Mathematics in Juggling
 Juggling in Mathematics

Michal Zamboj

Faculty of Mathematics and Physics \times Faculty of Education Charles University

The Jarní doktorandská škola didaktiky matematiky 19. - 21. 5. 2017

The first historical evidence of juggling in the Beni Masan location in Egypt, between 1994-1781 B.C..

The first historical evidence of juggling in the Beni Hassan
location in Egypt, between 1994-1781 B.C..

- Why? ... describe juggling
- How? ... describe juggling

Why?

JUGGLER

- "language"
- new tricks
- understanding principles

MATHEMATICIAN

- notation
- new properties
- application to related theories

Claude Elwood Shannon, 1916-2001

- Construction of a juggling robot (1970s)
- Underlying mathematical concept - Uniform juggling

Claude Elwood Shannon, 1916-2001

- h hands, b balls
d Dwell time ball, or occupation time hand
f Flight time of a ball
e Empty hand time

HAND PERSPECTIUE
FRST BALL
SECOND BALL THIRD BALL
hand holds a ball
HANND IS EMFTY
ball perspective

```
RIGHT HANND
LEFT HANND
    BALL IN A HANND
    BALL IN FLIGHT
TIME
```


Theorem (Shannon 1st juggling theorem.)

In the uniform juggling, it holds:

$$
\frac{f+d}{e+d}=\frac{b}{h}
$$

Theorem (Shannon 1st juggling theorem.)
In the uniform juggling, it holds:

$$
\frac{f+d}{e+d}=\frac{b}{h}
$$

Duality principle. We can exchange the terms ball and hand (and related terms).
$d=0$ minimal frequency of juggling
$e=0$ maximal frequency of juggling f flight time is constant (thus, also the height of throw)
$d=0$ minimal frequency of juggling
$e=0$ maximal frequency of juggling f flight time is constant (thus, also the height of throw)

Theorem (Frequency of the uniform juggling)
The ratio of maximal and minimal frequency in uniform juggling is

$$
\frac{b}{b-h}
$$

$d=0$ minimal frequency of juggling
$e=0$ maximal frequency of juggling f flight time is constant (thus, also the height of throw)

Theorem (Frequency of the uniform juggling)

The ratio of maximal and minimal frequency in uniform juggling is

$$
\frac{b}{b-h}
$$

Proof.

$$
\begin{array}{cl}
d=\frac{f h-e b}{b-h} & \text { (1) maximal frequency, } e=0 \text { in (1): } d=\frac{f h}{b-h} \tag{1}\\
e=\frac{(d+f) h}{b}-d & \text { (2) ratio of max frequency, } d=0 \text { in (2): } e=\frac{f h}{b} \\
& \text { (2in frequency is } \frac{d}{e}=\frac{b}{b-h}
\end{array}
$$

Examples:

human $_{1}$	cascade with 3 balls and 2 hands gives $\frac{3}{1}$
human ${ }_{2}$	fountain with 4 balls and 2 hands gives $\frac{2}{1}$
still human	cascade 7 balls for 2 hands gives ratio $\frac{7}{5}$
robot	$2 n+1$ balls and 2 hands $\frac{2 n+1}{2 n-1}$
passing jugglers	11 balls 4 hands $\frac{11}{7}$

- cca 1985-2 independent groups found a juggling notation with the use of integer sequences
- Paul Klimak from Santa Cruz, Bent Magnusson and Bruce "Boppo" Tiemann from Los Angeles - Caltech, USA
- Adam Chalcraft, Mike Day and Colin Wright from Cambridge, UK

Ronald Graham, 1935

Ronald Graham, 1935

- Performed in Cirque du Soleil

Ronald Graham, 1935

- Performed in Cirque du Soleil
- In The Guinness World Records - The Graham Number The greatest known number (1977)

Ronald Graham, 1935

- Performed in Cirque du Soleil
- In The Guinness World Records - The Graham Number The greatest known number (1977)
- Was the president of:

Ronald Graham, 1935

- Performed in Cirque du Soleil
- In The Guinness World Records - The Graham Number The greatest known number (1977)
- Was the president of:
- AMS

Ronald Graham, 1935

- Performed in Cirque du Soleil
- In The Guinness World Records - The Graham Number The greatest known number (1977)
- Was the president of:
- AMS - American Mathematical Society

