Introductory Mathematics, test 2
 WS 2017/2018

1) Find all real solutions of the inequality

$$
\begin{equation*}
\log _{\frac{1}{3}}\left(2 x^{2}+x-6\right) \geq \log _{\frac{1}{3}}(4 x+14) \tag{1}
\end{equation*}
$$

Solution: First, we need to find those $x \in \mathbb{R}$ for which logarithms are defined and then solve the inequality. So, we first need to solve

$$
\begin{align*}
2 x^{2}+x-6 & >0 \tag{2}\\
4 x+14 & >0 \tag{3}
\end{align*}
$$

Since roots of polynomial in (2) are $-2, \frac{3}{2}$ and leading coefficient is positive, (2) is satisfied for $x \in \mathbb{R} \backslash\left[-2, \frac{3}{2}\right]$. Clearly (3) holds true for $x>-\frac{7}{2}$. So (2) and (3) are satisfied for $x \in M$, where

$$
M=\left(-\frac{7}{2},-2\right) \cup\left(\frac{3}{2},+\infty\right) .
$$

Now, we will consider only $x \in M$. Since logarithm with base $\frac{1}{3}$ is decreasing (1) is equivalent to

$$
2 x^{2}+x-6 \leq 4 x+14
$$

So, we obtain

$$
\begin{equation*}
2 x^{2}-3 x-20 \leq 0 \tag{4}
\end{equation*}
$$

Since roots of polynomial are $-\frac{5}{2}, 4$ and leading coefficient is positive (4) is satisfied for $x \in\left[-\frac{5}{2}, 4\right]$. Since we consider only $x \in M$ the solution is

$$
M \cap\left[-\frac{5}{2}, 4\right]=\left[-\frac{5}{2},-2\right) \cup\left(\frac{3}{2}, 4\right] .
$$

2) Find all real solutions of the equality

$$
\begin{equation*}
3^{x-1}-2 \cdot 3^{1-x}+1=0 \tag{5}
\end{equation*}
$$

Solution: Put $t=3^{x}$. So, (5) can be rewritten as

$$
\frac{t}{3}-2 \frac{3}{t}+1=0
$$

Multiplying by $3 t$ we obtain

$$
t^{2}+3 t-18=0
$$

Solutions of this quadratic equality are $-6,3$. Since $t=3^{x}, t$ must be positive. Thus $t=3$ and $x=1$.

