Mathematics in Juggling Juggling in Mathematics

Michal Zamboj

Faculty of Mathematics and Physics \times Faculty of Education Charles University

The Jarní doktorandská škola didaktiky matematiky 19. - 21. 5. 2017

(日) (同) (日) (日) (日)

The first historical evidence of juggling in the Beni Hassan location in Egypt, between 1994-1781 B.C..

イロト イポト イヨト イヨト

Sac

The first historical evidence of juggling in the Beni Hassan location in Egypt, between 1994-1781 B.C..

イロト イポト イヨト イヨト

Sac

- Why? ... describe juggling
- How? ... describe juggling

(日)(同)(日)(日)(日)(日)

990

JUGGLER	MATHEMATICIAN
- "language"	- notation
- new tricks	- new properties
- understanding principles	 application to related theo- ries

Michal Zamboj Mathematics in Juggling / Juggling in Mathematics

Claude Elwood Shannon, 1916-2001

- Construction of a juggling robot (1970s)
- Underlying mathematical concept Uniform juggling

Sac

Claude Elwood Shannon, 1916-2001

- h hands, b balls
 - d Dwell time ball, or occupation time hand
 - f Flight time of a ball
 - e Empty hand time

HAND PERSPECTIVE								
FIRST BALL		SECOND BALL			THIRD BALL			
HAND HOLDS A BALL HAND IS EMPTY								
BALL PERSPECTIVE			_					
RIGHT HAND			LEFTH	IAND				
BALL IN A HAND BALL IN FLIGHT								
TIME								

イロト イボト イヨト イヨト 一日

Dac

Theorem (Shannon 1st juggling theorem.)

In the uniform juggling, it holds:

$$\frac{f+d}{e+d}=\frac{b}{h}$$

Michal Zamboj Mathematics in Juggling / Juggling in Mathematics

イロト イボト イヨト イヨト 二日

Theorem (Shannon 1st juggling theorem.)

In the uniform juggling, it holds:

$$\frac{f+d}{e+d}=\frac{b}{h}$$

Duality principle. We can exchange the terms ball and hand (and related terms).

イロト 不得 トイヨト 不良ト 一日

Dac

d = 0 minimal frequency of juggling e = 0 maximal frequency of juggling f flight time is constant (thus, also the height of throw)

Michal Zamboj Mathematics in Juggling / Juggling in Mathematics

イロト 不得 トイヨト 不良ト 一日

d = 0 minimal frequency of juggling e = 0 maximal frequency of juggling f flight time is constant (thus, also the height of throw)

Theorem (Frequency of the uniform juggling)

The ratio of maximal and minimal frequency in uniform juggling is

 $\frac{b}{b-h}$.

an

d = 0 minimal frequency of juggling e = 0 maximal frequency of juggling f flight time is constant (thus, also the height of throw)

Theorem (Frequency of the uniform juggling)

The ratio of maximal and minimal frequency in uniform juggling is

$$\frac{b}{b-h}$$

Proof. $d = \frac{fh - eb}{b - h}$ maximal frequency, e = 0 in (1): $d = \frac{fh}{b - h}$ $e = \frac{(d + f)h}{b} - d$ (1) $e = \frac{(d + f)h}{b} - d$ (2)ratio of max and min frequency is $\frac{d}{e} = \frac{b}{b - h}$

Michal Zamboj Mathematics in Juggling / Juggling in Mathematics

Examples:

```
human1cascade with 3 balls and 2 hands gives \frac{3}{1}human2fountain with 4 balls and 2 hands gives \frac{2}{1}still humancascade 7 balls for 2 hands gives ratio \frac{7}{5}robot2n + 1 balls and 2 hands \frac{2n + 1}{2n - 1}passing jugglers11 balls 4 hands \frac{11}{7}
```

イロト イポト イヨト イヨト

э

- cca 1985 2 independent groups found a juggling notation with the use of integer sequences
- Paul Klimak from Santa Cruz, Bent Magnusson and Bruce "Boppo" Tiemann from Los Angeles - Caltech, USA
- Adam Chalcraft, Mike Day and Colin Wright from Cambridge, UK

・ロト ・ 同ト ・ ヨト ・ ヨト

-

History

Siteswap notation of juggling Juggling braids

Ronald Graham, 1935

Michal Zamboj Mathematics in Juggling / Juggling in Mathematics

Ronald Graham, 1935

• Performed in Cirque du Soleil

イロト 不得 トイヨト 不良ト 一日

Ronald Graham, 1935

- Performed in Cirque du Soleil
- In The Guinness World Records The Graham Number -The greatest known number (1977)