Ronald Graham, 1935

- Performed in Cirque du Soleil
- In The Guinness World Records - The Graham Number The greatest known number (1977)
- Was the president of:
- AMS - American Mathematical Society
- MAA

Ronald Graham, 1935

- Performed in Cirque du Soleil
- In The Guinness World Records - The Graham Number The greatest known number (1977)
- Was the president of:
- AMS - American Mathematical Society
- MAA - Mathematical Association of America

Ronald Graham, 1935

- Performed in Cirque du Soleil
- In The Guinness World Records - The Graham Number The greatest known number (1977)
- Was the president of:
- AMS - American Mathematical Society
- MAA - Mathematical Association of America
- IJA

Ronald Graham, 1935

- Performed in Cirque du Soleil
- In The Guinness World Records - The Graham Number The greatest known number (1977)
- Was the president of:
- AMS - American Mathematical Society
- MAA - Mathematical Association of America
- IJA - International Juggling Association
- A juggler:
- A juggler:
- stands at one place
- hands are in fixed positions
- Simplifying throws (propositions)
- A juggler:
- stands at one place
- hands are in fixed positions
- Simplifying throws (propositions)
- A juggler:

1) throws the balls on constant beats
2) has always been juggling and will never end
3) throws on each beat at most one ball, and if he catches some ball, he must throw it

- Divide juggling into separate throws
- Throw = movement of the ball since it was thrown until it landed
- Height of a throw = number of beats which pass since the ball was thrown until it landed (including landing)
- Divide juggling into separate throws
- Throw = movement of the ball since it was thrown until it landed
- Height of a throw = number of beats which pass since the ball was thrown until it landed (including landing)
- Juggler has (usually) two hands
- odd throws land into the other hand
- even throws land into the same hand
- Divide juggling into separate throws
- Throw = movement of the ball since it was thrown until it landed
- Height of a throw = number of beats which pass since the ball was thrown until it landed (including landing)
- Juggler has (usually) two hands
- odd throws land into the other hand
- even throws land into the same hand
- Juggling the same throw on each beat:
- odd \rightarrow cascade
- even \rightarrow fountain
- Juggling function ϕ : assigns the height to each throwing time (beat)

$$
\begin{aligned}
& \phi: \mathbb{Z} \rightarrow \mathbb{N}_{0} \\
& \phi(i)=h_{i}
\end{aligned}
$$

- Juggling function ϕ : assigns the height to each throwing time (beat) $\phi: \mathbb{Z} \rightarrow \mathbb{N}_{0}$
$\phi(i)=h_{i}$
- Landing function $\bar{\phi}$: assigns the landing time to each throwing time

$$
\begin{aligned}
& \bar{\phi}: \mathbb{Z} \rightarrow \mathbb{Z} \\
& \overline{\phi(i)}=i+h_{i}
\end{aligned}
$$

- Juggling function ϕ : assigns the height to each throwing time (beat) $\phi: \mathbb{Z} \rightarrow \mathbb{N}_{0}$
$\phi(i)=h_{i}$
- Landing function $\bar{\phi}$: assigns the landing time to each throwing time $\bar{\phi}: \mathbb{Z} \rightarrow \mathbb{Z}$
$\bar{\phi}(i)=i+h_{i}$
- Function is said to be ("simple") juggling, if its landing function is permutation of integers

$$
\begin{array}{c|cccccccccccc}
i & \ldots & -3 & -2 & -1 & 0 & 1 & 2 & 3 & 4 & 5 & 6 & \ldots \\
\frac{\phi(i)}{\phi(i)} & \ldots & 3 & 4 & 5 & 1 & 2 & 3 & 4 & 5 & 1 & 2 & \ldots \\
\ldots & 0 & 2 & 4 & 1 & 3 & 5 & 7 & 9 & 6 & 8 & \ldots
\end{array}
$$

- Trick - repeating pattern in juggling
- Juggling sequence (Siteswap) $\left\{h_{k}\right\}$: $\left\{h_{k}\right\}_{k=1}^{p} \ldots$ is finite sequence of heights of throws $\left(\mathbb{N}_{0}\right)$ $\phi(i)=h_{i} \bmod p, \forall i \in \mathbb{Z}$
- $\phi(i)$ ("simple) juggling function $\Longrightarrow\left\{h_{k}\right\}$ is said to be "simple" juggling sequence or siteswap of a length p

$$
h_{1} h_{2} \ldots h_{p}
$$

- Examples of siteswaps:

33333, 3 (cascade), 441441, 12345, 7531, 97531, 88441

Average test

Theorem (Average theorem (necessary condition))

The number of balls necessary to juggle a juggling sequence $\left\{h_{k}\right\}_{k=1}^{p}$ equals its average $\frac{\sum_{k=0}^{p-1} h_{k}}{p}$.

