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I.1. Sets

We take a set to be a collection of definite and
distinguishable objects into a coherent whole.

x ∈ A . . . x is an element (or member) of the set A
x /∈ A . . . x is not a member of the set A
A ⊂ B . . . the set A is a subset of the set B (inclusion)
A = B . . . the sets A and B have the same elements;
the following holds: A ⊂ B and B ⊂ A
∅ . . . an empty set
A ∪ B . . . a union of the sets A and B
A ∩ B . . . an intersection of the sets A and B
disjoint sets . . . A and B are disjoint if A ∩ B = ∅
A \ B = {x ∈ A; x /∈ B} . . . a difference of the sets A
and B
A1 × · · · × Am = {[a1, . . . ,am]; a1 ∈ A1, . . . ,am ∈ Am}
. . . a Cartesian product
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I.1. Sets

Let I be a non-empty set of indices and suppose we have
a system of sets Aα, where the indices α run over I.

⋃
α∈I

Aα . . . the set of all elements belonging to at least

one of the sets Aα⋂
α∈I

Aα . . . the set of all elements belonging to every Aα
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I.2. Logic, methods of proofs

Logic

A statement (or proposition) is a sentence which can be
declared to be either true or false.

¬, also non . . . negation
& (also ∧) . . . conjunction, logical “and”
∨ . . . disjuction (alternative), logical “or”
⇒ . . . implication
⇔ . . . equivalence; “if and only if”
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I.2. Logic, methods of proofs

Tautology is a compound statement, which is true
independently of the truthness of its elementary
statements.

Examples of tautologies:

A ∨ ¬A
¬(A & ¬A)(
(A & B) & C

)
⇔
(
A & (B & C)

)
¬(A & B)⇔ (¬A ∨ ¬B)

¬(A ∨ B)⇔ (¬A & ¬B)

(A⇒ B)⇔ (¬B ⇒ ¬A)

¬(A⇒ B)⇔ (A & ¬B)

(A⇔ B)⇔
(
(A⇒ B) & (B ⇒ A)

)
(A⇒ B)⇔ (¬A ∨ B)
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I.2. Logic, methods of proofs

A predicate (or propositional function) is an expression or
sentence involving variables which becomes a statement
once we substitute certain elements of a given set for the
variables.

General form:
V (x), x ∈ M

V (x1, . . . , xn), x1 ∈ M1, . . . , xn ∈ Mn
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I.2. Logic, methods of proofs

If A(x), x ∈ M is a predicate, then the statement “A(x)
holds for every x from M.” is shortened to

∀x ∈ M : A(x).

The statement “There exists x in M such that A(x) holds.”
is shortened to

∃x ∈ M : A(x).

The statement “There is only one x in M such that A(x)
holds.” is shortened to

∃!x ∈ M : A(x).

If A(x), x ∈ M and B(x), x ∈ M are predicates, then

∀x ∈ M,B(x) : A(x) means ∀x ∈ M : (B(x)⇒ A(x)),

∃x ∈ M,B(x) : A(x) means ∃x ∈ M : (A(x) & B(x)).
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I.2. Logic, methods of proofs

Negations of the statements with quantifiers:

¬(∀x ∈ M : A(x)) is the same as ∃x ∈ M : ¬A(x),

¬(∃x ∈ M : A(x)) is the same as ∀x ∈ M : ¬A(x).
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I.2. Logic, methods of proofs

Methods of proofs

direct proof
indirect proof
proof by contradiction
mathematical induction
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I.2. Logic, methods of proofs

Theorem 1 (de Morgan rules)
Let S, Aα, α ∈ I, where I 6= ∅, be sets. Then

S \
⋃
α∈I

Aα =
⋂
α∈I

(S \Aα) and S \
⋂
α∈I

Aα =
⋃
α∈I

(S \Aα).
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I.2. Logic, methods of proofs

Theorem 2 (Cauchy inequality)
Let a1, . . . ,an, b1, . . . ,bn be real numbers. Then(

n∑
i=1

aibi

)2

≤

(
n∑

i=1

a2
i

)(
n∑

i=1

b2
i

)
.

Mathematics I I. Introduction



I.2. Logic, methods of proofs

Example (irrationality of
√

2)
If a real number x solves the equation x2 = 2, then x is
not rational.
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I.3. Number sets

Rational numbers

A set of natural numbers

N = {1,2,3,4, . . . }

A set of integers

Z = N∪{0}∪{−n; n ∈ N} = {. . . ,−2,−1,0,1,2, . . . }

A set of rational numbers

Q =

{
p
q

; p ∈ Z,q ∈ N
}
,

where p1
q1

= p2
q2

if and only if p1 · q2 = p2 · q1.
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I.3. Number sets

Real numbers

By a set of real numbers R we will understand a set on
which there are operations of addition and multiplication
(denoted by + and ·), and a relation of ordering (denoted
by ≤), such that it has the following three groups of
properties.

I. The properties of addition and multiplication and their
relationships.

II. The relationships of the ordering and the operations
of addition and multiplication.

III. The infimum axiom.
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I.3. Number sets

The properties of addition and multiplication and their
relationships:
∀x , y ∈ R : x + y = y + x (commutativity of addition),

∀x , y , z ∈ R : x + (y + z) = (x + y) + z (associativity),
There is an element in R (denoted by 0 and called a
zero element), such that x + 0 = x for every x ∈ R,
∀x ∈ R ∃y ∈ R : x + y = 0 (y is called the negative
of x , such y is only one, denoted by −x),
∀x , y ∈ R : x · y = y · x (commutativity),
∀x , y , z ∈ R : x · (y · z) = (x · y) · z (associativity),
There is a non-zero element in R (called identity,
denoted by 1), such that 1 · x = x for every x ∈ R,
∀x ∈ R \ {0} ∃y ∈ R : x · y = 1 (such y is only one,
denoted by x−1 or 1

x ),
∀x , y , z ∈ R : (x + y) · z = x · z + y · z (distributivity).
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I.3. Number sets

The relationships of the ordering and the operations
of addition and multiplication:
∀x , y , z ∈ R : (x ≤ y & y ≤ z)⇒ x ≤ z (transitivity),

∀x , y ∈ R : (x ≤ y & y ≤ x)⇒ x = y (weak
antisymmetry),
∀x , y ∈ R : x ≤ y ∨ y ≤ x ,
∀x , y , z ∈ R : x ≤ y ⇒ x + z ≤ y + z,
∀x , y ∈ R : (0 ≤ x & 0 ≤ y)⇒ 0 ≤ x · y .
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I.3. Number sets

Definition
We say that the set M ⊂ R is bounded from below if there
exists a number a ∈ R such that for each x ∈ M we have
x ≥ a.

Such a number a is called a lower bound of the
set M. Analogously we define the notions of a set
bounded from above and an upper bound. We say that a
set M ⊂ R is bounded if it is bounded from above and
below.
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I.3. Number sets

The infimum axiom:
Let M be a non-empty set bounded from below. Then
there exists a unique number g ∈ R such that

(i) ∀x ∈ M : x ≥ g,

(ii) ∀g′ ∈ R,g′ > g ∃x ∈ M : x < g′.
The number g is denoted by inf M and is called the
infimum of the set M.
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I.3. Number sets

Remark
The infimum axiom says that every non-empty set
bounded from below has an infimum.