イロト 不得 トイヨト 不良ト 一日

Ronald Graham, 1935

- Performed in Cirque du Soleil
- In The Guinness World Records The Graham Number -The greatest known number (1977)
- Was the president of:

(日) (同) (日) (日) (日)

Ronald Graham, 1935

- Performed in Cirque du Soleil
- In The Guinness World Records The Graham Number -The greatest known number (1977)
- Was the president of:
 - AMS

(日) (同) (日) (日) (日)

Ronald Graham, 1935

- Performed in Cirque du Soleil
- In The Guinness World Records The Graham Number -The greatest known number (1977)
- Was the president of:
 - AMS American Mathematical Society

(日) (同) (日) (日) (日)

Ronald Graham, 1935

- Performed in Cirque du Soleil
- In The Guinness World Records The Graham Number -The greatest known number (1977)
- Was the president of:
 - AMS American Mathematical Society
 - MAA

(日) (同) (日) (日) (日)

Ronald Graham, 1935

- Performed in Cirque du Soleil
- In The Guinness World Records The Graham Number -The greatest known number (1977)
- Was the president of:
 - AMS American Mathematical Society
 - MAA Mathematical Association of America

(日) (同) (日) (日) (日)

Ronald Graham, 1935

- Performed in Cirque du Soleil
- In The Guinness World Records The Graham Number -The greatest known number (1977)
- Was the president of:
 - AMS American Mathematical Society
 - MAA Mathematical Association of America
 - IJA

(日) (同) (日) (日) (日)

Ronald Graham, 1935

- Performed in Cirque du Soleil
- In The Guinness World Records The Graham Number -The greatest known number (1977)
- Was the president of:
 - AMS American Mathematical Society
 - MAA Mathematical Association of America
 - IJA International Juggling Association

(日) (同) (日) (日) (日)

Model of juggling Siteswap - Juggling sequence Number of juggling sequences

• A juggler:

Michal Zamboj Mathematics in Juggling / Juggling in Mathematics

Model of juggling Siteswap - Juggling sequence Number of juggling sequences

- A juggler:
 - stands at one place
 - hands are in fixed positions
- Simplifying throws (propositions)

イロト イボト イヨト イヨト 二日

Model of juggling Siteswap - Juggling sequence Number of juggling sequences

- A juggler:
 - stands at one place
 - hands are in fixed positions
- Simplifying throws (propositions)
- A juggler:
 - 1) throws the balls on constant beats
 - 2) has always been juggling and will never end
 - throws on each beat at most one ball, and if he catches some ball, he must throw it

・ロト ・ 同ト ・ ヨト ・ ヨト

Model of juggling Siteswap - Juggling sequence Number of juggling sequences

- Divide juggling into separate throws
- Throw = movement of the ball since it was thrown until it landed
- *Height of a throw* = number of beats which pass since the ball was thrown until it landed (including landing)

(日) (同) (日) (日) (日)

- Divide juggling into separate throws
- *Throw* = movement of the ball since it was thrown until it landed
- *Height of a throw* = number of beats which pass since the ball was thrown until it landed (including landing)
- Juggler has (usually) two hands
 - odd throws land into the other hand
 - even throws land into the same hand

・ロト ・ 同ト ・ ヨト ・ ヨト ・ ヨー

- Divide juggling into separate throws
- *Throw* = movement of the ball since it was thrown until it landed
- *Height of a throw* = number of beats which pass since the ball was thrown until it landed (including landing)
- Juggler has (usually) two hands
 - odd throws land into the other hand
 - even throws land into the same hand
- Juggling the same throw on each beat:
 - odd \rightarrow cascade
 - even \rightarrow fountain

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q ()

Model of juggling Siteswap - Juggling sequence Number of juggling sequences

 Juggling function φ: assigns the height to each throwing time (beat) φ : Z → N₀ φ(i) = h_i

- Juggling function φ: assigns the height to each throwing time (beat) φ : Z → N₀ φ(i) = h_i
- Landing function $\overline{\phi}$: assigns the landing time to each throwing time $\overline{\phi}: \mathbb{Z} \to \mathbb{Z}$ $\overline{\phi}(i) = i + h_i$

(日)

- Juggling function φ: assigns the height to each throwing time (beat) φ : Z → N₀ φ(i) = h_i
- Landing function $\overline{\phi}$: assigns the landing time to each throwing time $\overline{\phi}: \mathbb{Z} \to \mathbb{Z}$ $\overline{\phi}(i) = i + h_i$
- Function is said to be ("simple") juggling, if its landing function is permutation of integers

