Věta 4.4.7. Dvěma bodům Y, Z neležícím ve vrcholu \(P'_i \) kvadratky \(Q \) je přiřazena stejná polární nadrovina právě tehdy, je-li přímka YZ různoběžná s vrcholem \(P'_j \).

Je zřejmé, že polární nadrovina každého bodu obsahuje vrchol kvadratky \(Q \). Odtud vyplývá, že je-li kvadratka \(Q \) singulární, polarita neobrazí množinu \(A^s_{a_s} \) na množinu \(M \). Nechť tedy nyní je kvadratka \(Q \) regulární. Zvolme hází \(\mathbb{A} \) prostoru \(W'_{n+1} \). Je-li v této házi \(Y = (y_0, ..., y_n) \) polární nadrovina bodu \(Y \) má rovnicí

\[
\sum_{j=0}^{n} f_{ij}y_jx_j = 0
\]

nebo, což je totéž,

\[
\sum_{j=0}^{n} \left(\sum_{i=0}^{n} f_{ij}y_i \right) x_j = 0.
\]

Buď nyní \(\varrho \in M \) libovolná nadrovina. Nechť

\[
\sum_{j=0}^{n} a_jx_j = 0
\]

je její rovnice. K tomu, aby \(\varrho \) byla polární nadrovina bodu \(Y \), zřejmě stačí, aby platilo

\[
\sum_{i=0}^{n} f_{ij}y_i = a_j, \quad j = 0, ..., n.
\]

Zapišeme-li rovnosti (10) v maticovém tvaru, dostaneme

\[
(y_0, ..., y_n) F = (a_0, ..., a_n),
\]

kde \(F \) je matice bilineární formy \(f \). Máme-li nadrovinu \(\varrho \), určíme snadno bod \(Y \) z rovnice (11)

\[
(y_0, ..., y_n) = (a_0, ..., a_n) F^{-1}.
\]

Tudíž platí následující věta.

Věta 4.4.8. Je-li \(Q \) regulární kvadratka, je polarita vzhledem ke kvadratce \(Q \) vzájemně jednoznačné zobrazení prostoru \(A^s_{a_s} \) na množinu \(M \) všech nadrovín tohoto prostoru.

Důkaz. Je polarita je zobrazení prosté, plyne z věty 4.4.7, že je to zobrazení na \(M \), vyplývá z rovnosti (12).

To, že v případě regulární kvadratky \(Q \) je polarita zobrazení na \(M \), jsme mohli snadno dokázat též přímo bez použití soustavy souřadnic. Právě tak obrácené větu 4.4.7 léープ dokázat ze vztahu (11).

Cvičení

1. V prostoru \(A^s_{a_s} \) je dána kvadratice rovnicí

 \[
 a) \quad x_0x_1 + x_0x_3 + x_1x_2 - 2x_4x_3 + x_2x_3 - 2x_3^2 = 0,
 \]

 \[
 b) \quad x_0^2 + 2x_1x_2 + 3x_3x_3 + 2x_4x_3 = 0.
 \]

 \[
 c) \quad x_0x_1 + x_0x_3 + x_1x_2 - 2x_4x_3 + x_2x_3 - 2x_3^2 = 0.
 \]

 Určete její vrchol \(P' \).

2. Ověřte, že bod \(A = (4, -4, -1) \) leží na kvadratce \(Q : \quad x_0^2 - 2x_0x_1 + 4x_0x_3 + + 2x_3^2 = 0 \) v prostoru \(A^s_{a_s} \) a určete rovnici tečné nadroviny kvadratce \(Q \) v bodě \(A \).

3. V rovině \(A^s_x \) napište rovnice tečen \(t_1, t_2 \) vedených z bodu \(A = (0, 1, -1) \) ke kuželosečce \(2x_0^2 - 2x_1x_2 - x_3^2 - 4x_2x_3 + 3x_3^2 = 0 \). Na tečnách \(t_1, t_2 \) určete body dotyku \(T_1, T_2 \).