The infimum of the set M is its greatest lower bound.
The real numbers exist and are uniquely determined
by the properties I–III.
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I.3. Number sets

The following hold:
(i) ∀x ∈ R : x · 0 = 0 · x = 0,

(ii) ∀x ∈ R : − x = (−1) · x ,
(iii) ∀x , y ∈ R : xy = 0⇒ (x = 0 ∨ y = 0),
(iv) ∀x ∈ R ∀n ∈ N : x−n = (x−1)n,
(v) ∀x , y ∈ R : (x > 0 ∧ y > 0)⇒ xy > 0,
(vi) ∀x ∈ R, x ≥ 0 ∀y ∈ R, y ≥ 0 ∀n ∈ N : x < y ⇔ xn <

yn.
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I.3. Number sets

Let a,b ∈ R, a ≤ b. We denote:
An open interval (a,b) = {x ∈ R; a < x < b},
A closed interval [a,b] = {x ∈ R; a ≤ x ≤ b},
A half-open interval [a,b) = {x ∈ R; a ≤ x < b},
A half-open interval (a,b] = {x ∈ R; a < x ≤ b}.

The point a is called the left endpoint of the interval, The
point b is called the right endpoint of the interval. A point
in the interval which is not an endpoint is called an inner
point of the interval.
Unbounded intervals:

(a,+∞) = {x ∈ R; a < x}, (−∞,a) = {x ∈ R; x < a},

analogically (−∞,a], [a,+∞) and (−∞,+∞).
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I.3. Number sets

We have N ⊂ Z ⊂ Q ⊂ R. If we transfer the addition and
multiplication from R to the above sets, we obtain the
usual operations on these sets.

A real number that is not rational is called irrational. The
set R \Q is called the set of irrational numbers.
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I.3. Number sets

Complex numbers

By the set of complex numbers we mean the set of all
expressions of the form a + bi , where a,b ∈ R. The set of
all complex numbers is denoted by C. On C there are
operations of addition and multiplication satisfying the
group of properties I and moreover i · i = −1.

Theorem (“fundamental theorem of algebra”)
Let n ∈ N, a0, . . . ,an ∈ C, an 6= 0. Then the equation

anzn + an−1zn−1 + an−2zn−2 + · · ·+ a1z + a0 = 0

has at least one solution z ∈ C.
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I.3. Number sets

Consequences of the infimum axiom

Definition
Let M ⊂ R. A number G ∈ R satisfying

(i) ∀x ∈ M : x ≤ G,
(ii) ∀G′ ∈ R,G′ < G ∃x ∈ M : x > G′,

is called a supremum of the set M.

Theorem 3 (Supremum theorem)
Let M ⊂ R be a non-empty set bounded from above. Then
there exists a unique supremum of the set M.
The supremum of the set M is denoted by sup M.
The following holds: sup M = − inf(−M).
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I.3. Number sets

Definition
Let M ⊂ R. We say that a is a maximum of the set M
(denoted by max M) if a is an upper bound of M and
a ∈ M. Analogously we define a minimum of M, denoted
by min M.
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I.3. Number sets

Lemma 4 (“no holes”)
Let M ⊂ R and

∀x , y ∈ M ∀z ∈ R, x < z < y : z ∈ M.

Then M is an interval.
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I.3. Number sets

Theorem 5 (Archimedean property)
For every x ∈ R there exists n ∈ N satisfying n > x.

Theorem 6 (existence of an integer part)
For every r ∈ R there exists an integer part of r , i.e. a
number k ∈ Z satisfying k ≤ r < k + 1. The integer part
of r is determined uniquely and it is denoted by [r ].
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I.3. Number sets

Theorem 7 (nth root)
For every x ∈ [0,+∞) and every n ∈ N there exists a
unique y ∈ [0,+∞) satisfying yn = x.

Theorem 8 (density of Q and R \Q)
Let a,b ∈ R, a < b. Then there exist r ∈ Q satisfying
a < r < b and s ∈ R \Q satisfying a < s < b.
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II.1. Introduction

II. Limit of a sequence

Definition
Suppose that to each natural number n ∈ N we assign a
real number an. Then we say that {an}∞n=1 is a sequence
of real numbers. The number an is called the nth member
of this sequence.
A sequence {an}∞n=1 is equal to a sequence {bn}∞n=1 if
an = bn holds for every n ∈ N.
By the set of all members of the sequence {an}∞n=1 we
understand a set

{x ∈ R; ∃n ∈ N : an = x}.
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II.1. Introduction

Posloupnost {1/n}
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Posloupnost {(–1)^n}
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Posloupnost {n}
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II.1. Introduction

Posloupnost {P_n}
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II.1. Introduction

Definition
We say that a sequence {an} is

bounded from above if the set of all members of this
sequence is bounded from above,

bounded from below if the set of all members of this
sequence is bounded from below,
bounded if the set of all members of this sequence is
bounded.
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II.1. Introduction

Definition
We say that a sequence {an} is

increasing if an < an+1 for every n ∈ N,

decreasing if an > an+1 for every n ∈ N,
non-decreasing if an ≤ an+1 for every n ∈ N,
non-increasing if an ≥ an+1 for every n ∈ N.

A sequence {an} is monotone if it satisfies one of the
conditions above. A sequence {an} is strictly monotone if
it is increasing or decreasing.
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II.1. Introduction

Definition
Let {an} and {bn} be sequences of real numbers.

By the sum of sequences {an} and {bn} we
understand a sequence {an + bn}.

Analogously we define a difference and a product of
sequences.
Suppose all the members of the sequence {bn} are
non-zero. Then by the quotient of sequences {an}
and {bn} we understand a sequence {an

bn
}.

If λ ∈ R, then by the λ-multiple of the sequence {an}
we understand a sequence {λan}.
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II.2. Convergence of sequences

Definition
We say that a sequence {an} has a limit which equals to a
number A ∈ R if to every positive real number ε there
exists a natural number n0 such that for every index
n ≥ n0 we have |an − A| < ε, i.e.

∀ε ∈ R, ε > 0 ∃n0 ∈ N ∀n ∈ N,n ≥ n0 : |an − A| < ε.

We say that a sequence {an} is convergent if there exists
A ∈ R which is a limit of {an}.
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II.2. Convergence of sequences

Theorem 9 (uniqueness of a limit)
Every sequence has at most one limit.

We use the notation lim
n→∞

an = A or simply lim an = A.
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II.2. Convergence of sequences

Remark
Let {an} be a sequence of real numbers and A ∈ R. Then

lim an = A⇔ lim(an − A) = 0⇔ lim |an − A| = 0.

Theorem 10
Every convergent sequence is bounded.
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II.2. Convergence of sequences

Definition
Let {an}∞n=1 be a sequence of real numbers. We say that a
sequence {bk}∞k=1 is a subsequence of {an}∞n=1 if there is
an increasing sequence {nk}∞k=1 of natural numbers such
that bk = ank for every k ∈ N.

