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V.1. Rn as a metric and linear space

Definition
The set Rn, n 2 N, is the set of all ordered n-tuples of real
numbers.

Definition
Euclidean metric on Rn is the function
�WRn � Rn ! Œ0;C1/ defined by

�.x ;y/ D

p
nX

iD1

.xi � yi/
2:

The number �.x ;y/ is called distance of the point x from
the point y .
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Theorem 5.1 (properties of Euclidean metric)
Euclidean metric � has the following properties:

(i) 8x ;y 2 RnW �.x ;y/ D 0, x D y ,
(ii) 8x ;y 2 RnW �.x ;y/ D �.y ;x/, (symmetry)
(iii) 8x ;y ; z 2 RnW �.x ;y/ � �.x ; z/C �.z;y/,

(triangle inequality)
(iv) 8x ;y 2 Rn;8� 2 RW �.�x ; �y/ D j�j �.x ;y/,

(homogeneity)
(v) 8x ;y ; z 2 RnW �.x C z;y C z/ D �.x ;y/.

(translation invariance)
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Definition
Let x 2 Rn; r 2 R; r > 0. The set B.x ; r / defined by

B.x ; r / D fy 2 Rn
I �.x ;y/ < rg

is called open ball with radius r centered at x .



Definition
Let M � Rn. We say that x 2 Rn is an interior point of M, if
there exists r > 0 such that B.x ; r / � M.

The set M � Rn

is open in Rn, if each point of M is an interior point of M.
We say that M is closed in Rn, if its complement is closed.
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Definition
Let M � Rn. We say that x 2 Rn is an interior point of M, if
there exists r > 0 such that B.x ; r / � M. The set M � Rn

is open in Rn, if each point of M is an interior point of M.
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Theorem 5.2 (properties of open sets)

(i) The empty set and Rn are open in Rn.
(ii) Let sets G˛ � Rn, ˛ 2 A ¤ ;, be open in Rn. ThenS

˛2A G˛ is open in Rn.
(iii) Let sets Gi , i D 1; : : : ;m, be open in Rn. ThenTm

iD1 Gi is open in Rn.



Theorem 5.3 (properties of closed sets)

(i) The empty set and Rn are closed in Rn.
(ii) Let sets F˛ � Rn, ˛ 2 A ¤ ;, be closed in Rn. ThenT

˛2A F˛ is closed in Rn.
(iii) Let sets Fi , i D 1; : : : ;m, are closed in Rn. ThenSm

iD1 Fi is closed in Rn.



Definition
Let M � Rn and x 2 Rn. We say that x is a boundary point
of M, if for each r > 0 we have B.x ; r / \M ¤ ; and
B.x ; r / \ .Rn nM/ ¤ ;.

Boundary of M is the set of all boundary points of M
(notation bd M).

Closure of M is the set M [ bd M (notation M).

Interior of M is the set of all interior points of M (notation
int M).
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5.2 Continuous function of several variables

Definition
Let x j 2 Rn for each j 2 N and x 2 Rn. We say that a
sequence fx jg1jD1 converges to x , if limj!1 �.x ;x j/ D 0.
The vector x is called limit of the sequence fx jg1jD1.



Theorem 5.4
Let x j 2 Rn for each j 2 N and x 2 Rn. The sequence
fx jg1jD1 converges to x if and only if for each i 2 f1; : : : ;ng
the sequence of real numbers fx j

i g
1
jD1 converges to the

real number xi .



Definition
Let M � Rn, x 2 M, and f WM ! R. We say that f is
continuous at x with respect to M, if we have

8" 2 R; " > 0 9ı 2 R; ı > 0 8y 2 B.x ; ı/\MW f .y/ 2 B.f .x/; "/:

We say that f is continuous at the point x , it it is
continuous at x with respect to a neighborhood of x , i.e.,

8" 2 R; " > 0 9ı 2 R; ı > 0 8y 2 B.x ; ı/W f .y/ 2 B.f .x/; "/:
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Remark
Let M � Rn, x 2 M, f WM ! R, gWM ! R, and c 2 R. If f
and g are continuous at the point x with respect to M,
then the functions cf , f C g a fg are continuous at x with
respect to M. If the function g is nonzero at each point of
M, then also the function f=g is continuous at x with
respect to M.



Theorem 5.5 (Heine)
Let M � Rn, x 2 M, and f WM ! R. Then the following are
equivalent.