Average test

Theorem (Average theorem (necessary condition))

The number of balls necessary to juggle a juggling sequence $\left\{h_{k}\right\}_{k=1}^{p}$ equals its average $\frac{\sum_{k=0}^{p-1} h_{k}}{p}$.

- Siteswap 12345 contains $\frac{1+2+3+4+5}{5}=3$ balls

Average test

Theorem (Average theorem (necessary condition))

The number of balls necessary to juggle a juggling sequence $\left\{h_{k}\right\}_{k=1}^{p}$ equals its average $\frac{\sum_{k=0}^{p-1} h_{k}}{p}$.

- Siteswap 12345 contains $\frac{1+2+3+4+5}{5}=3$ balls
- Reverse theorem does not hold in general
- Siteswap 54321 holds the condition of integer average, but it is in contradiction with the properties of juggling.

- The conversed theorem in the following manner holds:

Theorem („Conversed" average theorem)
Let us have a set of nonnegative integers with integer average, then we can rearrange them to a juggling sequence.

- The conversed theorem in the following manner holds:

Theorem („Conversed" average theorem)

Let us have a set of nonnegative integers with integer average, then we can rearrange them to a juggling sequence.

- Let us have throws of heights 3,3,5,6,8.
- The conversed theorem in the following manner holds:

Theorem („Conversed" average theorem)

Let us have a set of nonnegative integers with integer average, then we can rearrange them to a juggling sequence.

- Let us have throws of heights 3,3,5,6,8.
- Rearranged sequence is 85363 .

Permutation test

- Permutation test - generator
- The generator of a juggling sequence is the sequence $\left\{h_{k} \bmod p\right\}_{k=0}^{p-1}$

Theorem

The generator of a juggling sequence is a juggling sequence.
[63641] mod $5 \rightarrow 13141$

- Landing times of balls makes permutation:

height of throw	6	3	6	4	1
time	0	1	2	3	4
landing time	6	4	8	7	5
land $\bmod 5$	1	4	3	2	0

- sufficient condition
- Graphical representation of a siteswap with the cyclic diagram

- 63641
- vertex \leftrightarrow time, edge \leftrightarrow throw
- In each vertex starts and finishes exactly one oriented edge
- Holds the properties of our model

The cyclic diagram of the siteswap 63641

The generator of the siteswap 63641

The cyclic diagram of the siteswap 63641

The generator of the siteswap 63641

- Method of constructing new siteswaps with the use of generator - drawing diagram

Juggling cards

Juggling braids

Juggling cards

The siteswap 12345 with juggling cards

Theorem

The number of all juggling sequences of the period p with at most b balls is:

$$
S(b, p)=(b+1)^{p}
$$

Theorem

The number of all juggling sequences of the period p with b balls is:

$$
\overline{S(b, p)}=S(b, p)-S(b-1, p)=(b+1)^{p}-b^{p}
$$

Looking for siteswaps without repetitions (e.g. 737373)

Theorem

The number of all minimal juggling sequences of the period p with b balls without cyclic shifts is:

$$
M S(b, p)=\frac{1}{p} \sum_{d \mid p} \mu\left(\frac{p}{d}\right)\left((b+1)^{d}-b^{d}\right)
$$

Number of juggling sequences

- The number of all minimal juggling sequences of the period p with b balls without cyclic shift is:

$$
M S(b, p)=\frac{1}{p} \sum_{d \mid p} \mu\left(\frac{p}{d}\right)\left((b+1)^{d}-b^{d}\right)
$$

- The number of all generators of a juggling sequences of the period p is:

$$
G(p)=\frac{1}{p} \sum_{d \mid p} \varphi\left(\frac{p}{d}\right)\left(\frac{p}{d}\right)^{d} d!
$$

- The number of generators of the period 60 is:

138683118545689835737939019720389406345907623657512698 795667111474180725129470672.

