Mathematics I, test 1 WS 2017/2018

1) Find all real solutions of the inequality

$$\frac{x+1}{x-2} \ge \frac{2x+3}{4-3x}.$$
(1)

Solution: Clearly, $x - 2 \neq 0, 4 - 3x \neq 0$. So, $x \notin \left\{\frac{4}{3}, 2\right\}$. We multiply the inequality by denominators (x - 2)(4 - 3x).

$$(x-2)(4-3x) \begin{cases} \ge 0 : & x \in \left[\frac{4}{3}, 2\right], \\ \le 0 : & x \in \left(-\infty, \frac{4}{3}\right] \cup [2, +\infty). \end{cases}$$

Assume $x \in \left(\frac{4}{3}, 2\right)$. Then (1) is equivalent to:

$$\begin{aligned} &(x+1)(4-3x) \geq (2x+3)(x-2), \\ &-3x^2+x+4) \geq 2x^2-x-6, \\ &-5x^2+2x+10 \geq 0. \end{aligned}$$

Roots of $-5x^2 + 2x + 10$ are $\left\{\frac{1-\sqrt{51}}{5}, \frac{1+\sqrt{51}}{5}\right\}$. Since the leading coefficient -5 is negative, the solution of (2) is

$$x \in \left[\frac{1-\sqrt{51}}{5}, \frac{1+\sqrt{51}}{5}\right].$$

Since we are interested only about $x \in \left(\frac{4}{3}, 2\right)$ and $\frac{1-\sqrt{51}}{5} < \frac{4}{3} < \frac{1+\sqrt{51}}{5} < 2$ we have

$$x \in \left(\frac{4}{3}, \frac{1+\sqrt{51}}{5}\right].$$

Now, assume $x\in \left(-\infty,\frac{4}{3}\right)\cup(2,+\infty).$ Then (1) is equivalent to:

$$\begin{aligned} &(x+1)(4-3x) &\leq (2x+3)(x-2), \\ &-3x^2+x+4) &\leq 2x^2-x-6, \\ &-5x^2+2x+10 &\leq 0. \end{aligned}$$
 (3)

Roots of $-5x^2 + 2x + 10$ are $\left\{\frac{1-\sqrt{51}}{5}, \frac{1+\sqrt{51}}{5}\right\}$. Since the leading coefficient -5 is negative, the solution of (3) is

$$x \in \left(-\infty, \frac{1-\sqrt{51}}{5}\right] \cup \left[\frac{1+\sqrt{51}}{5}, +\infty\right).$$

Since we are interested only about $x\left(-\infty,\frac{4}{3}\right] \cup [2,+\infty)$ and $\frac{1-\sqrt{51}}{5} < \frac{4}{3} < \frac{1+\sqrt{51}}{5} < 2$ we have

$$x \in \left(-\infty, \frac{1-\sqrt{51}}{5}\right] \cup (2, +\infty).$$

Putting those two cases together, we obtain

$$x \in \left(-\infty, \frac{1-\sqrt{51}}{5}\right] \cup \left(\frac{4}{3}, \frac{1+\sqrt{51}}{5}\right] \cup (2, +\infty).$$

2) Find all real solutions of the inequality

$$||2x+3|-5| > x. (4)$$

Solution: Clearly

$$2x + 3 \begin{cases} \ge 0 : & x \in \left[-\frac{3}{2}, +\infty\right), \\ \le 0 : & x \in \left(-\infty, -\frac{3}{2}\right]. \end{cases}$$

First, assume $x \in \left[-\infty, -\frac{3}{2}\right]$. So, (4) is equivalent to

$$|-(2x+3)-5| > x,
|-2x-8| > x,
|2x+8| > x.
2x+8 \begin{cases} \ge 0: x \in [-4, +\infty), \\ \le 0: x \in (-\infty, -4]. \end{cases}$$
(5)

Assume $x \in \left[-4, -\frac{3}{2}\right]$. By (5), we obtain

The last inequality clearly holds for every $x \in \left[-4, -\frac{3}{2}\right]$.

Assume $x \leq -4$. By (5), we obtain

_

The last inequality clearly holds for every $x \leq -4$.

Now assume $x \ge -\frac{3}{2}$. So, (4) is equivalent to

$$\begin{aligned} |2x+3-5| &> x, \\ |2x-2| &> x. \\ 2x-2 &\begin{cases} \geq 0 : & x \geq 1, \\ \leq 0 : & x \leq 1. \end{cases} \end{aligned}$$

Assume $x \in \left[-\frac{3}{2}, 1\right]$. By (6), we obtain

$$\begin{array}{rcrcrcr} (2x-2) &>& x, \\ -2x+2 &>& x, \\ &2 &>& 3x, \\ &\frac{2}{3} &>& x. \end{array}$$

The last inequality clearly holds for every $x \in \left[-\frac{3}{2}, \frac{2}{3}\right)$. Assume $x \ge 1$. By (6), we obtain

The last inequality clearly holds for every $x \in (2, +\infty)$. Putting those four cases together, we obtain $x \in (-\infty, \frac{2}{3}) \cup (2, +\infty)$.

_	 _	
L	1	
	1	

(6)