(i) The function f is continuous at x with respect to M.
(ii) For each sequence fx jg1jD1 such that x j 2 M pro j 2 N

a lim
j!1

x j D x , we have lim
j!1

f .x j/ D f .x/.



Remark
Let r ; s 2 N, M � Rs, L � Rr , and y 2 M. Let '1; : : : ; 'r

are functions defined on M, which are continuous at y
with respect to M and Œ'1.x/; : : : ; 'r .x/� 2 L for each
x 2 M. Let f WL! R be continuous at the point
Œ'1.y/; : : : ; 'r .y/� with respect to L. Then the composed
function F WM ! R defined by

F .x/ D f
�
'1.x/; : : : ; 'r .x/

�
; x 2 M;

is continuous at y with respect to M.



Definition
Let M � Rn a f WM ! R. We say that f is continuous on M,
if it is continuous at each point x 2 M with respect to M.

Remark
The projection �j WRn ! R, �j.x/ D xj , 1 � j � n, are
continuous on Rn.



Definition
Let M � Rn a f WM ! R. We say that f is continuous on M,
if it is continuous at each point x 2 M with respect to M.

Remark
The projection �j WRn ! R, �j.x/ D xj , 1 � j � n, are
continuous on Rn.









Let f be a continuous function on Rn and c 2 R. Then we
have:

(i) The set fx 2 RnI f .x/ < cg is open in Rn.
(ii) The set fx 2 RnI f .x/ > cg is open in Rn.
(iii) The set fx 2 RnI f .x/ � cg is closed in Rn.
(iv) The set fx 2 RnI f .x/ � cg is closed in Rn.
(v) The set fx 2 RnI f .x/ D cg is closed in Rn.















Definition
We say that a set M � Rn is compact, if for each
sequence of elements of M there exists a convergent
subsequence with limit in M.

Theorem 5.6 (characterization of compact
subsets of Rn)
The set M � Rn is compact if and only if M is bounded
and closed.
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Definition
Let M � Rn, x 2 M, and f be a function defined at least
on M, i.e., M � Df . We say that f attains at the point x

maximum on M, if for every y 2 M we have
f .y/ � f .x/,

local maximum with respect to M, if there exists ı > 0
such that for every y 2 B.x ; ı/ \M we have
f .y/ � f .x/,
sharp local maximum with respect to M, if there
exists ı > 0 such that for every
y 2

�
B.x ; ı/ n fxg

�
\M we have f .y/ < f .x/.

The notions minimum, local minimum, and sharp local
minimum with respect to M are defined analogically.
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Definition
We say that a function f attains at the point x 2 Rn local
maximum, if x is a local maximum with respect to some
ball centered at the point x . Similarly one can define local
minimum, sharp local maximum and sharp local minimum.



Theorem 5.7 (attaining extrema)
Let M � Rn be a nonempty compact set and f WM ! R be
continuous on M. Then f attains on M its maximum and
minimum.

Corollary 5.8
Let M � Rn be a nonempty compact set and f WM ! R be
continuous on M. Then f is bounded on M.
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Definition
We say that function f WRn ! R has at a point a 2 Rn limit
equal A 2 R�, if we have

8" 2 R; " > 0 9ı 2 R; ı > 0 8x 2 B.a; ı/nfagW f .x/ 2 B.A; "/:

Remark
Each function has at a given point at most one limit.
We write limx!a f .x/ D A.
The function f is continuous at a if and only if
limx!a f .x/ D f .a/.
For functions of several variables one can prove
similar theorems as for functions of one variable
(arithmetics, sandwich theorem, . . . ).
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Theorem 5.9
Let r ; s 2 N, a 2 M � Rs, L � Rr , '1; : : : ; 'r be functions
defined on M such that limx!a 'j.x/ D bj , j D 1; : : : ; r , and
b D Œb1; : : : ;br � 2 L. Let f WL! R be continuous at the
point b. We define a function F WM ! R by

F .x/ D f .'1.x/; '2.x/; : : : ; 'r .x//; x 2 M:

Then limx!a F .x/ D f .b/.





