4. V prostoru \(A^s_{a_s} \) je dána kvadratice \(Q \) rovnicí \(v_0^2 + 2x_0x_1 - 2x_1x_3 + x_3^2 = 0 \). Určete rovnici tečených rovin \(t_1, t_2 \) kvadratce \(Q \) procházejících přímou \(PQ \), kde \(P = (-3, 1, -2, -4) \) a \(Q = (22, 0, 7, 14) \). V tečených rovinách \(t_1, t_2 \) nalezněte body dotyku \(T_1, T_2 \).

4.5 Afinní vlastnosti kvadrat

V tomto odstavci si budeme všímát souvislosti mezi teorii kuželoseček a kvadratických ploch vyloučenou v kapitole 3 v [G] a teorii kvadrat, kterou se zabýváme nyní.

Mějme tedy v reálné afinní rovině \(A_2 \) zvolenou lineární soustavou souřadnic \(Z \) danou repérem \(\langle P; u_1, u_2 \rangle \). Nechť v této lineární soustavě souřadnic je kuželo-

\[
ax^2 + 2bxy + cx^2 + 2dx + 2ey + f = 0,
\]

tj. bod \(X = (x, y) \) leží na kuželosečce k právě tehdy, je-li splněna rovnicí (1). Utváříme komplexní rozšíření \(A^s_{a_s} \) roviny \(A_2 \) a projektní rozšíření \(A^s_{a_s} \) afinní roviny \(A_2 \). V aritmetické bázi \((1, P; u_1, u_2) \) má každý bod \(X \in A^s_{a_s} \) homogení souřadnice \(x_0, x_1, x_2 \), přičemž \(x_0 \neq 0 \). Potom jeho lineární souřadnice jsou \(x = x_1/x_0, y = x_2/x_0 \). Tudíž \(X \in k \) právě tehdy, když

\[
\frac{d(x_1/x_0)^2 + 2b(x_1/x_0)(x_2/x_0) + c(x_2/x_0)^2}{2d(x_1/x_0) + 2e(x_2/x_0) + f} = 0.
\]

Po vynásobení výsledné rovnice číslem \(x_0^2 \) dostaneme

\[
ax^2 + 2bxy + cx^2 + 2dx + 2ey + f = 0
\]

Ukázať jsem, jak z rovnice (1) můžeme dostat rovnici (2). Snadno uděláme obrácený postup. Nejvíce si uvědomíme, že má-li bod \(X \in A^s_{a_s} \) souřadnice \(x, y \) v lineární soustavě souřadnic, \(Z \), má homogení souřadnice \(1, x, y \) v aritmetické bázi \((1, P; u_1, u_2) \). Nechť tedy kuželosečka \((1) \) dána v rovině \(A^s_{a_s} \) rovnicí (2), dostaneme rovnicí (1).
4.6 Metrické vlastnosti kvadríku

V tomto odstavci budeme pracovat v euklidovském prostoru E_5. Jeho zaměření budeme označovat V, a skalární součin dvou vektorů $u, v \in V$ budeme značit $u \cdot v$. Protože euklidovský prostor je vlastně zvláštní případ afinního prostoru (přesněji řečeno struktura euklidovského prostoru zahrnuje jako svou část i strukturu afinního prostoru), můžeme utvořit prostor E_5^C - komplexní rozšíření euklidovského prostoru, i prostor E_5^C - projektivní rozšíření prostoru E_5^C. Skalární součin je bilineární forma na prostoru V. Proto ho můžeme rozšířit i na vektorový prostor V^C. Pro dva vektoru $u, v \in V^C$, $u = u_1 + iu_2$, $v = v_1 + iv_2$ ($u_1, u_2, v_1, v_2 \in V$) pak bude platit (viz věta 4.1.2):

$$(1) \quad u \cdot v = (u_1 + iu_2)(v_1 + iv_2) = u_1v_1 + u_2v_2 + i(u_1v_2 + u_2v_1)$$

V prostoru E_5^C budeme opět zkoumat kvadríky. Budeme předpokládat, že Q je kvadríka v prostoru E_5^C daná rovnicí $f_2(x) = 0$. Ponecháme i další označení, která jsme zavedli v prostoru A_5^C. Např. nevlastní nadrovínou budeme značit v, A_5^C bude aritmetický základ prostoru E_5^C atd.

