the matrix multiplication). Let m; n; k; l 2 N. Then:

(i) 8A 2M.m � n/ 8B 2M.n � k/ 8C 2M.k � l/ W A.BC / D .AB/C , (associativity of multiplication)

(ii) 8A 2M.m � n/ 8B;C 2M.n � k/ W A.B C C / D AB CAC , (distributivity from the left)

(iii) 8A;B 2M.m � n/ 8C 2M.n � k/ W .A CB/C D AC CBC , (distributivity from the right)

(iv) 9ŠI 2M.n � n/ 8A 2M.n � n/ W IA D AI D A. (existence and uniqueness of an identity matrix I)

Remark. Warning! The matrix multiplication is not commutative.

Definition. A transpose of a matrix

A D

˙
a11 a12 a13 : : : a1n
a21 a22 a23 : : : a2n
:::

:::
:::

: : :
:::

am1 am2 am3 : : : amn

�

is the matrix

AT
D

�
a11 a21 : : : am1
a12 a22 : : : am2
a13 a23 : : : am3
:::

:::
: : :

:::

a1n a2n : : : amn

�

;

i.e. if A D .aij /iD1::m
jD1::n

, then AT D .buv/uD1::n
vD1::m

, where buv D avu for each u 2 f1; : : : ; ng, v 2 f1; 2; : : : ; mg.

Theorem 35 (properties of the transpose of a matrix). Platí:

(i) 8A 2M.m � n/ W
�
AT

�T
D A,

(ii) 8A;B 2M.m � n/ W .A CB/T D AT CBT ,

(iii) 8A 2M.m � n/ 8B 2M.n � k/ W .AB/T D BTAT .

VI.2. Invertible matrices
Definition. Let A 2M.n � n/. We say that A is an invertible matrix if there exist B 2M.n � n/ such that

AB D BA D I :

Definition. We say that the matrix B 2M.n � n/ is an inverse of a matrix A 2M.n � n/ if AB D BA D I .

Remark. A matrix A 2M.n � n/ is invertible if and only if it has an inverse.

Remark.

� If A 2M.n � n/ is invertible, then it has exactly one inverse, which is denoted by A�1.

� If some matrices A;B 2M.n � n/ satisfy AB D I , then also BA D I .

Theorem 36 (operations with invertible matrices). Let A;B 2M.n � n/ be invertible matrices. Then

(i) A�1 is invertible and
�
A�1

��1
D A,

(ii) AT is invertible and
�
AT

��1
D
�
A�1

�T ,

9



(iii) AB is invertible and .AB/�1 D B�1A�1.

Definition. Let k; n 2 N and v1; : : : ; vk 2 Rn. We say that a vector u 2 Rn is a linear combination of the vectors v1; : : : ; vk

with coefficients �1; : : : ; �k 2 R if
u D �1v

1
C � � � C �kv

k :

By a trivial linear combination of vectors v1; : : : ; vk we mean the linear combination 0 �v1C� � �C0 �vk . Linear combination
which is not trivial is called non-trivial.

Definition. We say that vectors v1; : : : ; vk 2 Rn are linearly dependent if there exists their non-trivial linear combination which
is equal to the zero vector. We say that vectors v1; : : : ; vk 2 Rn are linearly independent if they are not linearly dependent, i.e.
if whenever �1; : : : ; �k 2 R satisfy �1v1 C � � � C �kvk D o, then �1 D �2 D � � � D �k D 0.

Remark. Vectors v1; : : : ; vk are linearly dependent if and only if one of them can be expressed as a linear combination of the
others.

Definition. Let A 2M.m � n/. The rank of the matrix A is the maximal number of linearly independent row vectors of A, i.e.
the rank is equal to k 2 N if

(i) there is k linearly independent row vectors of A and

(ii) each l-tuple of row vectors of A, where l > k, is linearly dependent.

The rank of the zero matrix is zero. Rank of A is denoted by rank.A/.

Definition. We say that a matrix A 2M.m � n/ is in a row echelon form if for each i 2 f2; : : : ; mg the i th row of A is either a
zero vector or it has more zeros at the beginning than the .i � 1/th row.

Remark. The rank of a row echelon matrix is equal to the number of its non-zero rows.

Definition. The elementary row operations on the matrix A are:

(i) interchange of two rows,

(ii) multiplication of a row by a non-zero real number,

(iii) addition of a multiple of a row to another row.