(日) (同) (日) (日) (日)

Model of juggling Siteswap - Juggling sequence Number of juggling sequences

$$\frac{\phi(i) = \dots 3333 \dots}{\phi(i) = \dots 3456 \dots}$$

Michal Zamboj Mathematics in Juggling / Juggling in Mathematics

◆ロト ◆御 ト ◆臣 ト ◆臣 ト ─ 臣 … のへで

Model of juggling Siteswap - Juggling sequence Number of juggling sequences

Michal Zamboj Mathematics in Juggling / Juggling in Mathematics

<ロ> <同> <同> <同> < 同> < 同>

3

Model of juggling Siteswap - Juggling sequence Number of juggling sequences

- Trick repeating pattern in juggling
- Juggling sequence (Siteswap) $\{h_k\}$: $\{h_k\}_{k=1}^{p} \dots$ is finite sequence of heights of throws (\mathbb{N}_0) $\phi(i) = h_i \mod p, \forall i \in \mathbb{Z}$
- φ(i) ("simple) juggling function ⇒ {h_k} is said to be "simple" juggling sequence or siteswap of a length p

$$h_1 h_2 \dots h_p$$

• Examples of siteswaps:

33333, 3 (cascade), 441441, 12345, 7531, 97531, 88441

・ロト ・ 同ト ・ ヨト ・ ヨト

Sar

Model of juggling Siteswap - Juggling sequence Number of juggling sequences

Average test

Theorem (Average theorem (necessary condition)) The number of balls necessary to juggle a juggling sequence $\{h_k\}_{k=1}^p$ equals its average $\frac{\sum_{k=0}^{p-1} h_k}{p}$.

・ロト ・ 同ト ・ ヨト ・ ヨト

Sac

Model of juggling Siteswap - Juggling sequence Number of juggling sequences

Average test

Theorem (Average theorem (necessary condition)) The number of balls necessary to juggle a juggling sequence ${h_k}_{k=1}^p$ equals its average $\frac{\sum_{k=0}^{p-1} h_k}{p}$.

• Siteswap 12345 contains $\frac{1+2+3+4+5}{5} = 3$ balls

・ロト ・ 同ト ・ ヨト ・ ヨト

Sac

Model of juggling Siteswap - Juggling sequence Number of juggling sequences

Average test

Theorem (Average theorem (necessary condition)) The number of balls necessary to juggle a juggling sequence $\{h_k\}_{k=1}^p$ equals its average $\frac{\sum_{k=0}^{p-1} h_k}{p}$.

- Siteswap 12345 contains $\frac{1+2+3+4+5}{5} = 3$ balls
- · Reverse theorem does not hold in general

イロト 不同 トイヨト イヨト 二日

Sar

• Siteswap 54321 holds the condition of integer average, but it is in contradiction with the properties of juggling.

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

э

• The conversed theorem in the following manner holds:

Theorem ("Conversed" average theorem)

Let us have a set of nonnegative integers with integer average, then we can rearrange them to a juggling sequence.

・ロト ・ 雪 ト ・ ヨ ト ・

-

• The conversed theorem in the following manner holds:

Theorem ("Conversed" average theorem)

Let us have a set of nonnegative integers with integer average, then we can rearrange them to a juggling sequence.

• Let us have throws of heights 3,3,5,6,8.

・ロト ・ 雪 ト ・ ヨ ト ・

-

• The conversed theorem in the following manner holds:

Theorem ("Conversed" average theorem)

Let us have a set of nonnegative integers with integer average, then we can rearrange them to a juggling sequence.

- Let us have throws of heights 3,3,5,6,8.
- Rearranged sequence is 85363.

・ロト ・ 雪 ト ・ ヨ ト ・

-

Sac

Model of juggling Siteswap - Juggling sequence Number of juggling sequences

Permutation test

- Permutation test generator
- The generator of a juggling sequence is the sequence $\{h_k \mod p\}_{k=0}^{p-1}$

Theorem

The generator of a juggling sequence is a juggling sequence.