Definition
Let f be a function of n variables, j 2 f1; : : : ;ng, a 2 Rn.
Then the number

@f
@xj
.a/ D lim

t!0

f .aC tej/ � f .a/
t

D lim
t!0

f .a1; : : : ;aj�1;aj C t ;ajC1; : : : ;an/ � f .a1; : : : ;an/

t

is called partial derivatives (of first order) of function f
according to j-th variable at the point a (if it exists).
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Theorem 5.10 (necessary condition of existence
of local extremum)
Let G � Rn be an open set, a 2 G, and a function
f WG! R have at the point a local extremum. Then for
each j 2 f1; : : : ;ng we have:
The partial derivative @f

@xj
.a/ either does not exit or is zero.



















Definition
Let G � Rn be a nonempty open set. Let a function
f WG! R have at each point of the set G all partial
derivatives continuous (i.e., function x 7! @f

@xj
.x/ are

continuous on G for each j 2 f1; : : : ;ng). Then we say that
f is of the class C1 on G. The set of all these functions is
denoted by C1.G/.

Remark
If G � Rn is a nonempty open set and and f ;g 2 C1.G/,
then f C g 2 C1.G/, f � g 2 C1.G/, and fg 2 C1.G/. If
moreover for each x 2 G we have Wg.x/ ¤ 0, then
f=g 2 C1.G/.
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Proposition 5.11 (Lagrange)
Let n 2 N, I1; : : : ; In � R be open intervals,
I D I1 � I2 � � � � � In, f 2 C1.I/, a;b 2 I. Then there exist
points �1; : : : ; �n

2 I with � i
j 2 haj ;bji for each

i ; j 2 f1; : : : ;ng, such that

f .b/ � f .a/ D
nX

iD1

@f
@xi
.� i/.bi � ai/:





Definition
Let G � Rn be an open set, a 2 G, and f 2 C1.G/. Then
the graph of the function

T Wx 7! f .a/C
@f
@x1

.a/.x1 � a1/C
@f
@x2

.a/.x2 � a2/

C � � � C
@f
@xn

.a/.xn � an/; x 2 Rn;

is called tangent hyperplane to the graph of the function f
at the point Œa; f .a/�.





Theorem 5.12
Let G � Rn be an open set, a 2 G, f 2 C1.G/, and T be a
function, such that its graph is the tangent hyperplane of
the function f at the point Œa; f .a/�. Then

lim
x!a

f .x/ � T .x/
�.x ;a/

D 0:

Theorem 5.13
Let G � Rn be an open nonempty set and f 2 C1.G/.
Then f is continuous on G.
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Theorem 5.14
Let r ; s 2 N, G � Rs, H � Rr be open sets. Let
'1; : : : ; 'r 2 C1.G/, f 2 C1.H/ and Œ'1.x/; : : : ; 'r .x/� 2 H for
each x 2 G. Then the composed function F WG! R
defined by

F .x/ D f
�
'1.x/; '2.x/; : : : ; 'r .x/

�
; x 2 G;

is of the class C1 on G. Let a 2 G and
b D Œ'1.a/; : : : ; 'r .a/�. Then for each j 2 f1; : : : ; sg we
have

@F
@xj
.a/ D

rX
iD1

@f
@yi
.b/

@'i

@xj
.a/:



Definition
Let G � Rn be an open set, a 2 G, and f 2 C1.G/.
Gradient of f at the point a is defined as the vector

rf .a/ D
�
@f
@x1

.a/;
@f
@x2

.a/; : : : ;
@f
@xn

.a/
�
:





Definition
Let G � Rn be an open set, a 2 G, f 2 C1.G/, and
rf .a/ D o. Then the point a is called stationary (or also
critical) point of the function f .



Definition
Let G � Rn be an open set, f WG! R, i ; j 2 f1; : : : ;ng, and
@f
@xi
.x/ exists for each x 2 G. Then partial derivative of the

second order of the function f according to i-th and j-th
variable at the point a 2 G is defined by

@2f
@xi@xj

.a/ D
@

@xj

�
@f
@xi

�
.a/:

If i D j then we use the notation

@2f
@x2

i

.a/:
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@2f
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Theorem 5.15
Let i ; j 2 f1; : : : ;ng and let both partial derivatives @2f

@xi@xj

and @2f
@xj@xi

be continuous at a point a 2 Rn. Then we have

@2f
@xi@xj

.a/ D
@2f
@xj@xi

.a/:



Definition
Let G � Rn be an open set and k 2 N. We say that a
function f is of the class Ck on G, if all partial derivatives
of f till k -th order are continuous on G. The set of all these
functions is denoted by Ck.G/.