Definition. A matrix transformation is a finite sequence of elementary row operations. If a matrix B 2 M.m � n/ results from

the matrix A 2M.m � n/ by applying a transformation T on the matrix A, then this fact is denoted by A
T
Ý B.

Theorem 37 (properties of matrix transformations).

(i) Let A 2M.m � n/. Then there exists a transformation transforming A to a row echelon matrix.

(ii) Let T1 be a transformation applicable to m-by-n matrices. Then there exists a transformation T2 applicable to m-by-n

matrices such that for any two matrices A;B 2M.m � n/ we have A
T1Ý B if and only if B

T2Ý A.

(iii) Let A;B 2M.m � n/ and there exist a transformation T such that A
T
Ý B. Then rank.A/ D rank.B/.

Remark. Similarly as the elementary row operations one can define also elementary column operations. It can be shown that the
elementary column operations do not change the rank of the matrix.

Remark. It can be shown that rank.A/ D rank.AT / for any A 2M.m � n/.

Theorem 38 (multiplication and transformation). Let A 2M.m� k/, B 2M.k � n/, C 2M.m� n/ and AB D C . Let T be

a transformation and A
T
Ý A0 and C

T
Ý C 0. Then A0B D C 0.

Lemma 39. Let A 2M.n � n/ and rank.A/ D n. Then there exists a transformation transforming A to I .

Theorem 40. Let A 2M.n � n/. Then A is invertible if and only if rank.A/ D n.

10



VI.3. Determinants

Definition. Let A 2M.n� n/. The symbol Aij denotes the .n� 1/-by-.n� 1/ matrix which is created from A by omitting the
i th row and the j th column.

Definition. Let A D .aij /i;jD1::n. The determinant of the matrix A is defined by

det A D

(
a11 if n D 1,Pn
iD1.�1/

iC1ai1 det Ai1 if n > 1.

For det A we will also use the symbol ˇ̌̌̌
ˇ̌̌̌
ˇ
a11 a12 : : : a1n
a21 a22 : : : a2n
:::

: : :
:::

an1 an2 : : : ann

ˇ̌̌̌
ˇ̌̌̌
ˇ :

Theorem 41. Let j; n 2 N, j � n, and the matrices A;B;C 2 M.n � n/ coincide at each row except for the j th row. Let the
j th row of A be equal to the sum of the j th rows of B and C . Then det A D det B C det C .

ˇ̌̌̌
ˇ̌̌̌
ˇ̌
a11 ::: a1n

:::
: : :

:::
aj�1;1 ::: aj�1;n

u1Cv1 ::: unCvn
ajC1;1 ::: ajC1;n

:::
: : :

:::
an1 ::: ann

ˇ̌̌̌
ˇ̌̌̌
ˇ̌ D

ˇ̌̌̌
ˇ̌̌̌
ˇ

a11 ::: a1n

:::
: : :

:::
aj�1;1 ::: aj�1;n
u1 ::: un

ajC1;1 ::: ajC1;n

:::
: : :

:::
an1 ::: ann

ˇ̌̌̌
ˇ̌̌̌
ˇC

ˇ̌̌̌
ˇ̌̌̌
ˇ

a11 ::: a1n

:::
: : :

:::
aj�1;1 ::: aj�1;n
v1 ::: vn

ajC1;1 ::: ajC1;n

:::
: : :

:::
an1 ::: ann

ˇ̌̌̌
ˇ̌̌̌
ˇ

Theorem 42 (determinant and transformations). Let A;A0 2M.n � n/.

(i) If the matrix A0 is created from the matrix A by multiplying one row in A by a real number �, then det A0 D � det A.

(ii) If the matrix A0 is created from A by interchanging two rows in A (i.e. by applying the elementary row operation of the
first type), then det A0 D � det A.

(iii) If the matrix A0 is created from A by adding a �-multiple of a row in A to another row in A (i.e. by applying the elementary
row operation of the third type), then det A0 D det A.

(iv) If A0 is created from A by applying a transformation, then det A ¤ 0 if and only if det A0 ¤ 0.

Remark. The determinant of a matrix with a zero row is equal to zero. The determinant of a matrix with two identical rows is
also equal to zero.

Definition. Let A D .aij /i;jD1::n. We say that A is an upper triangular matrix if aij D 0 for i > j , i; j 2 f1; : : : ; ng. We say
that A is a lower triangular matrix if aij D 0 for i < j , i; j 2 f1; : : : ; ng.

Theorem 43 (determinant of a triangular matrix). Let A D .aij /i;jD1::n be an upper or lower triangular matrix. Then

det A D a11 � a22 � � � � � ann:

Theorem 44 (determinant and invertibility). Let A 2M.n � n/. Then A is invertible if and only if det A ¤ 0.