Theorem 11 (limit of a subsequence)
Let {bk}∞k=1 be a subsequence of {an}∞n=1. If
limn→∞ an = A ∈ R, then also limk→∞ bk = A.
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II.2. Convergence of sequences

Remark
Let {an}∞n=1 be a sequence of real numbers, A ∈ R,
K ∈ R, K > 0. If

∀ε ∈ R, ε > 0 ∃n0 ∈ N ∀n ∈ N,n ≥ n0 : |an − A| < K ε,

then lim an = A.
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II.2. Convergence of sequences

Theorem 12 (arithmetics of limits)
Suppose that lim an = A ∈ R and lim bn = B ∈ R. Then

(i) lim(an + bn) = A + B,

(ii) lim(an · bn) = A · B,
(iii) if B 6= 0 and bn 6= 0 for all n ∈ N, then

lim(an/bn) = A/B.

Theorem 13
Suppose that lim an = 0 and the sequence {bn} is
bounded. Then lim anbn = 0.
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II.2. Convergence of sequences

Theorem 14 (limits and ordering)
Let lim an = A ∈ R and lim bn = B ∈ R.

(i) Suppose that there is n0 ∈ N such that an ≥ bn for
every n ≥ n0. Then A ≥ B.

(ii) Suppose that A < B. Then there is n0 ∈ N such that
an < bn for every n ≥ n0.

Theorem 15 (two policemen/sandwich theorem)
Let {an}, {bn} be convergent sequences and let {cn} be a
sequence such that

(i) ∃n0 ∈ N ∀n ∈ N,n ≥ n0 : an ≤ cn ≤ bn,
(ii) lim an = lim bn.

Then lim cn exists and lim cn = lim an.
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Let {an}, {bn} be convergent sequences and let {cn} be a
sequence such that

(i) ∃n0 ∈ N ∀n ∈ N,n ≥ n0 : an ≤ cn ≤ bn,
(ii) lim an = lim bn.

Then lim cn exists and lim cn = lim an.
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II.3. Infinite limits of sequences

Definition
We say that a sequence {an} has a limit +∞ (plus infinity)
if

∀L ∈ R ∃n0 ∈ N ∀n ∈ N,n ≥ n0 : an > L.

We say that a sequence {an} has a limit −∞ (minus
infinity) if

∀K ∈ R ∃n0 ∈ N ∀n ∈ N,n ≥ n0 : an < K .

Theorem 9 on the uniqueness of a limit holds also for the
limits +∞ and −∞. If lim an = +∞, then we say that the
sequence {an} diverges to +∞, similarly for −∞. If
lim an ∈ R, then we say that the limit is finite, if
lim an = +∞ or lim an = −∞, then we say that the limit is
infinite.
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II.3. Infinite limits of sequences
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II.3. Infinite limits of sequences

Theorem 10 does not hold for infinite limits. But:

Theorem 10’
Suppose that lim an = +∞. Then the sequence {an}
is not bounded from above, but is bounded from
below.
Suppose that lim an = −∞. Then the sequence {an}
is not bounded from below, but is bounded from
above.

Theorem 11 (limit of a subsequence) holds also for infinite
limits.
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II.3. Infinite limits of sequences

Definition
We define the extended real line by setting
R∗ = R ∪ {+∞,−∞} with the following extension of
operations and ordering from R:

a < +∞ and −∞ < a for a ∈ R, −∞ < +∞,

a + (+∞) = (+∞) + a = +∞ for a ∈ R∗ \ {−∞},
a + (−∞) = (−∞) + a = −∞ for a ∈ R∗ \ {+∞},
a · (±∞) = (±∞) · a = ±∞ for a ∈ R∗, a > 0,
a · (±∞) = (±∞) · a = ∓∞ for a ∈ R∗, a < 0,

a
±∞ = 0 pro a ∈ R.
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II.3. Infinite limits of sequences

The following operations are not defined:
(−∞) + (+∞), (+∞) + (−∞), (+∞)− (+∞),
(−∞)− (−∞),

(+∞) · 0, 0 · (+∞), (−∞) · 0, 0 · (−∞),
+∞
+∞ , +∞

−∞ , −∞−∞ , −∞
+∞ , a

0 for a ∈ R∗.
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II.3. Infinite limits of sequences

Theorem 12’ (arithmetics of limits)
Suppose that lim an = A ∈ R∗ and lim bn = B ∈ R∗. Then

(i) lim(an ± bn) = A± B if the right-hand side is defined,

(ii) lim(an · bn) = A · B if the right-hand side is defined,
(iii) lim an/bn = A/B if the right-hand side is defined.

Theorem 16
Suppose that lim an = A ∈ R∗, A > 0, lim bn = 0 and there
is n0 ∈ N such that we have bn > 0 for every n ∈ N,
n ≥ n0. Then lim an/bn = +∞.
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II.3. Infinite limits of sequences

Theorem 14 (limits and ordering) and Theorem 15
(sandwich theorem) hold also for infinite limits. Even the
following modification holds:

Theorem 15’ (one policeman)
Let {an} and {bn} be two sequences.

If lim an = +∞ and there is n0 ∈ N such that bn ≥ an

for every n ∈ N, n ≥ n0, then lim bn = +∞.
If lim an = −∞ and there is n0 ∈ N such that bn ≤ an

for every n ∈ N, n ≥ n0, then lim bn = −∞.
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II.3. Infinite limits of sequences

Definition
Let A ⊂ R be non-empty. If A is not bounded from above,
then we define sup A = +∞. If A is not bounded from
below, then we define inf A = −∞.

Lemma 17
Let M ⊂ R be non-empty and G ∈ R∗. Then the following
statements are equivalent:

(i) G = sup M.
(ii) The number G is an upper bound of M and there

exists a sequence {xn}∞n=1 of members of M such
that lim xn = G.
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II.4. Deeper theorems on limits of sequences

Theorem 18 (limit of a monotone sequence)
Every monotone sequence has a limit. If {an} is
non-decreasing, then lim an = sup{an; n ∈ N}. If {an} is
non-increasing, then lim an = inf{an; n ∈ N}.
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II.4. Deeper theorems on limits of sequences

Theorem 19 (Bolzano-Weierstraß)
Every bounded sequence contains a convergent
subsequence.
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III. Mappings

Definition
Let A and B be sets. A mapping f from A to B is a rule
which assigns to each member x of the set A a unique
member y of the set B. This element y is denoted by the
symbol f (x).

The element y is called an image of x and
the element x is called a pre-image of y .

By f : A→ B we denote the fact that f is a mapping
from A to B.
By f : x 7→ f (x) we denote the fact that the mapping f
assigns f (x) to an element x .
The set A from the definition of the mapping f is
called the domain of f and it is denoted by Df .
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III. Mappings

Definition
Let f : A→ B be a mapping.

The subset Gf = {[x , y ] ∈ A× B; x ∈ A, y = f (x)} of
the Cartesian product A× B is called the graph of the
mapping f .