We say that a function f is
of the class C1 on G, if all partial derivatives of all orders
of f are continuous on G. The set of all functions of the
class C1 on G is denoted by C1.G/.
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Let G � Rn be an open set and k 2 N. We say that a
function f is of the class Ck on G, if all partial derivatives
of f till k -th order are continuous on G. The set of all these
functions is denoted by Ck.G/. We say that a function f is
of the class C1 on G, if all partial derivatives of all orders
of f are continuous on G. The set of all functions of the
class C1 on G is denoted by C1.G/.





Theorem 5.16 (implicit function theorem)
Let G � RnC1 be an open set, F WG! R, Qx 2 Rn, Qy 2 R,
Œ Qx ; Qy � 2 G. Suppose that

1. F 2 C1.G/,
2. F . Qx ; Qy/ D 0,

3.
@F
@y
. Qx ; Qy/ ¤ 0.

Then there exist a neighborhood U � Rn of the point Qx
and a neighborhood V � R of the point Qy such that for
each x 2 U there exists unique y 2 V with the property
F .x ; y/ D 0. If we denote this y by '.x/, then the resulting
function ' is in C1.U/ and

@'

@xj
.x/ D �

@F
@xj
.x ; '.x//

@F
@y .x ; '.x//

for x 2 U, j 2 f1; : : : ;ng.
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Theorem 5.17 (implicit function theorem)
Let m;n 2 N, k 2 N [ f1g, G � RnCm be an open set,
Fj WG! R for j D 1; : : : ;m, Qx 2 Rn, Qy 2 Rm, Œ Qx ; Qy � 2 G.
Suppose that

1. Fj 2 Ck.G/ for each j 2 f1; : : : ;mg,
2. Fj. Qx ; Qy/ D 0 for each j 2 f1; : : : ;mg,

3.

ˇ̌̌̌
ˇ̌̌
@F1
@y1
. Qx ; Qy/ : : : @F1

@ym
. Qx ; Qy/

:::
: : :

:::
@Fm
@y1
. Qx ; Qy/ : : : @Fm

@ym
. Qx ; Qy/

ˇ̌̌̌
ˇ̌̌ ¤ 0:

Then there exist a neighborhood U � Rn of the point Qx
and a neighborhood V � Rm of the point Qy such that for
each x 2 U there exists unique y 2 V with the property
Fj.x ;y/ D 0 for each j 2 f1; : : : ;mg. If we denote
coordinates of this y by 'j.x/, j D 1; : : : ;m, then the
resulting functions 'j are in Ck.U/.
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Remark
The symbol in the condition (3) of Theorem 5.17 is called
determinant. The definition will presented later on.

For m D 1 we have
ˇ̌
a
ˇ̌
D a, a 2 R.

For m D 2 we have
ˇ̌̌̌
a b
c d

ˇ̌̌̌
D ad � bc, a;b; c;d 2 R.



Remark
The symbol in the condition (3) of Theorem 5.17 is called
determinant. The definition will presented later on.
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Theorem 5.18 (Lagrange multiplier theorem)
Let G � R2 be an open set, f ;g 2 C1.G/,
M D fŒx ; y � 2 GI g.x ; y/ D 0g, and Œ Qx ; Qy � 2 M be a point of
local extremum of f with respect to the set M. Then at
least one of the following conditions holds:

1. rg. Qx ; Qy/ D o,
2. there exists � 2 R satisfying

@f
@x
. Qx ; Qy/C �

@g
@x
. Qx ; Qy/ D 0;

@f
@y
. Qx ; Qy/C �

@g
@y
. Qx ; Qy/ D 0:
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Theorem 5.19 (Lagrange multiplier theorem)
Let m;n 2 N, m < n, G � Rn be an open set,
f ;g1; : : : ;gm 2 C1.G/,

M D fz 2 GI g1.z/ D 0;g2.z/ D 0; : : : ;gm.z/ D 0g

and let Qz 2 M be a point of local extremum of f with
respect to the set M. Then at least one of the following
conditions holds:

1. the vectors

rg1. Qz/;rg2. Qz/; : : : ;rgm. Qz/

are linearly dependent,
2. there exist �1; �2; : : : ; �m 2 R satisfying

rf . Qz/C �1rg1. Qz/C �2rg2. Qz/C � � � C �mrgm. Qz/ D o:
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t � aC .1 � t/ � b D aC .1 � t/ � .b � a/



Definition
Let M � Rn. We say that M is convex, if we have

8x ;y 2 M 8t 2 h0;1iW tx C .1 � t/y 2 M:



Definition
Let M � Rn be a convex set and a function f be defined
on M. We say that f is

concave on M, if

8a;b 2 M 8t 2 h0;1iW f .taC.1�t/b/ � tf .a/C.1�t/f .b/;

strictly concave on M, if

8a;b 2 M;a ¤ b 8t 2 .0;1/W
f .taC .1 � t/b/ > tf .a/C .1 � t/f .b/:



Theorem 5.20
Let a function f be concave on an open convex set
G � Rn. Then f is continuous on G.