Theorem 45 (determinant of a product). Let A;B 2M.n � n/. Then det AB D det A � det B.

Theorem 46 (determinant of a transpose). Let A 2M.n � n/. Then det AT D det A.

Theorem 47 (cofactor expansion). Let A D .aij /i;jD1::n, k 2 f1; : : : ; ng. Then

det A D

nX
iD1

.�1/iCkaik det Aik (expansion along kth column),

det A D

nX
jD1

.�1/kCjakj det Akj (expansion along kth row).
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VI.4. Systems of linear equations
A system of m equations in n unknowns x1; : : : ; xn:

a11x1 C a12x2 C � � � C a1nxn D b1;

a21x1 C a22x2 C � � � C a2nxn D b2;

:::

am1x1 C am2x2 C � � � C amnxn D bm;

(S)

where aij 2 R, bi 2 R, i D 1; : : : ; m, j D 1; : : : ; n. The matrix form is

Ax D b;

where A D

� a11 ::: a1n

:::
: : :

:::
am1 ::: amn

�
2 M.m � n/, is called the coefficient matrix, b D

 
b1

:::
bm

!
2 M.m � 1/ is called the vector of the

right-hand side and x D
� x1

:::
xn

�
2M.n � 1/ is the vector of unknowns.

Definition. The matrix

.Ajb/ D

0B@a11 : : : a1n
:::

: : :
:::

am1 : : : amn

ˇ̌̌̌
ˇ̌̌ b1:::
bm

1CA
is called the augmented matrix of the system (S).

Proposition 48. Let A 2 M.m � n/, b 2 M.m � 1/ and let T be a transformation of matrices with m rows. Denote A
T
Ý A0,

b
T
Ý b0. Then for any y 2M.n � 1/ we have Ay D b if and only if A0y D b0, i.e. the systems Ax D b and A0x D b0 have the

same set of solutions.

Theorem 49 (Rouché-Fontené). The system (S) has a solution if and only if its coefficient matrix has the same rank as its
augmented matrix.

Systems of n equations in n variables

Theorem 50. Let A 2M.n � n/. Then the following statements are equivalent:

(i) the matrix A is invertible,

(ii) for each b 2M.n � 1/ the system (S) has a unique solution,

(iii) for each b 2M.n � 1/ the system (S) has at least one solution.

Theorem 51 (Cramer’s rule). Let A 2M.n � n/ be an invertible matrix, b 2M.n � 1/, x 2M.n � 1/, and Ax D b. Then

xj D

ˇ̌̌̌
ˇ̌̌a11 : : : a1;j�1 b1 a1;jC1 : : : a1n
:::

:::
:::

an1 : : : an;j�1 bn an;jC1 : : : ann

ˇ̌̌̌
ˇ̌̌

det A

for j D 1; : : : ; n.

VI.5. Matrices and linear mappings
Definition. We say that a mapping f W Rn ! Rm is linear if

(i) 8u; v 2 Rn W f .uC v/ D f .u/C f .v/,

(ii) 8� 2 R 8u 2 Rn W f .�u/ D �f .u/.

Definition. Let i 2 f1; : : : ; ng. The vector with n coordinates

ei D

0BBB@
0
:::
0
1
0
:::
0

1CCCA : : : i th coordinate

is called the i th canonical basis vector of the space Rn. The set fe1; : : : ; eng of all canonical basis vectors in Rn is called the
canonical basis of the space Rn.
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Properties of the canonical basis:

(i) 8x 2 Rn W x D x1 � e1 C � � � C xn � en,

(ii) the vectors e1; : : : ; en are linearly independent.

Theorem 52 (representation of linear mappings). The mapping f W Rn ! Rm is linear if and only if there exists a matrix
A 2M.m � n/ such that

8u 2 Rn W f .u/ D Au:

Remark. The matrix A from the previous theorem is uniquely determined and is called the representing matrix of the linear
mapping f .

Theorem 53. Let f W Rn ! Rn be a linear mapping. Then the following statements are equivalent:

(i) f is a bijection (i.e. f is a one-to-one mapping of Rn onto Rn),

(ii) f is a one-to-one mapping,

(iii) f is a mapping of Rn onto Rn.