 $[63641] \mod 5 \rightarrow 13141$

• Landing times of balls makes permutation:

height of throw63641time01234landing time64875landmod 514320

• sufficient condition

・ロト ・ 同ト ・ ヨト ・ ヨト

-

Model of juggling Siteswap - Juggling sequence Number of juggling sequences

Graphical representation of a siteswap with the cyclic diagram

- 63641
- vertex \leftrightarrow time, edge \leftrightarrow throw
- In each vertex starts and finishes exactly one oriented edge
- Holds the properties of our model

・ロト ・ 同ト ・ ヨト ・ ヨト

ъ

Model of juggling Siteswap - Juggling sequence Number of juggling sequences

The cyclic diagram of the siteswap 63641 of

The generator of the siteswap 63641

イロト イポト イヨト イヨト

Dac

э

Model of juggling Siteswap - Juggling sequence Number of juggling sequences

The cyclic diagram The generator of the siteswap 63641 of the siteswap 63641

 Method of constructing new siteswaps with the use of generator - drawing diagram

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

Sac

Model of juggling Siteswap - Juggling sequence Number of juggling sequences

Juggling cards

Model of juggling Siteswap - Juggling sequence Number of juggling sequences

Juggling cards

The siteswap 12345 with juggling cards

Michal Zamboj Mathematics in Juggling / Juggling in Mathematics

イロト イボト イヨト イヨト 二日

Model of juggling Siteswap - Juggling sequence Number of juggling sequences

Theorem

The number of all juggling sequences of the period p with at most b balls is:

$$S(b,p) = (b+1)^p$$

Theorem

The number of all juggling sequences of the period p with b balls is:

$$\overline{S(b,p)}=S(b,p)-S(b-1,p)=(b+1)^p-b^p$$

イロト イボト イヨト イヨト 二日

Model of juggling Siteswap - Juggling sequence Number of juggling sequences

Looking for siteswaps without repetitions (e.g. 737373)

Theorem

The number of all minimal juggling sequences of the period p with b balls without cyclic shifts is:

$$MS(b,p) = \frac{1}{p} \sum_{d|p} \mu(\frac{p}{d})((b+1)^d - b^d)$$

Michal Zamboj Mathematics in Juggling / Juggling in Mathematics

イロト イボト イヨト イヨト 二日

Model of juggling Siteswap - Juggling sequence Number of juggling sequences

Number of juggling sequences

• The number of all minimal juggling sequences of the period *p* with *b* balls without cyclic shift is:

$$MS(b,p) = rac{1}{p}\sum_{d|p} \mu(rac{p}{d})((b+1)^d - b^d)$$

 The number of all generators of a juggling sequences of the period p is:

$$G(p) = rac{1}{p} \sum_{d|p} \varphi\left(rac{p}{d}
ight) \left(rac{p}{d}
ight)^d d!$$

• The number of generators of the period 60 is:

138 683 118 545 689 835 737 939 019 720 389 406 345 907 623 657 512 698 795 667 111 474 180 725 129 470 672.

イロト 不同 トイヨト イヨト 二日

Inside and outside throws Theory of braids Juggling braids

Projections of trajectories of balls

イロト イボト イヨト イヨト 二日

- Model of juggling hands are in fixed positions ⇒ balls will collide
- Extension of the model, to characterize the created braid

イロト 不得 トイヨト 不良 トー

3

Dac

Inside and outside throws Theory of braids Juggling braids

Cascade and Reverse cascade

Inside and outside throws in 3-cascade

イロト 不得 トイヨト 不良ト 一日

Inside and outside throws Theory of braids Juggling braids

Fountains

· Inside and outside throws in 4-fountains

3

Inside and outside throws Theory of braids Juggling braids

Theory of braids

• Space model of a braid

Michal Zamboj Mathematics in Juggling / Juggling in Mathematics

DQC

э

Inside and outside throws Theory of braids Juggling braids

Braid diagram

Trivial braid

· Braids can be continuously deformed

Two equivalent braids

Michal Zamboj Mathematics in Juggling / Juggling in Mathematics

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

ъ

Inside and outside throws Theory of braids Juggling braids

Associativity of composition: $\alpha(\beta\gamma) = (\alpha\beta)\gamma$

Michal Zamboj Mathematics in Juggling / Juggling in Mathematics

イロト イポト イヨト イヨト

ъ

Inside and outside throws Theory of braids Juggling braids

Composition of a braid α with the trivial braid ϵ

Composition of braids $\alpha \alpha^{-1}$ is trivial braid

Michal Zamboj Mathematics in Juggling / Juggling in Mathematics

イロト イポト イヨト イヨト

3

590

Inside and outside throws Theory of braids Juggling braids

Composition of a braid α with the trivial braid ϵ

Composition of braids $\alpha \alpha^{-1}$ is trivial braid

· Braids make the Braid group

イロト イポト イヨト イヨト

ъ

590

Inside and outside throws Theory of braids Juggling braids

Braid generators and braid words: $\sigma_3 \sigma_4^{-1} \sigma_4 \sigma_1^{-1} \sigma_2^{-1} \sigma_3^{-1} \sigma_3$