The image of the set M ⊂ A under the mapping f is
the set

f (M) = {y ∈ B; ∃x ∈ M : f (x) = y} (= {f (x); x ∈ M}).

The set f (A) is called the range of the mapping f , it is
denoted by Rf .
The pre-image of the set W ⊂ B under the mapping f
is the set

f−1(W ) = {x ∈ A; f (x) ∈W}.
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III. Mappings

Remark
Let f : A→ B, X ,Y ⊂ A, U,V ⊂ B. Then

f−1(U ∪ V ) = f−1(U) ∪ f−1(V ),

f−1(U ∩ V ) = f−1(U) ∩ f−1(V ),
f (X ∪ Y ) = f (X ) ∪ f (Y ),
f (X ∩ Y ) ⊂ f (X ) ∩ f (Y ).

Mathematics I III. Mappings



III. Mappings

Remark
Let f : A→ B, X ,Y ⊂ A, U,V ⊂ B. Then

f−1(U ∪ V ) = f−1(U) ∪ f−1(V ),
f−1(U ∩ V ) = f−1(U) ∩ f−1(V ),

f (X ∪ Y ) = f (X ) ∪ f (Y ),
f (X ∩ Y ) ⊂ f (X ) ∩ f (Y ).

Mathematics I III. Mappings



III. Mappings

Remark
Let f : A→ B, X ,Y ⊂ A, U,V ⊂ B. Then

f−1(U ∪ V ) = f−1(U) ∪ f−1(V ),
f−1(U ∩ V ) = f−1(U) ∩ f−1(V ),
f (X ∪ Y ) = f (X ) ∪ f (Y ),

f (X ∩ Y ) ⊂ f (X ) ∩ f (Y ).

Mathematics I III. Mappings



III. Mappings

Remark
Let f : A→ B, X ,Y ⊂ A, U,V ⊂ B. Then

f−1(U ∪ V ) = f−1(U) ∪ f−1(V ),
f−1(U ∩ V ) = f−1(U) ∩ f−1(V ),
f (X ∪ Y ) = f (X ) ∪ f (Y ),
f (X ∩ Y ) ⊂ f (X ) ∩ f (Y ).

Mathematics I III. Mappings



III. Mappings

Definition
Let A, B, C be sets, C ⊂ A and f : A→ B. The mapping
f̃ : C → B given by the formula f̃ (x) = f (x) for each x ∈ C
is called the restriction of the mapping f to the set C. It is
denoted by f |C.
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III. Mappings

Definition
Let f : A→ B and g : B → C be two mappings. The
symbol g ◦ f denotes a mapping from A to C defined by

(g ◦ f )(x) = g(f (x)).

This mapping is called a compound mapping or a
composition of the mapping f and the mapping g.
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III. Mappings

Definition
We say that a mapping f : A→ B

maps the set A onto the set B if f (A) = B, i.e. if to
each y ∈ B there exist x ∈ A such that f (x) = y ;

is one-to-one (or injective) if images of different
elements differ, i.e.

∀x1, x2 ∈ A : x1 6= x2 ⇒ f (x1) 6= f (x2),

is a bijection of A onto B (or a bijective mapping), if it
is at the same time one-to-one and maps A onto B.
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III. Mappings

Definition
Let f : A→ B be bijective (i.e. one-to-one and onto). An
inverse mapping f−1 : B → A is a mapping that to each
y ∈ B assigns a (uniquely determined) element x ∈ A
satisfying f (x) = y .
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IV.1. Basic notions

IV. Functions of one real variable

Definition
A function f of one real variable (or a function for short) is
a mapping f : M → R, where M is a subset of real
numbers.
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IV.1. Basic notions

Definition
A function f : J → R is increasing on an interval J, if for
each pair x1, x2 ∈ J, x1 < x2 the inequality f (x1) < f (x2)
holds. Analogously we define a function decreasing
(non-decreasing, non-increasing) on an interval J.

Definition
A monotone function on an interval J is a function which
is non-decreasing or non-increasing on J. A strictly
monotone function on an interval J is a function which is
increasing or decreasing on J.
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IV.1. Basic notions

Definition
Let f be a function and M ⊂ Df . We say that f is

bounded from above on M if there is K ∈ R such that
f (x) ≤ K for all x ∈ M,

bounded from below on M if there is K ∈ R such that
f (x) ≥ K for all x ∈ M,
bounded on M if there is K ∈ R such that |f (x)| ≤ K
for all x ∈ M,
odd if for each x ∈ Df we have −x ∈ Df and
f (−x) = −f (x),
even if for each x ∈ Df we have −x ∈ Df and
f (−x) = f (x),
periodic with a period a, where a ∈ R, a > 0, if for
each x ∈ Df we have x + a ∈ Df , x − a ∈ Df and
f (x + a) = f (x − a) = f (x).
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IV.2. Limit of a function

Definition
Let c ∈ R and ε > 0. We define

a neighbourhood of a point c with radius ε by
B(c, ε) = (c − ε, c + ε),

a punctured neighbourhood of a point c with radius ε
by P(c, ε) = (c − ε, c + ε) \ {c}.
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IV.2. Limit of a function

Definition
We say that A ∈ R is a limit of a function f at a point c ∈ R
if

∀ε ∈ R, ε > 0 ∃δ ∈ R, δ > 0 ∀x ∈ P(c, δ) : f (x) ∈ B(A, ε).

Theorem 20 (uniqueness of a limit)
Let f be a function and c ∈ R. Then f has a most one limit
A ∈ R at c.
The fact that f has a limit A ∈ R at c ∈ R is denoted by
lim
x→c

f (x) = A.
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IV.2. Limit of a function

Definition
We say that a function f is continuous at a point c ∈ R if

lim
x→c

f (x) = f (c).

Remark
A function f is continuous at a point c if and only if

∀ε ∈ R, ε > 0 ∃δ ∈ R, δ > 0 ∀x ∈ B(c, δ) : f (x) ∈ B(f (c), ε).
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IV.2. Limit of a function

Definition
Let ε > 0. A neighbourhood and a punctured
neighbourhood of +∞ (resp. −∞) is defined as follows:

P(+∞, ε) = B(+∞, ε) = (1/ε,+∞),

P(−∞, ε) = B(−∞, ε) = (−∞,−1/ε).

Definition
We say that A ∈ R∗ is a limit of a function f at c ∈ R∗ if

∀ε ∈ R, ε > 0 ∃δ ∈ R, δ > 0 ∀x ∈ P(c, δ) : f (x) ∈ B(A, ε).