Nejdříve budeme definovat tzv. hlavní směry kvadratické formy na prostoru V. Jestliže budeme hledat hlavní směry kvadratické formy f_2 a Q bude středová kuželosečka v E_5^C, ukážíme, že hlavní směry budou směry jejích os. U paraboly to však bude směr osy a směr vrcholové tečny. Proto také volíme nový termín – hlavní směry. Směr je přitom tak jak dříve jednorozměrný podprostor prostoru V^C – nevlastní bod prostoru E_5^C.

Definice 4.6.1. Směr $U \in E_5^C$ generovaný vektorom $u \in V$, nazývámme *hlavní směr* kvadratické formy f_2, resp. hlavní směr kvadríky Q, jestli je konjugovaný s každým směrem na něj kolým.

Ukážeme si výpočet hlavních směrů kvadratické formy. K tomu, aby U byl hlavní směr, je nutné a stačí, aby byla splněna pro každý vektor $x \in V^C$ podmínka

$$(2) \quad u \cdot x = 0 \Rightarrow f(u, x) = 0$$

(to plyne přímo z definice 4.6.1). Bereme-li ve vztahu (2) vektor u pevně, jsou výrazy $u \cdot x$ a $f(u, x)$ lineární formy proměnného vektoru x. Z anulování jedné lineární formy vyplývá anulování druhé. To platí právě tehdy, je-li druhá lineární forma násobkem první lineární formy. Vektor u tedy určuje hlavní směr právě tehdy, existuje-li číslo $c \in R$ tak, že

$$(3) \quad f(u, x) = cu \cdot x$$

pro každý vektor $x \in V^C$. Nyní zvolíme ortonormální bázi $\langle v_1, \ldots, v_6 \rangle$ prostoru V. Cvičení

Zadání všech cvičení jsou v rovině A_5^C v dané lineární soustavě souřadnic.

1. Určete množinu M všech středů kuželoseček
 a) $-x^2 + 2xy + 3y^2 - 2x + 4y + 1 = 0$,
 b) $x^2 + 4xy + 3y^2 - 4x + 1 = 0$,
 c) $x^2 + 4xy + 4y^2 - 4x - 8y + 3 = 0$.

2. Napište rovnice asymptot kuželosečky
 a) $3x^2 - 4xy + y^2 - 2x + 2 = 0$,
 b) $2x^2 + xy - 3y^2 + 5y - 2 = 0$.

3. Určete druh kuželoseček ze cvičení 1 a 2.

4. Určete druh kuželosečky
 a) $x^2 + 2xy + 2y^2 - 2y + 2 = 0$,
 b) $x^2 + xy - x + 2y = 0$,
 c) $4x^2 - 12xy + 9y^2 + 4x - 6y + 2 = 0$,
 d) $4x^2 + 4xy + 2y^2 - 8x + 2y + 13 = 0$.

5. Napište rovnici kuželosečky, je-li dán:
 a) $S = \{1, 0\}$ je střed, $y = 1$ je tečna s bodem dotyku $T = [0, 1]$, $A = [0, -3]$ je bod kuželosečky.
 b) $x - y = 0$ je asymptota, osa x je průměr sdružené se směrem určeným vektem $u = (1, 2)$ a body $A = [1, -1]$, $B = [-1, 2]$ jsou konjugované.
Příklad 3. Na obr. 52 je dána hyperbola sdruženými průměry p_1, p_2 a tečnou t s bodem dotyku R. Určete hlavní osu hyperboly, její průsečíky s hyperbolou a asymptoty hyperboly.