History Juggling braids

Projections of trajectories of balls

- Model of juggling - hands are in fixed positions \Longrightarrow balls will collide
- Extension of the model, to characterize the created braid

Inside and outside throws

Cascade and Reverse cascade

- Inside and outside throws in 3-cascade

Inside and outside throws
Theory of braids
Juggling braids

Fountains

- Inside and outside throws in 4-fountains

Inside and outside throws
Theory of braids
Juggling braids

Theory of braids

- Space model of a braid

Braid diagram

Trivial braid

- Braids can be continuously deformed

Two equivalent braids

Composition of two braids

Associativity of composition:

$$
\alpha(\beta \gamma)=(\alpha \beta) \gamma
$$

\qquad

Composition of a braid α with the trivial braid ϵ

Composition of braids $\alpha \alpha^{-1}$ is trivial braid

\qquad

Composition of a braid α with the trivial braid ϵ

Composition of braids $\alpha \alpha^{-1}$ is trivial braid

- Braids make the Braid group

Inside and outside throws
Theory of braids
Juggling braids

Braid generators and braid words: $\sigma_{3} \sigma_{4}^{-1} \sigma_{4} \sigma_{1}^{-1} \sigma_{2}^{-1} \sigma_{3}^{-1} \sigma_{3}$

- With braids we can describe juggling with respect to inside and outside throws
- In siteswap, the time between a catch and throw is zero \Longrightarrow we need a "mathematical" description of the rules of movement of a ball with the use of the inside and outside throws
- With braids we can describe juggling with respect to inside and outside throws
- In siteswap, the time between a catch and throw is zero \Longrightarrow we need a "mathematical" description of the rules of movement of a ball with the use of the inside and outside throws
(i) The ball thrown at present by an inside (outside) throw will pass under (above) all the balls, which were thrown earlier and will land earlier than the given ball, if all considered balls will land into the same hand from which we are throwing.
(ii) The ball thrown at present by an inside (outside) throw of an odd height will pass under all the balls, which were thrown earlier and will land later than the given ball.
(iii) The ball thrown at present by an inside (outside) throw of an even height will pass under all the balls, which were thrown earlier and will land later than the given ball, if all considered balls will land into the same hand from which we are throwing.

Braid words and diagrams of cascades and fountains.

Cascade with 5 balls $=\sigma_{1}^{-1} \sigma_{2}^{-1} \sigma_{4} \sigma_{3} \ldots \sigma_{1}^{-1} \sigma_{2}^{-1} \sigma_{4} \sigma_{3}$

Fountain with 6 balls $=\sigma_{1}^{-1} \sigma_{2}^{-1} \sigma_{5} \sigma_{4} \ldots \sigma_{1}^{-1} \sigma_{2}^{-1} \sigma_{5} \sigma_{4}$

Braid words and diagrams of cascades and fountains.

$2 n$ balls $\sigma_{1}^{-1} \sigma_{2}^{-1} \ldots \sigma_{n-1}^{-1} \sigma_{2 n-1} \sigma_{2 n-2} \ldots \sigma_{n+1} n$-times
$2 n+1$ balls $\sigma_{1}^{-1} \sigma_{2}^{-1} \ldots \sigma_{n}^{-1} \sigma_{2 n} \sigma_{2 n-1} \ldots \sigma_{n+1}(2 n+1)$-times

Inside and outside throws
Theory of braids
Juggling braids

Juggling braids of siteswaps

Juggling braids of siteswaps

both throws can be inside or outside

Juggling braids of siteswaps

all balls lie on a vertical line at some points in time

Juggling braids of siteswaps

to compose braids of juggling tricks we need them to finish in the starting position

Inside and outside throws
Theory of braids
Juggling braids

Juggling braids of siteswaps

cascade IIO as a trivial braid
choice of inside and outside throws is arbitrary

- Inverse braid (reverse siteswap) unbraids the original braid

Siteswap 12345 with inside throws

Siteswap 52413 outside throws

"Each braid is juggleable"

- Creating a siteswap of an arbitrary braid.
(i) siteswap of trivial braid
(ii) siteswaps of braid generators
(iii) composing the final siteswap of the braid
- Using a different model of inside/ outside throws.
- The final siteswap is impossible to juggle

Thank you for your attention!