Theorem 20 holds also for c ∈ R∗, A ∈ R∗, so we can
again use the notation limx→c f (x) = A.
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IV.2. Limit of a function

Definition
Let c ∈ R and ε > 0. We define

a right neighbourhood of c by B+(c, ε) = [c, c + ε),

a left neighbourhood of c by B−(c, ε) = (c − ε, c],
a right punctured neighbourhood of c by
P+(c, ε) = (c, c + ε),
a left punctured neighbourhood of c by
P−(c, ε) = (c − ε, c),
a left neighbourhood and left punctured
neighbourhood of +∞ by
B−(+∞, ε) = P−(+∞, ε) = (1/ε,+∞),
a right neighbourhood and right punctured
neighbourhood of −∞ by
B+(−∞, ε) = P+(−∞, ε) = (−∞,−1/ε).
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P+(c, ε) = (c, c + ε),

a left punctured neighbourhood of c by
P−(c, ε) = (c − ε, c),
a left neighbourhood and left punctured
neighbourhood of +∞ by
B−(+∞, ε) = P−(+∞, ε) = (1/ε,+∞),
a right neighbourhood and right punctured
neighbourhood of −∞ by
B+(−∞, ε) = P+(−∞, ε) = (−∞,−1/ε).
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IV.2. Limit of a function

Definition
Let A ∈ R∗, c ∈ R ∪ {−∞}. We say that a function f has a
limit from the right at c equal to A ∈ R∗ (denoted by
lim

x→c+
f (x) = A) if

∀ε ∈ R, ε > 0 ∃δ ∈ R, δ > 0 ∀x ∈ P+(c, δ) : f (x) ∈ B(A, ε).

Analogously we define the notion of limit from the left at
c ∈ R ∪ {+∞} and we use the notation lim

x→c−
f (x).

Remark
Let c ∈ R, A ∈ R∗. Then

lim
x→c

f (x) = A⇔
(

lim
x→c+

f (x) = A & lim
x→c−

f (x) = A
)
.
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IV.2. Limit of a function

Definition
Let c ∈ R. We say that a function f is continuous at c from
the right (from the left, resp.) if limx→c+ f (x) = f (c)
(limx→c− f (x) = f (c), resp.).
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IV.2. Limit of a function
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IV.2. Limit of a function

Theorem 21
Let f has a finite limit at c ∈ R∗. Then there exists δ > 0
such that f is bounded on P(c, δ).

Mathematics I IV. Functions of one real variable



IV.2. Limit of a function

Theorem 22 (arithmetics of limits)
Let c ∈ R∗, limx→c f (x) = A ∈ R∗ and
limx→c g(x) = B ∈ R∗. Then

(i) limx→c(f (x) + g(x)) = A + B if the expression A + B is
defined,

(ii) limx→c f (x)g(x) = AB if the expression AB is defined,
(iii) limx→c f (x)/g(x) = A/B if the expression A/B is

defined.

Corollary
Suppose that the functions f and g are continuous at
c ∈ R. Then also the functions f + g and fg are
continuous at c. If moreover g(c) 6= 0, then also the
function f/g is continuous at c.
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IV.2. Limit of a function

Theorem 23
Let c ∈ R∗, limx→c g(x) = 0, limx→c f (x) = A ∈ R∗ and
A > 0. If there exists η > 0 such that the function g is
positive on P(c, η), then limx→c

(
f (x)/g(x)

)
= +∞.
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IV.2. Limit of a function

Definition
A polynomial is a function P of the form

P(x) = a0 + a1x + · · ·+ anxn, x ∈ R,

where n ∈ N ∪ {0} and a0,a1, . . . ,an ∈ R. The numbers
a0, . . . ,an are called the coefficients of the polynomial P.

Remark
Let n,m ∈ N ∪ {0} and

P(x) = a0 + a1x + · · ·+ anxn, x ∈ R,
Q(x) = b0 + b1x + · · ·+ bmxm, x ∈ R,

where a0,a1, . . . ,an ∈ R, an 6= 0, b0,b1, . . . ,bm ∈ R,
bm 6= 0. If the polynomials P and Q are equal (i.e.
P(x) = Q(x) for each x ∈ R), then n = m and
a0 = b0, . . . ,an = bn.
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IV.2. Limit of a function

Definition
Let P be a polynomial of the form

P(x) = a0 + a1x + · · ·+ anxn, x ∈ R.

We say that P is a polynomial of degree n if an 6= 0. The
degree of a zero polynomial (i.e. a constant zero function
defined on R) is defined as −1.

Mathematics I IV. Functions of one real variable



IV.2. Limit of a function

Theorem 24 (limits and inequalities)
Suppose that c ∈ R∗ and limx→c f (x), limx→c g(x) exist.
(i) If limx→c f (x) > limx→c g(x), then there exists δ > 0
such that

∀x ∈ P(c, δ) : f (x) > g(x).

(ii) If there exists δ > 0 such that
∀x ∈ P(c, δ) : f (x) ≤ g(x), then

lim
x→c

f (x) ≤ lim
x→c

g(x).

(iii) (two policemen/sandwich theorem) Suppose that
there exists η > 0 such that

∀x ∈ P(c, η) : f (x) ≤ h(x) ≤ g(x).

If moreover limx→c f (x) = limx→c g(x) = A ∈ R∗, then the
limit limx→c h(x) also exists and equals A.
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IV.2. Limit of a function

Corollary
Let c ∈ R∗, limx→c f (x) = 0 and suppose there exists
η > 0 such that g is bounded on P(c, η). Then
limx→c

(
f (x)g(x)

)
= 0.
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IV.2. Limit of a function

Theorem 25 (limit of a composition)
Let c,A,B ∈ R∗, limx→c g(x) = A, limy→A f (y) = B and at
least on of the following conditions is satisfied:
(I) ∃η ∈ R, η > 0 ∀x ∈ P(c, η) : g(x) 6= A,

(C) the function f is continuous at A.
Then

lim
x→c

f
(
g(x)

)
= B.

Corollary
Suppose that the function g is continuous at c ∈ R and
the function f is continuous at g(c). Then the function
f ◦ g is continuous at c.
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IV.2. Limit of a function
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IV.2. Limit of a function
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IV.2. Limit of a function
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IV.2. Limit of a function
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IV.2. Limit of a function
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IV.2. Limit of a function

Theorem 26 (Heine)
Let c ∈ R∗, A ∈ R∗ and the function f satisfies
limx→c f (x) = A. If the sequence {xn} satisfies xn ∈ Df ,
xn 6= c for all n ∈ N and limn→∞ xn = c, then
limn→∞ f (xn) = A.
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IV.2. Limit of a function

Theorem 27 (limit of a monotone function)
Let a,b ∈ R∗, a < b. Suppose that f is a function
monotone on an interval (a,b). Then the limits
limx→a+ f (x) and limx→b− f (x) exist. Moreover,

if f is non-decreasing on (a,b), then
limx→a+ f (x) = inf f

(
(a,b)

)
and

limx→b− f (x) = sup f
(
(a,b)

)
;

if f is non-increasing on (a,b), then
limx→a+ f (x) = sup f

(
(a,b)

)
and

limx→b− f (x) = inf f
(
(a,b)

)
.
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IV.3. Functions continuous on an interval

Definition
Let J ⊂ R be a non-degenerate interval (i.e. it contains
infinitely many points). A function f : J → R is continuous
on the interval J if

f is continuous at every inner point J,
f is continuous from the right at the left endpoint of J
if this point belongs to J,
f is continuous from the left at the right endpoint of J
if this point belongs to J.
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IV.3. Functions continuous on an interval

