Mathematics I, test 1
 WS 2017/2018

1) Find all real solutions of the inequality

$$
\begin{equation*}
\frac{x+1}{x-2} \geq \frac{2 x+3}{4-3 x} \tag{1}
\end{equation*}
$$

Solution: Clearly, $x-2 \neq 0,4-3 x \neq 0$. So, $x \notin\left\{\frac{4}{3}, 2\right\}$. We multiply the inequality by denominators $(x-2)(4-3 x)$.

$$
(x-2)(4-3 x) \begin{cases}\geq 0: & x \in\left[\frac{4}{3}, 2\right] \\ \leq 0: & x \in\left(-\infty, \frac{4}{3}\right] \cup[2,+\infty)\end{cases}
$$

Assume $x \in\left(\frac{4}{3}, 2\right)$. Then (1) is equivalent to:

$$
\begin{align*}
(x+1)(4-3 x) & \geq(2 x+3)(x-2) \\
\left.-3 x^{2}+x+4\right) & \geq 2 x^{2}-x-6 \\
-5 x^{2}+2 x+10 & \geq 0 \tag{2}
\end{align*}
$$

Roots of $-5 x^{2}+2 x+10$ are $\left\{\frac{1-\sqrt{51}}{5}, \frac{1+\sqrt{51}}{5}\right\}$. Since the leading coefficient -5 is negative, the solution of (2) is

$$
x \in\left[\frac{1-\sqrt{51}}{5}, \frac{1+\sqrt{51}}{5}\right]
$$

Since we are interested only about $x \in\left(\frac{4}{3}, 2\right)$ and $\frac{1-\sqrt{51}}{5}<\frac{4}{3}<\frac{1+\sqrt{51}}{5}<2$ we have

$$
x \in\left(\frac{4}{3}, \frac{1+\sqrt{51}}{5}\right] .
$$

Now, assume $x \in\left(-\infty, \frac{4}{3}\right) \cup(2,+\infty)$. Then (1) is equivalent to:

$$
\begin{align*}
(x+1)(4-3 x) & \leq(2 x+3)(x-2) \\
\left.-3 x^{2}+x+4\right) & \leq 2 x^{2}-x-6 \\
-5 x^{2}+2 x+10 & \leq 0 \tag{3}
\end{align*}
$$

Roots of $-5 x^{2}+2 x+10$ are $\left\{\frac{1-\sqrt{51}}{5}, \frac{1+\sqrt{51}}{5}\right\}$. Since the leading coefficient -5 is negative, the solution of (3) is

$$
x \in\left(-\infty, \frac{1-\sqrt{51}}{5}\right] \cup\left[\frac{1+\sqrt{51}}{5},+\infty\right)
$$

Since we are interested only about $x\left(-\infty, \frac{4}{3}\right] \cup[2,+\infty)$ and $\frac{1-\sqrt{51}}{5}<\frac{4}{3}<\frac{1+\sqrt{51}}{5}<2$ we have

$$
x \in\left(-\infty, \frac{1-\sqrt{51}}{5}\right] \cup(2,+\infty)
$$

Putting those two cases together, we obtain

$$
x \in\left(-\infty, \frac{1-\sqrt{51}}{5}\right] \cup\left(\frac{4}{3}, \frac{1+\sqrt{51}}{5}\right] \cup(2,+\infty)
$$

2) Find all real solutions of the inequality

$$
\begin{equation*}
||2 x+3|-5|>x \tag{4}
\end{equation*}
$$

Solution: Clearly

$$
2 x+3 \begin{cases}\geq 0: & x \in\left[-\frac{3}{2},+\infty\right) \\ \leq 0: & x \in\left(-\infty,-\frac{3}{2}\right]\end{cases}
$$

First, assume $x \in\left[-\infty,-\frac{3}{2}\right]$. So, (4) is equivalent to

$$
\begin{align*}
&|-(2 x+3)-5|>x, \\
&|-2 x-8|>x, \\
&|2 x+8|>x . \tag{5}\\
& 2 x+8 \begin{cases}\geq 0: & x \in[-4,+\infty), \\
\leq 0: & x \in(-\infty,-4] .\end{cases}
\end{align*}
$$

Assume $x \in\left[-4,-\frac{3}{2}\right]$. By (5), we obtain

$$
\begin{aligned}
2 x+8 & >x \\
x & >-8
\end{aligned}
$$

The last inequality clearly holds for every $x \in\left[-4,-\frac{3}{2}\right]$.
Assume $x \leq-4$. By (5), we obtain

$$
\begin{aligned}
-2 x-8 & >x, \\
-8 & >3 x, \\
-\frac{8}{3} & >x .
\end{aligned}
$$

The last inequality clearly holds for every $x \leq-4$.

Now assume $x \geq-\frac{3}{2}$. So, (4) is equivalent to

$$
\begin{align*}
&|2 x+3-5|>x \\
&|2 x-2|>x \tag{6}\\
& 2 x-2 \begin{cases}\geq 0: & x \geq 1 \\
\leq 0: & x \leq 1\end{cases}
\end{align*}
$$

Assume $x \in\left[-\frac{3}{2}, 1\right]$. By (6), we obtain

$$
\begin{aligned}
-(2 x-2) & >x \\
-2 x+2 & >x \\
2 & >3 x \\
\frac{2}{3} & >x
\end{aligned}
$$

The last inequality clearly holds for every $x \in\left[-\frac{3}{2}, \frac{2}{3}\right)$.
Assume $x \geq 1$. By (6), we obtain

$$
\begin{aligned}
2 x-2 & >x, \\
x & >2 .
\end{aligned}
$$

The last inequality clearly holds for every $x \in(2,+\infty)$.
Putting those four cases together, we obtain $x \in\left(-\infty, \frac{2}{3}\right) \cup(2,+\infty)$.