Theorem 5.21
Let a function f be concave on a convex set M � Rn. Then
for each ˛ 2 R the set Q˛ D fx 2 MI f .x/ � ˛g is convex.



Theorem 5.20
Let a function f be concave on an open convex set
G � Rn. Then f is continuous on G.

Theorem 5.21
Let a function f be concave on a convex set M � Rn. Then
for each ˛ 2 R the set Q˛ D fx 2 MI f .x/ � ˛g is convex.



Theorem 5.22 (characterization of concave
functions of the class C1)
Let G � Rn be a convex open set and f 2 C1.G/. Then the
function f is convex on G if and only if we have

8x ;y 2 GW f .y/ � f .x/C
nX

iD1

@f
@xi
.x/.yi � xi/:













Corollary 5.23
Let G � Rn be a convex open set and f 2 C1.G/ be
concave on G. If a point a 2 G is a stationary point of f ,
then a is a point of maximum of f with respect to G.



Theorem 5.24 (characterization of strictly
concave functions of the class C1)
Let G � Rn be a convex open set and f 2 C1.G/. Then the
function f is strictly concave on G if and only if we have

8x ;y 2 G;x ¤ y W f .y/ < f .x/C
nX

iD1

@f
@xi
.x/.yi � xi/:



Definition
Let M � Rn be a convex set and f be defined on M. We
say that f is

quasiconcave on M, if

8a;b 2 M 8t 2 Œ0;1�W f .taC.1�t/b/ � minff .a/; f .b/g;

strictly quasiconcave on M, if

8a;b 2 M;a ¤ b; 8t 2 .0;1/W f .taC.1�t/b/ > minff .a/; f .b/g:



















Remark
Let M � Rn be a convex set and f be a function defined
on M.

Let f be concave on M. Then f is quasiconcave on M.
Let f be strictly concave on M. Then f is strictly
quasiconcave on M.



Remark
Let M � Rn be a convex set and f be a function defined
on M.

Let f be concave on M. Then f is quasiconcave on M.
Let f be strictly concave on M. Then f is strictly
quasiconcave on M.



Theorem 5.25 (on uniqueness of extremum)
Let f be a strictly quasiconcave function on a convex set
M � Rn. Then there exists at most one point of maximum
of f .

Corollary 5.26
Let M � Rn be a convex, bounded, closed and nonempty
set. Let f be continuous and strictly quasiconcave function
on M. Then f attains its maximum on M in a unique point.



Theorem 5.25 (on uniqueness of extremum)
Let f be a strictly quasiconcave function on a convex set
M � Rn. Then there exists at most one point of maximum
of f .

Corollary 5.26
Let M � Rn be a convex, bounded, closed and nonempty
set. Let f be continuous and strictly quasiconcave function
on M. Then f attains its maximum on M in a unique point.



Theorem 5.27 (characterization of quasiconcave
functions via level sets)
Let M � Rn be a convex set and f be defined on M. The
function f is quasiconcave on M if and only if for each
˛ 2 R the set Q˛ D fx 2 MI f .x/ � ˛g is convex.



Definition
The scheme ˙

a11 a12 : : : a1n

a21 a22 : : : a2n
:::

:::
: : :

:::

am1 am2 : : : amn

�

;

where aij 2 R, i D 1; : : : ;m, j D 1; : : : ;n, is called a matrix
of the type m � n. We write .aij/iD1::m

jD1::n
.

A matrix of type

n � n is called square matrix of the order n. The set of all
matrices of the type m � n is denoted M.m � n/.
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Definition
Let

A D

˙
a11 a12 : : : a1n

a21 a22 : : : a2n
:::

:::
: : :

:::

am1 am2 : : : amn

�

:

The n-tuple .ai1;ai2; : : : ;ain/, where i 2 f1;2; : : : ;mg,
i 2 f1;2; : : :;mg, is called i-th row of the matrix A.