Theorem 28 (continuity of the compound
function on an interval)
Let I and J be intervals, g : I → J, f : J → R, let g be
continuous on I and let f be continuous on J. Then the
function f ◦ g is continuous on I.
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IV.3. Functions continuous on an interval

Theorem 29 (Bolzano, intermediate value
theorem)
Let f be a function continuous on an interval [a,b] and
suppose that f (a) < f (b). Then for each C ∈ (f (a), f (b))
there exists ξ ∈ (a,b) satisfying f (ξ) = C.
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IV.3. Functions continuous on an interval

Theorem 30 (an image of an interval under a
continuous function)
Let J be an interval and let f : J → R be a function
continuous on J. Then f (J) is an interval.
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IV.3. Functions continuous on an interval

Definition
Let M ⊂ R, x ∈ M and a function f is defined at least on
M (i.e. M ⊂ Df ). We say that f attains its maximum (resp.
minimum) on M at x ∈ M if

∀y ∈ M : f (y) ≤ f (x) (resp. ∀y ∈ M : f (y) ≥ f (x)).

The point x is called the point of maximum (resp.
minimum) of the function f on M. The symbol maxM f
(resp. minM f ) denotes the maximal (resp. minimal) value
of f on M (if such a value exists). The points of maxima or
minima are collectively called the points of extrema.
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IV.3. Functions continuous on an interval

Definition
Let M ⊂ R, x ∈ M and a function f is defined at least on
M (i.e. M ⊂ Df ). We say that the function f has at x

a local maximum with respect to M if there exists
δ > 0 such that ∀y ∈ B(x , δ) ∩M : f (y) ≤ f (x),

a local minimum with respect to M if there exists
δ > 0 such that ∀y ∈ B(x , δ) ∩M : f (y) ≥ f (x),
a strict local maximum with respect to M if there
exists δ > 0 such that ∀y ∈ P(x , δ) ∩M : f (y) < f (x),
a strict local minimum with respect to M if there exists
δ > 0 such that ∀y ∈ P(x , δ) ∩M : f (y) > f (x).

The points of local maxima or minima are collectively
called the points of local extrema.
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The points of local maxima or minima are collectively
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IV.3. Functions continuous on an interval

Theorem 31 (Heine theorem for continuity on an
interval)
Let f be a function continuous on an interval J and c ∈ J.
Then lim f (xn) = f (c) for each sequence {xn}∞n=1 of points
in the interval J satisfying lim xn = c.
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IV.3. Functions continuous on an interval

Theorem 32 (extrema of continuous functions)
Let f be a function continuous on an interval [a,b]. Then f
attains its maximum and minimum on [a,b].

Corollary 33 (boundedness of a continuous
function)
Let f be a function continuous on an interval [a,b]. Then f
is bounded on [a,b].
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IV.3. Functions continuous on an interval

Theorem 34 (continuity of an inverse function)
Let f be a continuous function that is increasing (resp.
decreasing) on an interval J. Then the function f−1 is
continuous and increasing (resp. decreasing) on the
interval f (J).
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IV.4. Elementary functions

Theorem 35 (logarithm)
There exist a unique function (denoted by log and called
the natural logarithm) with the following properties:
(L1) Dlog = (0,+∞),
(L2) the function log is increasing on (0,+∞),
(L3) ∀x , y ∈ (0,+∞) : log xy = log x + log y,
(L4) lim

x→1

log x
x−1 = 1.
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IV.4. Elementary functions

Properties of the logarithm

log 1 = 0,
∀x ∈ (0,+∞) : log(1/x) = − log x ,
∀n ∈ Z ∀x ∈ (0,+∞) : log xn = n log x ,
lim

x→+∞
log x = +∞, lim

x→0+
log x = −∞,

the function log is continuous on (0,+∞),
Rlog = R,
there exists a unique number e ∈ (0,+∞) satisfying
log e = 1.
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IV.4. Elementary functions

Definition
The exponential function (denoted by exp) is defined as
an inverse function to the function log.

Properties of the exponential function

Dexp = R, Rexp = (0,+∞),
the function exp is continuous and increasing on R,
exp 0 = 1, exp 1 = e,
∀x , y ∈ R : exp(x + y) = exp(x) exp(y),
∀x ∈ R : exp(−x) = 1/exp x ,
∀n ∈ Z ∀x ∈ R : exp(nx) = (exp x)n,
lim

x→+∞
exp x = +∞, lim

x→−∞
exp x = 0,

lim
x→0

exp(x)−1
x = 1,

∀r ∈ Q : exp r = er .
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IV.4. Elementary functions

Definition
Let a,b ∈ R, a > 0. The general power ab is defined by

ab = exp(b log a).

Definition
Let a,b ∈ (0,+∞), a 6= 1. The general logarithm to base a
is defined by

loga b =
log b
log a

.
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IV.4. Elementary functions

Theorem 36 (the sine and the number π)
There exists a unique positive real number (denoted by π)
and a unique function sine (denoted by sin) with the
following properties:
(S1) Dsin = R,
(S2) sin is increasing on [−π/2, π/2],
(S3) sin 0 = 0,
(S4) ∀x , y ∈ R : sin(x + y) =

sin x · sin(π2 − y) + sin(π2 − x) · sin y,

(S5) lim
x→0

sin x
x = 1.

Definition
The function cosine is defined by cos x = sin(π2 − x),
x ∈ R.
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IV.4. Elementary functions

Properties of the sine and cosine

The function cos is decreasing on [0, π].
cos π

2 = 0, cos 0 = sin π
2 = 1, sin π = 0,

cos π = sin(−π
2 ) = −1, sin π

4 = cos π
4 =

√
2

2
∀x ∈ R : sin(x + π) = − sin x
The function cos is even, the function sin is odd.
The functions sin and cos are 2π-periodic.
∀x ∈ R : sin2 x + cos2 x = 1
∀x ∈ R : |sin x | ≤ 1, |cos x | ≤ 1
∀x , y ∈ R : sin x − sin y = 2 sin

( x−y
2

)
cos

( x+y
2

)
The functions sin and cos are continuous on R.
Rsin = Rcos = [−1,1]

The function sin is equal to zero exactly at the points
of the set {kπ; k ∈ Z}, the function cos is equal to
zero exactly et the points of the set {π2 + kπ; k ∈ Z}.
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zero exactly et the points of the set {π2 + kπ; k ∈ Z}.
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IV.4. Elementary functions

Definition
The function tangent is denoted by tg and defined by

tg x =
sin x
cos x

for every x ∈ R for which the fraction is defined, i.e.

Dtg = {x ∈ R; x 6= π/2 + kπ, k ∈ Z}.

The function cotangent is denoted by cotg and defined on
a set Dcotg = {x ∈ R; x 6= kπ, k ∈ Z} by

cotg x =
cos x
sin x

.

Mathematics I IV. Functions of one real variable



IV.4. Elementary functions

Definition
The function tangent is denoted by tg and defined by

tg x =
sin x
cos x

for every x ∈ R for which the fraction is defined, i.e.