![Diagram 50](image)

![Diagram 51](image)

![Diagram 52](image)

![Diagram 53](image)

Řešení. Postup sledujeme na obr. 53. Pomocí Euklidovy věty najdeme body $A_1, A'_1 \in p_1$ a $B_2, B'_2 \in p_2$ tak, aby platily vztahy (22), (23) (z důvodu přehlednosti obrázku není tato konstrukce vyobrazena). Sestrojíme rovnoběžník $KLMN$ (viz obr. 49). Jeho úhlopříčky jsou asymptoty hyperboly. Osy o_1, o_2 úhly, které asymptoty svirají, jsou osy hyperboly. Z polohy tečny t a bodu dotyku R je zřejmé, která z os o_1, o_2 protíná hyperbolou – je to osa o_1. Její průsečíky A_1, A'_1

s hyperbolou určíme podle vzorce (22) z bodů R_1 a T_1 (konstrukce je na obr. 53 skutečně provedena). Tim je příklad vyřešen.

Cvičení
1. Pro danou kuželosečku \mathcal{Q} zjistěte, zda je regulární nebo singulární. Je-li kuželosečka \mathcal{Q} singulární, určete přímky, které ji tvoří. Jestliže kuželosečka \mathcal{Q} je regulární, určete její střed S (je-li \mathcal{Q} středová kuželosečka), resp. vrchol V (je-li \mathcal{Q} parabola), vektory u_1, u_2 tvořící ortornormální bázi a určující hlavní směry a napíšte rovnici kuželosečky \mathcal{Q} v kartézské soustavě souřadnic \mathcal{Q} určené repěrem $\langle S, u_1, u_2 \rangle$, resp. $\langle V, u_1, u_2 \rangle$. Kuželosečka \mathcal{Q} je přímá dána následující rovnici

 a) $2x^2 + 4xy + 5y^2 - 2x + 4y + 3 = 0,$
 b) $2x^2 + 3xy - 2y^2 + x + 7y - 3 = 0,$
 c) $-3x^2 + 6xy + 5y^2 - 4x - 1 = 0,$
 d) $4x^2 + 4xy + 2y^2 + 4x - 2y + 5 = 0,$
 e) $x^2 - 4xy + 4y^2 + 6x - 12y + 9 = 0,$
 f) $x^2 + 2xy + y^2 - 2x + 4y - 1 = 0,$
 g) $5x^2 + 12xy + 10y^2 - 4y + 2 = 0,$
 h) $x^2 + 2xy + y^2 + 4x + 4y + 5 = 0.$

2. Napíšte rovnici kuželosečky, je-li v dané kartézské soustavě souřadnic dáno:
 a) $x + y = 2 = 0$ je osa, $u = (1, 0)$ určuje směr asymptoty, $x = 1$ je tečna s bodem dotyku $T = [1, 0]$.
 b) $x + 2y = 0$ je osa, kuželosečka je parabola a souřadnicová osa x je tečna s bodem dotyku $T = [1, 0]$.

4.7 Svažky kvadrat

4.2 Kvadratické formy

1. a) \[
\begin{pmatrix}
1, & -5/2, & 2 \\
-5/2, & 1, & -1 \\
2, & -1, & -3
\end{pmatrix}
\]
 b) \[
\begin{pmatrix}
0, & 1/2, & 0 \\
1/2, & 0, & -1/2 \\
0, & -1/2, & 0
\end{pmatrix}
\]

2. a) \(f(x, y) = -5x_1^2 - 10x_1x_2 + 5x_2^2x_3 - 5x_2x_3^2 + 2x_1^2\),
 b) \(f(x, y) = 2x_1^2 + 3x_1x_2 + x_2^2\).

3. a) \(u_1' = u_1, u_2' = -2u_1 + u_3, u_3' = 19u_1 + 14u_2 + 8u_3\) (u_3' dán až na nenulový násobek)

 \(f_2(x) = x_1^2 - 7x_2^2 - 532x_3^2\),
 b) \(u_1' = u_1 + u_2, u_2' = u_2 + u_3, u_3' = u_1 + u_3\) (u_3' dán až na nulový násobek)

 \(f_2(x) = x_1^2 - x_2^2\).