The

m-tuple

0@ a1j
a2j

:::
amj

1A, where j 2 f1;2; : : : ; ng,

j 2 f1;2; : : :;ng, is called j-th column matrix A.
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Definition
We say that two matrices are equal, if they are of the
same type and the corresponding elements are equal,
i.e., if A D .aij/iD1::m

jD1::n
and B D .buv/uD1::r

vD1::s
, then A D B if and

only if m D r , n D s and aij D bij for every i 2 f1; : : : ;mg,
j 2 f1; : : : ;ng.



Definition
Let A;B 2 M.m � n/, A D .aij/iD1::m

jD1::n
, B D .bij/iD1::m

jD1::n
, � 2 R.

The sum of A and B is defined by

AC B D

˙
a11 C b11 a12 C b12 : : : a1n C b1n

a21 C b21 a22 C b22 : : : a2n C b2n
:::

:::
: : :

:::

am1 C bm1 am2 C bm1 : : : amn C bmn

�

:

Product of a real number � and the matrix A is defined by

�A D

˙
�a11 �a12 : : : �a1n

�a21 �a22 : : : �a2n
:::

:::
: : :

:::

�am1 �am2 : : : �amn

�

:
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Proposition 6.1 (basic properties)

8A;B;C 2 M.m � n/WAC .BCC/ D .AC B/CC,
(associativity)
8A;B 2 M.m � n/WAC B D BCA, (commutativity)
9ŠO 2 M.m � n/ 8A 2 M.m � n/WACO D A,
(existence of the zero element)
8A 2 M.m � n/ 9CA 2 M.m � n/WACCA D O,
8A 2 M.m � n/ 8�;� 2 RW .��/A D �.�A/,
8A 2 M.m � n/W1 �A D A,
8A 2 M.m � n/ 8�;� 2 RW .�C �/A D �AC �A,
8A;B 2 M.m � n/ 8� 2 RW�.AC B/ D �AC �B.



Definition
Let A 2 M.m � n/, A D .ais/iD1::m

sD1::n
, B 2 M.n � k/,

B D .bsj/sD1::n
jD1::k

. Then the product of matrices A and B is

defined as AB 2 M.m � k/, AB D .cij/iD1::m
jD1::k

, where

cij D

nX
sD1

aisbsj :
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Transpose matrix for a matrix

A D

˙
a11 a12 a13 : : : a1n

a21 a22 a23 : : : a2n
:::

:::
:::

: : :
:::

am1 am2 am3 : : : amn

�

is defined by

AT
D

�
a11 a21 : : : am1

a12 a22 : : : am2

a13 a23 : : : am3
:::

:::
: : :

:::

a1n a2n : : : amn

�

;

i.e., if A D .aij/iD1::m
jD1::n

, then AT D .buv/uD1::n
vD1::m

, where

buv D avu for each u 2 f1; : : : ;ng, v 2 f1;2; : : : ;mg.
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Theorem 6.3 (properties of transpose matrix)
We have

(i) 8A 2 M.m � n/W
�
AT
�T
D A,

(ii) 8A;B 2 M.m � n/W .AC B/T D AT C BT ,
(iii) 8A 2 M.m � n/ 8B 2 M.n � k/W .AB/T D BT AT .
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Definition
Let A 2 M.n � n/. We say that A is regular matrix, if there
exists B 2 M.n � n/ such that

AB D BA D I:

Definition
We say that B 2 M.n � n/ is inverse to a matrix
A 2 M.n � n/, if AB D BA D I.

Remark
A matrix A 2 M.n � n/ is regular, if and only if A has its
inverse matrix.
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Theorem 6.4 (regularity and matrix operations)
Let A;B 2 M.n � n/ be regular. Then we have:

(i) A�1 is regular and
�
A�1

��1
D A,

(ii) AT is regular and
�
AT
��1
D
�
A�1

�T ,
(iii) AB is regular and .AB/�1 D B�1A�1.
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Definition
Let v1; : : : ;v k 2 Rn be vectors. Linear combination of
vectors v1; : : : ;vk is an expression �1v1 C � � � C �kvk ,
where �1; : : : ; �k 2 R.

Trivial linear combination of vectors
v1; : : : ;v k we mean the linear combination
0 � v1C � � � C 0 � vk . Linear combination, which is not trivial,
is called nontrivial.
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Definition
We say that vectors v1; : : : ;vk are linearly dependent, if
there exists their nontrivial linear combination, which is
equal to the zero vector.