Dtg = {x ∈ R; x 6= π/2 + kπ, k ∈ Z}.

The function cotangent is denoted by cotg and defined on
a set Dcotg = {x ∈ R; x 6= kπ, k ∈ Z} by

cotg x =
cos x
sin x

.

Mathematics I IV. Functions of one real variable



IV.4. Elementary functions

Properties of the tangent and cotangent

tg π
4 = cotg π

4 = 1
The functions tg and cotg are continuous at every
point of their domains.
The functions tg and cotg are odd.
The functions tg and cotg are π-periodic.
The function tg is increasing on (−π/2, π/2), the
function cotg is decreasing on (0, π).
lim

x→π
2−

tg x = +∞, lim
x→−π

2 +
tg x = −∞,

lim
x→0+

cotg x = +∞, lim
x→π−

cotg x = −∞

Rtg = Rcotg = R
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IV.4. Elementary functions

Definition
The function arcsine (denoted by arcsin) is an inverse
function to the function sin |[−π

2 ,
π
2 ]

.

The function arccosine (denoted by arccos) is an
inverse function to the function cos |[0,π].
The function arctangent (denoted by arctg) is an
inverse function to the function tg |(−π

2 ,
π
2 )

.
The function arccotangent (denoted by arccotg) is an
inverse function to the function cotg |(0,π).
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IV.4. Elementary functions

Properties of inverse trigonometric functions

Darcsin = Darccos = [−1,1], Darctg = Darccotg = R
The functions arcsin and arctg are odd.
The functions arcsin and arctg are increasing, the
functions arccos and arccotg are decreasing (on their
domains).
The functions arcsin, arccos, arctg, and arccotg are
continuous on their domains.
arctg 0 = 0, arctg 1 = π

4 , arccotg 0 = π
2

lim
x→0

arcsin x
x = lim

x→0

arctg x
x = 1

∀x ∈ [−1,1] : arcsin x + arccos x = π
2 ,

∀x ∈ R : arctg x + arccotg x = π
2

lim
x→+∞

arctg x = π
2 , lim

x→−∞
arctg x = −π

2

lim
x→+∞

arccotg x = 0, lim
x→−∞

arccotg x = π
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IV.5. Derivatives

Definition
Let f be a function and a ∈ R. Then

the derivative of the function f at the point a is
defined by

f ′(a) = lim
h→0

f (a + h)− f (a)

h
,

the derivative of f at a from the right is defined by

f ′+(a) = lim
h→0+

f (a + h)− f (a)

h
,

the derivative of f at a from the left is defined by

f ′−(a) = lim
h→0−

f (a + h)− f (a)

h
,

if the respective limits exist.Mathematics I IV. Functions of one real variable



IV.5. Derivatives

Definition
Suppose that the function f has a finite derivative at a
point a ∈ R. The line

Ta =
{

[x , y ] ∈ R2; y = f (a) + f ′(a)(x − a)
}
.

is called the tangent to the graph of f at the point [a, f (a)].

Theorem 37
Suppose that the function f has a finite derivative at a
point a ∈ R. Then f is continuous at a.
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IV.5. Derivatives

Theorem 38 (arithmetics of derivatives)
Suppose that the functions f and g have finite derivatives
at a ∈ R and let α ∈ R. Then

(i) (f + g)′(a) = f ′(a) + g′(a),

(ii) (αf )′(a) = α · f ′(a),
(iii) (fg)′(a) = f ′(a)g(a) + f (a)g′(a),
(iv) if g(a) 6= 0, then(

f
g

)′
(a) =

f ′(a)g(a)− f (a)g′(a)

g2(a)
.
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IV.5. Derivatives

Theorem 39 (derivative of a compound function)
Suppose that the function f has a finite derivative at
y0 ∈ R, the function g has a finite derivative at x0 ∈ R, and
y0 = g(x0). Then

(f ◦ g)′(x0) = f ′(y0) · g′(x0).

Theorem 40 (derivative of an inverse function)
Let f be a function continuous and strictly monotone on
an interval (a,b) and suppose that it has a finite and
non-zero derivative f ′(x0) at x0 ∈ (a,b). Then the function
f−1 has a derivative at y0 = f (x0) and

(f−1)′(y0) =
1

f ′(x0)
=

1
f ′(f−1(y0))

.
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(log x)′ = 1

x for x ∈ (0,+∞),
(exp x)′ = exp x for x ∈ R,
(xa)′ = axa−1 for x ∈ (0,+∞), a ∈ R,
(ax )′ = ax log a for x ∈ R, a ∈ R, a > 0,
(sin x)′ = cos x for x ∈ R,
(cos x)′ = − sin x for x ∈ R,
(tg x)′ = 1

cos2 x for x ∈ Dtg,
(cotg x)′ = − 1

sin2 x
for x ∈ Dcotg,

(arcsin x)′ = 1√
1−x2

for x ∈ (−1,1),

(arccos x)′ = − 1√
1−x2

for x ∈ (−1,1),

(arctg x)′ = 1
1+x2 for x ∈ R,

(arccotg x)′ = − 1
1+x2 for x ∈ R.
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IV.5. Derivatives

Theorem 41 (necessary condition for a local
extremum)
Suppose that a function f has a local extremum at x0 ∈ R.
If f ′(x0) exists, then f ′(x0) = 0.
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IV.6. Deeper theorems on derivatives

Theorem 42 (Rolle)
Suppose that a,b ∈ R, a < b, and a function f has the
following properties:

(i) it is continuous on the interval [a,b],
(ii) it has a derivative (finite or infinite) at every point of

the open interval (a,b),
(iii) f (a) = f (b).

Then there exists ξ ∈ (a,b) satisfying f ′(ξ) = 0.

Theorem 43 (Lagrange, mean value theorem)
Suppose that a,b ∈ R, a < b, a function f is continuous
on an interval [a,b] and has a derivative (finite or infinite)
at every point of the interval (a,b). Then there is ξ ∈ (a,b)
satisfying

f ′(ξ) =
f (b)− f (a)

b − a
.
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IV.6. Deeper theorems on derivatives

Theorem 44 (sign of the derivative and
monotonicity)
Let J ⊂ R be a non-degenerate interval. Suppose that a
function f is continuous on J and it has a derivative at
every inner point of J (the set of all inner points of J is
denoted by Int J).

(i) If f ′(x) > 0 for all x ∈ Int J, then f is increasing on J.

(ii) If f ′(x) < 0 for all x ∈ Int J, then f is decreasing on J.
(iii) If f ′(x) ≥ 0 for all x ∈ Int J, then f in non-decreasing

on J.
(iv) If f ′(x) ≤ 0 for all x ∈ Int J, then f is non-increasing

on J.
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IV.6. Deeper theorems on derivatives

Theorem 45 (computation of a one-sided
derivative)
Suppose that a function f is continuous from the right at
a ∈ R and the limit lim

x→a+
f ′(x) exists. Then the derivative

f ′+(a) exists and

f ′+(a) = lim
x→a+

f ′(x).
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IV.6. Deeper theorems on derivatives

Theorem 46 (l’Hospital’s rule)
Suppose that functions f and g have finite derivatives on
some punctured neighbourhood of a ∈ R∗ and the limit
lim
x→a

f ′(x)
g′(x) exist. Suppose further that one of the following

conditions hold:
(i) lim

x→a
f (x) = lim

x→a
g(x) = 0,

(ii) lim
x→a
|g(x)| = +∞.