4.4 Polární vlastnosti kvadratik

1. a) \(P' = \overline{OQ'}\), kde např. \(P = (1, 0, -1, 0), Q = (2, -1, 0, 1),\) b) \(P' = \emptyset\), c) \(P' = \{R\}\),
 kde \(R = (1, 0, 0, -1)\).

2. \(x_0 + 2x_1 + 4x_2 - 4x_3 = 0\)

3. \(t_1: x_0 - x_1 - x_2 = 0, t_2: x_0 + x_1 + x_2 = 0, T_1 = (2, 1, 1), T_2 = (2, -3, 1)\)

4. \(t_1: -9x_0 + x_1 + 4x_2 + 5x_3 = 0, t_2: -5x_0 + 5x_1 + 6x_2 + 2x_3 = 0,
 T_1 = (1, -4, 2, 1), T_2 = (3, -1, 3, 1)\)

4.5 Afínní vlastnosti kvadratík

1. a) \(M = \{S\}\), \(S = [-5/4, -1/4]\); b) \(M = \emptyset\); c) \(M\) je přímka \(x + 2y = 2 = 0\)

2. a) \(x - y - 1 = 0, 3x - y + 1 = 0, b) x - y + 1 = 0, 2x + 3y - 2 = 0\)

3. 1a) hyperbola, 1b) parabola, 1c) dvě rovnoběžné, 2a) hyperbola, 2b) dvě různoběžné

4. a) imaginární elipsa, b) elipsa, c) imaginární rovnoběžky, d) imaginární různoběžky

5. a) \(x^2 + 2xy - y^2 - 2x - 2y + 3 = 0\), b) \(2x^2 - 2xy + 5 = 0\)

4.6 Metrické vlastnosti kvadratík

1. a) \(\mathcal{Q}\) je elipsa, \(S = [3/2, -1], u_1 = (2/\sqrt{5}, -1/\sqrt{5}), u_2 = (1/\sqrt{5}, 2/\sqrt{5}),
 \mathcal{Q}: 2x^2 + 12y^2 = 1\)

b) \(\mathcal{Q}\) je singulární, tvoří ji přímky \(x + 2y - 1 = 0\) a \(2x - y + 3 = 0\)

c) \(\mathcal{Q}\) je hyperbola, \(S = [-5/12, 1/4], u_1 = (1/\sqrt{10}, 3/\sqrt{10}), u_2 = (3/\sqrt{10}, -1/\sqrt{10}),
 \mathcal{Q}: 36x^2 - 24y^2 = 1\)

d) \(\mathcal{Q}\) je singulární, tvoří ji přímky \(2x + (1 + i)y + 1 - 2i = 0, 2x + (1 - i)y + 1 + 2i = 0\)

e) \(\mathcal{Q}\) je singulární, tvoří ji přímka \(x - 2y + 3 = 0\)

f) \(\mathcal{Q}\) je parabola, \(V = [-7/12, 1/12], u_1 = (1/\sqrt{2}, 1/\sqrt{2}), u_2 = (1/\sqrt{2}, -1/\sqrt{2}),
 \mathcal{Q}: y' = (\sqrt{2}/3) x'^2\)

g) \(\mathcal{Q}\) je imaginární elipsa, \(S = [-6/7, -5/7], u_1 = (3/\sqrt{13}, -2/\sqrt{13}), u_2 = (2/\sqrt{13}, 3/\sqrt{13}), \mathcal{Q}: x'^2 + 14y'^2 + 4/7 = 0\)

h) \(\mathcal{Q}\) je singulární, tvoří ji přímky \(x + y + 2 = 0\) a \(x + y + 2 + i = 0\)

2. a) \(xy + 3x - y - 3 = 0\), b) \(x^2 + 4xy + 4y^2 - 2x + y + 1 = 0\)