Theorem 54 (composition of linear mappings). Let f W Rn ! Rm be a linear mapping represented by a matrix A 2M.m� n/

and g W Rm ! Rk a linear mapping represented by a matrix B 2 M.k �m/. Then the composed mapping g ı f W Rn ! Rk is
linear and is represented by the matrix BA.
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VII. Antiderivatives and Riemann integral

VII.1. Antiderivatives
Definition. Let f be a function defined on an open interval I . We say that a function F W I ! R is an antiderivative of f on I
if for each x 2 I the derivative F 0.x/ exists and F 0.x/ D f .x/.

Remark. An antiderivative of f is sometimes called a function primitive to f .
If F is an antiderivative of f on I , then F is continuous on I .

Theorem 55. Let F and G be antiderivatives of f on an open interval I . Then there exists c 2 R such that F.x/ D G.x/C c
for each x 2 I .

Remark. The set of all antiderivatives of f on an open interval I is denoted byZ
f .x/ dx:

The fact that F is an antiderivative of f on I is expressed byZ
f .x/ dx c

D F.x/; x 2 I:

Table of basic antiderivatives

�

Z
xn dx c

D
xnC1

nC 1
on R for n 2 N [ f0g; on .�1; 0/ and on .0;1/ for n 2 Z, n < �1,

�

Z
x˛ dx c

D
x˛C1

˛ C 1
on .0;C1/ for ˛ 2 R n f�1g,

�

Z
1

x
dx c
D logjxj on .0;C1/ and on .�1; 0/,

�

Z
ex dx c

D ex on R,

�

Z
sin x dx c

D � cos x on R,

�

Z
cos x dx c

D sin x on R,

�

Z
1

cos2 x
dx c
D tg x on each of the intervals .��

2
C k�; �

2
C k�/, k 2 Z,

�

Z
1

sin2 x
dx c
D � cotg x on each of the intervals .k�; � C k�/, k 2 Z,

�

Z
1

1C x2
dx c
D arctg x on R,

�

Z
1

p
1 � x2

dx c
D arcsin x on .�1; 1/,

�

Z
�

1
p
1 � x2

dx c
D arccos x on .�1; 1/.

Theorem 56. Let f be a continuous function on an open interval I . Then f has an antiderivative on I .

Theorem 57. Suppose that f has an antiderivative F on an open interval I , g has an antiderivative G on I , and let ˛; ˇ 2 R.
Then the function ˛F C ˇG is an antiderivative of f̨ C ˇg on I .

Theorem 58 (substitution).

(i) Let F be an antiderivative of f on .a; b/. Let ' W .˛; ˇ/! .a; b/ have a finite derivative at each point of .˛; ˇ/. ThenZ
f
�
'.x/

�
'0.x/ dx c

D F
�
'.x/

�
on .˛; ˇ/.
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(ii) Let ' be a function with a finite derivative in each point of .˛; ˇ/ such that the derivative is either everywhere positive or
everywhere negative, and such that '

�
.˛; ˇ/

�
D .a; b/. Let f be a function defined on .a; b/ and suppose thatZ
f
�
'.t/

�
'0.t/ dt c

D G.t/ on .˛; ˇ/.

Then Z
f .x/ dx c

D G
�
'�1.x/

�
on .a; b/.

Theorem 59 (integration by parts). Let I be an open interval and let the functions f and g be continuous on I . Let F be an
antiderivative of f on I and G an antiderivative of g on I . ThenZ

f .x/G.x/ dx D F.x/G.x/ �
Z
F.x/g.x/ dx on I .

Example. Denote In D
Z

1

.1C x2/n
dx, n 2 N. Then

InC1 D
x

2n.1C x2/n
C
2n � 1

2n
In; x 2 R; n 2 N;

I1
c
D arctg x; x 2 R:

Definition. A rational function is a ratio of two polynomials, where the polynomial in the denominator is not a zero polynomial.

Theorem (“fundamental theorem of algebra”). Let n 2 N, a0; : : : ; an 2 C, an ¤ 0. Then the equation

an´
n
C an�1´

n�1
C � � � C a1´C a0 D 0

has at least one solution ´ 2 C.

Lemma 60 (polynomial division). Let P andQ be polynomials (with complex coefficients) such thatQ is not a zero polynomial.
Then there are uniquely determined polynomials R and Z satisfying:

� degZ < degQ,

� P.x/ D R.x/Q.x/CZ.x/ for all x 2 C.

If P and Q have real coefficients then so have R and Z.

Corollary. If P is a polynomials and � 2 C its root (i.e. P.�/ D 0), then there is a polynomialR satisfying P.x/ D .x��/R.x/
for all x 2 C.