Then the limit lim
x→a

f (x)
g(x) exists and

lim
x→a

f (x)

g(x)
= lim

x→a

f ′(x)

g′(x)
.
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IV.7. Convex and concave functions

Convex combination

2 x1 x
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IV.7. Convex and concave functions

Convex combination

2 x1 x

1 · x1 + 0 · x2 = x1 + 0 · (x2 − x1) = x1
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IV.7. Convex and concave functions

Convex combination

2 x1 x

0 · x1 + 1 · x2 = x1 + 1 · (x2 − x1) = x2
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IV.7. Convex and concave functions

Convex combination

2 x1 x

1
2

x1 +
1
2

x2 = x1 +
1
2

(x2 − x1)
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IV.7. Convex and concave functions

Convex combination

2 x1 x

3
4

x1 +
1
4

x2 = x1 +
1
4

(x2 − x1)
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IV.7. Convex and concave functions
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IV.7. Convex and concave functions

Definition
We say that a function f is

convex on an interval I if
f (λx1 + (1− λ)x2) ≤ λf (x1) + (1− λ)f (x2),

for each x1, x2 ∈ I and each λ ∈ [0,1];

concave on an interval I if
f (λx1 + (1− λ)x2) ≥ λf (x1) + (1− λ)f (x2),

for each x1, x2 ∈ I and each λ ∈ [0,1];
strictly convex on an interval I if

f (λx1 + (1− λ)x2) < λf (x1) + (1− λ)f (x2),

for each x1, x2 ∈ I, x1 6= x2 and each λ ∈ (0,1);
strictly concave on an interval I if

f (λx1 + (1− λ)x2) > λf (x1) + (1− λ)f (x2).

for each x1, x2 ∈ I, x1 6= x2 and each λ ∈ (0,1).
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IV.7. Convex and concave functions

Lemma 47
A function f is convex on an interval I if and only if

f (x2)− f (x1)

x2 − x1
≤ f (x3)− f (x2)

x3 − x2

for each three points x1, x2, x3 ∈ I, x1 < x2 < x3.

)2f(x

2 x

)3f(x

)1f(x

3 x1 x

)2f(x )1f(x

2 x1 x
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IV.7. Convex and concave functions

Definition
Suppose that a function f has a finite derivative on some
neighbourhood of a ∈ R. The second derivative of f at a is
defined by

f ′′(a) = lim
h→0

f ′(a + h)− f ′(a)

h
if the limit exists.

Let n ∈ N and suppose that f has a finite nth derivative
(denoted by f (n)) on some neighbourhood of a ∈ R. Then
the (n + 1)th derivative of f at a is defined by

f (n+1)(a) = lim
h→0

f (n)(a + h)− f (n)(a)

h

if the limit exists.
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IV.7. Convex and concave functions

Theorem 48 (second derivative and convexity)
Let a,b ∈ R∗, a < b, and suppose that a function f has a
finite second derivative on the interval (a,b).

(i) If f ′′(x) > 0 for each x ∈ (a,b), then f is strictly
convex on (a,b).

(ii) If f ′′(x) < 0 for each x ∈ (a,b), then f is strictly
concave on (a,b).

(iii) If f ′′(x) ≥ 0 for each x ∈ (a,b), then f is convex on
(a,b).

(iv) If f ′′(x) ≤ 0 for each x ∈ (a,b), then f is concave on
(a,b).
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IV.7. Convex and concave functions

Definition
Suppose that a function f has a finite derivative at a ∈ R
and let Ta denote the tangent to the graph of f at [a, f (a)].
We say that the point [x , f (x)] lies below the tangent Ta if

f (x) < f (a) + f ′(a) · (x − a).

We say that the point [x , f (x)] lies above the tangent Ta if
the opposite inequality holds.
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IV.7. Convex and concave functions

Definition
Suppose that a function f has a finite derivative at a ∈ R
and let Ta denote the tangent to the graph of f at [a, f (a)].
We say that a is an inflection point of f if there is ∆ > 0
such that

(i) ∀x ∈ (a−∆,a) : [x , f (x)] lies below the tangent Ta,
(ii) ∀x ∈ (a,a + ∆): [x , f (x)] lies above the tangent Ta,

or
(i) ∀x ∈ (a−∆,a) : [x , f (x)] lies above the tangent Ta,
(ii) ∀x ∈ (a,a + ∆): [x , f (x)] lies below the tangent Ta.
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IV.7. Convex and concave functions

Theorem 49 (necessary condition for inflection)
Let a ∈ R be an inflection point of a function f . Then f ′′(a)
either does not exist or equals zero.

Theorem 50 (sufficient condition for inflection)
Suppose that a function f has a continuous first derivative
on an interval (a,b) and z ∈ (a,b). Suppose further that
∀x ∈ (a, z) : f ′′(x) > 0,
∀x ∈ (z,b) : f ′′(x) < 0.

Then z is an inflection point of f .
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IV.8. Investigation of functions

Definition
The line which is a graph of an affine function x 7→ kx + q,
k ,q ∈ R, is called an asymptote of the function f at +∞
(resp. v −∞) if

lim
x→+∞

(f (x)−kx−q) = 0, (resp. lim
x→−∞

(f (x)−kx−q) = 0).

Proposition 51
A function f has an asymptote at +∞ given by the affine
function x 7→ kx + q if and only if

lim
x→+∞

f (x)

x
= k ∈ R and lim

x→+∞
(f (x)− kx) = q ∈ R.

Mathematics I IV. Functions of one real variable



IV.8. Investigation of functions

Definition
The line which is a graph of an affine function x 7→ kx + q,
k ,q ∈ R, is called an asymptote of the function f at +∞
(resp. v −∞) if

lim
x→+∞

(f (x)−kx−q) = 0, (resp. lim
x→−∞

(f (x)−kx−q) = 0).

Proposition 51
A function f has an asymptote at +∞ given by the affine
function x 7→ kx + q if and only if

lim
x→+∞

f (x)

x
= k ∈ R and lim

x→+∞
(f (x)− kx) = q ∈ R.

Mathematics I IV. Functions of one real variable



IV.8. Investigation of functions

Investigation of a function

1. Determine the domain and discuss the continuity of the
function.

2. Find out symmetries: oddness, evenness, periodicity.
3. Find the limits at the “endpoints of the domain”.
4. Investigate the first derivative, find the intervals of

monotonicity and local and global extrema. Determine
the range.

5. Find the second derivative and determine the intervals
where the function is concave or convex. Find the
inflection points.

6. Find the asymptotes of the function.
7. Draw the graph of the function.
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