イロト 不得 トイヨト 不良 トー

3

History Inside and outside throws Siteswap notation of juggling Juggling braids Juggling braids

- With braids we can describe juggling with respect to inside and outside throws
- In siteswap, the time between a catch and throw is zero
 we need a "mathematical" description of the rules of movement of a ball with the use of the inside and outside throws

・ロト ・ 雪 ト ・ ヨ ト ・

-

History Inside and outside throws Siteswap notation of juggling Juggling braids Juggling braids

- With braids we can describe juggling with respect to inside and outside throws
- In siteswap, the time between a catch and throw is zero
 we need a "mathematical" description of the rules of movement of a ball with the use of the inside and outside throws
- (i) The ball thrown at present by an inside (outside) throw will pass under (above) all the balls, which were thrown earlier and will land earlier than the given ball, if all considered balls will land into the same hand from which we are throwing.
- (ii) The ball thrown at present by an inside (outside) throw of an odd height will pass under all the balls, which were thrown earlier and will land later than the given ball.
- (iii) The ball thrown at present by an inside (outside) throw of an even height will pass under all the balls, which were thrown earlier and will land later than the given ball, if all considered balls will land into the same hand from which we are throwing.

(日) (同) (日) (日) (日)

Sar

Inside and outside throws Theory of braids Juggling braids

Braid words and diagrams of cascades and fountains.

Cascade with 5 balls =
$$\sigma_1^{-1}\sigma_2^{-1}\sigma_4\sigma_3\ldots\sigma_1^{-1}\sigma_2^{-1}\sigma_4\sigma_3$$

Fountain with 6 balls = $\sigma_1^{-1} \sigma_2^{-1} \sigma_5 \sigma_4 \dots \sigma_1^{-1} \sigma_2^{-1} \sigma_5 \sigma_4$

Michal Zamboj Mathematics in Juggling / Juggling in Mathematics

Inside and outside throws Theory of braids Juggling braids

Braid words and diagrams of cascades and fountains.

2*n* balls
$$\sigma_1^{-1}\sigma_2^{-1}\ldots\sigma_{n-1}^{-1}\sigma_{2n-1}\sigma_{2n-2}\ldots\sigma_{n+1}$$
 n-times
2*n* + 1 balls $\sigma_1^{-1}\sigma_2^{-1}\ldots\sigma_n^{-1}\sigma_{2n}\sigma_{2n-1}\ldots\sigma_{n+1}$ (2*n* + 1)-times

<ロト < 同ト < 巨ト < 巨ト = 三 の < ()

Inside and outside throws Theory of braids Juggling braids

Juggling braids of siteswaps

423

Michal Zamboj Mathematics in Juggling / Juggling in Mathematics

イロト イポト イヨト イヨト

Э

Inside and outside throws Theory of braids Juggling braids

Juggling braids of siteswaps

both throws can be inside or outside

Michal Zamboj Mathematics in Juggling / Juggling in Mathematics

イロト イポト イヨト イヨト

3

Sac

Inside and outside throws Theory of braids Juggling braids

Juggling braids of siteswaps

531

all balls lie on a vertical line at some points in time

Michal Zamboj Mathematics in Juggling / Juggling in Mathematics

イロト イポト イヨト イヨト

Sac

Inside and outside throws Theory of braids Juggling braids

Juggling braids of siteswaps

to compose braids of juggling tricks we need them to finish in the starting position

Michal Zamboj Mathematics in Juggling / Juggling in Mathematics

Э

Dac

Inside and outside throws Theory of braids Juggling braids

Juggling braids of siteswaps

cascade IIO as a trivial braid

choice of inside and outside throws is arbitrary

イロト イポト イヨト イヨト

Sac

• Inverse braid (reverse siteswap) unbraids the original braid

Siteswap 12345 with inside throws Siteswap 52413 outside throws

イロト イポト イヨト イヨト

э

Inside and outside throws Theory of braids Juggling braids

"Each braid is juggleable"

- Creating a siteswap of an arbitrary braid.
 - (i) siteswap of trivial braid
 - (ii) siteswaps of braid generators
 - (iii) composing the final siteswap of the braid
- Using a different model of inside/ outside throws.
- The final siteswap is impossible to juggle

・ロト ・ 同ト ・ ヨト ・ ヨト

Inside and outside throws Theory of braids Juggling braids

Thank you for your attention!

Michal Zamboj Mathematics in Juggling / Juggling in Mathematics

イロト 不得 とうほう 不良 とう

3