Theorem 61 (factorisation into monomials). Let P.x/ D anxn C � � � C a1x C a0 be a polynomial of degree n 2 N. Then there
are numbers x1; : : : ; xn 2 C such that

P.x/ D an.x � x1/ � � � .x � xn/; x 2 C:

Definition. Let P be a polynomial that is not zero, � 2 C, and k 2 N. We say that � is a root of multiplicity k of the polynomial
P if there is a polynomial R satisfying R.�/ ¤ 0 and P.x/ D .x � �/kR.x/ for all x 2 C.

Theorem 62 (roots of a polynomial with real coefficients). Let P be a polynomial with real coefficients and � 2 C a root of P
of multiplicity k 2 N. Then the also the conjugate number � is a root of P of multiplicity k.

Theorem 63 (factorisation of a polynomial with real coefficients). Let P.x/ D anx
n C � � � C a1x C a0 be a polynomial of

degree n with real coefficients. Then there exist real numbers x1; : : : ; xk , ˛1; : : : ; ˛l , ˇ1; : : : ; ˇl and natural numbers p1; : : : ; pk ,
q1; : : : ; ql such that

� P.x/ D an.x � x1/
p1 � � � .x � xk/

pk .x2 C ˛1x C ˇ1/
q1 � � � .x2 C ˛lx C ˇl /

ql ,

� no two polynomials from x � x1; x � x2; : : : ; x � xk , x2 C ˛1x C ˇ1; : : : ; x2 C ˛lx C ˇl have a common root,

� the polynomials x2 C ˛1x C ˇ1; : : : ; x2 C ˛lx C ˇl have no real root.
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Theorem 64 (decomposition to partial fractions). Let P;Q be polynomials with real coefficients such that degP < degQ and
let

Q.x/ D an.x � x1/
p1 � � � .x � xk/

pk .x2 C ˛1x C ˇ1/
q1 � � � .x2 C ˛lx C ˇl /

ql

be a factorisation of from Theorem 63. Then there exist unique real numbers A11; : : : ; A
1
p1
; : : : ; Ak1 ; : : : ; A

k
pk

,
B11 ; C

1
1 ; : : : ; B

1
q1
; C 1q1

; : : : ; B l1; C
l
1 ; : : : ; B

l
ql
; C lql

such that

P.x/
Q.x/

D
A1

1

.x�x1/
C � � � C

A1
p1

.x�x1/
p1
C � � � C

Ak
1

.x�xk/
C � � � C

Ak
pk

.x�xk/
pk
C

C
B1

1
xCC1

1

.x2C˛1xCˇ1/
C � � � C

B1
q1
xCC1

q1

.x2C˛1xCˇ1/
q1
C � � �C

C
Bl

1
xCC l

1

.x2C˛lxCˇl /
C � � � C

Bl
ql
xCC l

ql

.x2C˛lxCˇl /
ql
; x 2 R n fx1; : : : ; xkg:

VII.2. Riemann integral

Definition. A finite sequence fxj gnjD0 is called a partition of the interval Œa; b� if

a D x0 < x1 < � � � < xn D b:

The points x0; : : : ; xn are called the partition points.
We say that a partition D0 of an interval Œa; b� is a refinement of the partition D of Œa; b� if each partition point of D is also a

partition point of D0.

Definition. Suppose that a; b 2 R, a < b, the function f is bounded on Œa; b�, and D D fxj gnjD0 is a partition of Œa; b�. Denote

S.f;D/ D

nX
jD1

Mj .xj � xj�1/; where Mj D supff .x/I x 2 Œxj�1; xj �g;

S.f;D/ D

nX
jD1

mj .xj � xj�1/; where mj D infff .x/I x 2 Œxj�1; xj �g;

bZ
a

f D inf
˚
S.f;D/I D is a partition of Œa; b�

	
;

bZ
a

f D sup
˚
S.f;D/I D is a partition of Œa; b�

	
:

Definition. We say that a function f has the Riemann integral over the interval Œa; b� if
R b
a
f D

R b
a
f . The value of the integral of

f over Œa; b� is then equal to the common value of
R b
a
f D

R b
a
f . We denote it by

bZ
a

f . If a > b, then we define

bZ
a

f D �

aZ
b

f ,

and in case that a D b we put

bZ
a

f D 0.

Remark. Let D;D0 be partitions of Œa; b�, D0 refines D, and let f be a bounded function on Œa; b�. Then

S.f;D/ � S.f;D0/ � S.f;D0/ � S.f;D/:

Suppose that D1;D2 are partitions of Œa; b� and a partition D0 refines both D1 and D2. Then

S.f;D1/ � S.f;D
0/ � S.f;D0/ � S.f;D2/:

It easily follows that
R b
a
f �

R b
a
f .

Lemma 65 (criterion for the existence of the Riemann integral). Let f be a function bounded on an interval Œa; b�.

(a)
R b
a
f D I 2 R if and only if for each " 2 R, " > 0 there exists a partition D of Œa; b� such that

I � " < S.f;D/ � S.f;D/ < I C ":
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(b) f has the Riemann integral over Œa; b� if and only if for each " 2 R, " > 0 there exists a partition D of Œa; b� such that

S.f;D/ � S.f;D/ < ":

Theorem 66. (i) Suppose that f has the Riemann integral over Œa; b� and let Œc; d � � Œa; b�. Then f has the Riemann integral
also over Œc; d �.

(ii) Suppose that c 2 .a; b/ and f has the Riemann integral over the intervals Œa; c� and Œc; b�. Then f has the Riemann integral
over Œa; b� and

bZ
a

f D

cZ
a

f C

bZ
c

f: (1)

Remark. The formula (1) holds for all a; b; c 2 R if the integral of f exists over the interval
�
minfa; b; cg;maxfa; b; cg

�
.

Theorem 67 (linearity of the Riemann integral). Let f and g be functions with Riemann integral over Œa; b� and let ˛ 2 R. Then

(i) the function f̨ has the Riemann integral over Œa; b� and

bZ
a

f̨ D ˛

bZ
a

f;

(ii) the function f C g has the Riemann integral over Œa; b� and

bZ
a

f C g D

bZ
a

f C

bZ
a

g:

Theorem 68. Let a; b 2 R, a < b, and let f and g be functions with Riemann integral over Œa; b�. Then:

(i) If f .x/ � g.x/ for each x 2 Œa; b�, then
bZ
a

f �

bZ
a

g:

(ii) The function jf j has the Riemann integral over Œa; b� andˇ̌̌̌
ˇ̌
bZ
a

f

ˇ̌̌̌
ˇ̌ �

bZ
a

jf j:

Definition. We say that a function f is uniformly continuous on an interval I if

8" 2 R; " > 0 9ı 2 R; ı > 0 8x; y 2 I; jx � yj < ı W jf .x/ � f .y/j < ":

Theorem 69. If f is continuous on a closed bounded interval Œa; b�, then it is uniformly continuous on Œa; b�.

Theorem 70. Let f be a function continuous on an interval Œa; b�, a; b 2 R. Then f has the Riemann integral on Œa; b�.

Theorem 71. Let f be a function continuous on an interval .a; b/ and let c 2 .a; b/. If we denote F.x/ D

xZ
c

f .t/ dt for

x 2 .a; b/, then F 0.x/ D f .x/ for each x 2 .a; b/. In other words, F is an antiderivative of f on .a; b/.

Theorem 72 (Newton-Leibniz formula). Let f be a function continuous on an interval Œa; b�, a; b 2 R, a < b, and let F be an
antiderivative of f on .a; b/. Then the limits limx!aC F.x/, limx!b� F.x/ exist, are finite, and

bZ
a

f .x/ dx D lim
x!b�

F.x/ � lim
x!aC

F.x/:
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Remark. Let us denote

ŒF �ba D

(
limx!b� F.x/ � limx!aC F.x/ for a < b,
limx!bC F.x/ � limx!a� F.x/ for b < a.

Then the Newton-Leibniz formula can be written as
bZ
a

f D ŒF �ba;

even for b < a.

Theorem 73 (integration by parts). Suppose that the functions f , g, f 0 a g0 are continuous on an interval Œa; b�. Then

bZ
a

f 0g D Œfg�ba �

bZ
a

fg0:

Theorem 74 (substitution). Let the function f be continuous on an interval Œa; b�. Suppose that the function ' has a continuous
derivative on Œ˛; ˇ� and ' maps Œ˛; ˇ� into the interval Œa; b�. Then

ˇZ
˛

f
�
'.x/

�
'0.x/ dx D

'.ˇ/Z
'.˛/

f .t/ dt:

Theorem (logarithm). There exist a unique function log with the following properties:

(L1) Dlog D .0;C1/,

(L2) the function log is increasing on .0;C1/,

(L3) 8x; y 2 .0;C1/ W log xy D log x C logy,

(L4) lim
x!1

logx
x�1
D 1.
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