We say that vectors v1; : : : ;vk are linearly independent, if
they are not linearly dependent, i.e., if �1; : : : ; �k 2 R
satisfy �1v1 C � � � C �kv k D o, then
�1 D �2 D � � � D �k D 0.
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Definition
Let A 2 M.m � n/. Rank of the matrix A is the maximal
number of linearly independent row vectors of A. Rank of
A is denoted by rk.A/.

Definition
We say that A 2 M.m � n/ is in the row echelon form, if for
each i 2 f2; : : : ;mg we have, that i-th row of A is a zero
vector or the number of zeros at the beginning of the row
is bigger than the number of zeros at the beginning of
.i � 1/-st row.

Remark
The rank of row echelon matrix A is equal to the number
of nonzero rows of A.
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Definition
Elementary row transformations of the matrix A are
defined as:

(i) interchange of two rows,

(ii) multiplication of a row by a nonzero real number,
(iii) addition of a row to another row.

Definition
Transformation is defined as a finite sequence of
elementary row transformation. If the matrix B 2 M.m � n/
was created from A 2 M.m � n/ applying a transformation

T to A, then this fact is denoted by A
T

Ý B.
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Theorem 6.5 (properties of transformation)

(i) Let A 2 M.m � n/. Then there exists a transformation
transforming A to a row echelon matrix.

(ii) Let T1 be a transformation applicable to matrices of
the type m � n. Then there exists a transformation T2

applicable to matrices of the type m � n such that if

A
T1Ý B for some A;B 2 M.m � n/, then B

T2Ý A.
(iii) Let A;B 2 M.m � n/ and there exist a transformation

T such that A
T

Ý B. Then rk.A/ D rk.B/.
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Theorem 6.6 (multiplication and transformation)
Let A 2 M.m � k/, B 2 M.k � n/, C 2 M.m � n/ and we

have AB D C. Let T be a transformation and A
T

Ý A0 and
C

T
Ý C0. Then we have A0B D C0.

Lemma 6.7
Let A 2 M.n � n/ and rk.A/ D n. Then there exists a
transformation transforming A to I.

Theorem 6.8
Let A 2 M.n � n/. Then A is regular if and only if
rk.A/ D n.
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the type .n� 1/� .n� 1/, which is created from A omitting
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Let A D .aij/i;jD1::n. Determinant of the matrix A is defined
by
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a11 then n D 1,Pn

iD1.�1/iC1ai1 det Ai1 then n > 1.

For det A we will use also the symbolˇ̌̌̌
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Theorem 6.9
Let j ;n 2 N, j � n, and matrices A;B;C 2 M.n � n/
coincide at each row except j-th row. Let j-th row of A be
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ˇ̌̌̌
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ˇ̌
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Theorem 6.10 (determinant and transformation)
Let A;A0 2 M.n � n/.

(i) Let A0 be created from A such that we interchanged
two rows in A (i.e., we applied an elementary row
transformation of the first kind). Then we have
det A0 D �det A.

(ii) Let A0 be created from A such that a row in A is
multiplied by � 2 R. Then we have det A0 D �det A.

(iii) Let A0 be created from A such that we added a row
of A to another row of A (i.e., we applied an
elementary row transformation of the third kind).
Then we have det A0 D det A.
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Corollary 6.11
Let A;A0 2 M.n � n/ and A0 be created from A applying a
transformation. Then det A0 ¤ 0 if and only if det A ¤ 0.

Theorem 6.12 (determinant and transposition)
Let A 2 M.n � n/. Then we have det AT D det A.

Theorem 6.13 (determinant of product)
Let A;B 2 M.n � n/. Then we have

det AB D det A � det B:
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Theorem 6.14
Let A D .aij/i;jD1::n, k 2 f1; : : : ;ng. Then

det A D
nX

iD1

.�1/iCkaik det Aik ;

det A D
nX

jD1

.�1/kCjakj det Akj :



Definition
Let A D .aij/i;jD1::n. We say that A is upper triangular
matrix if we have aij D 0 for i > j , i ; j 2 f1; : : : ;ng.

We say
that A is lower triangular matrix, if we have aij D 0 for
i < j , i ; j 2 f1; : : : ;ng.

Theorem 6.15
Let A D .aij/i;jD1::n is upper (lower, respectively) triangular
matrix. Then we have

det A D a11 � a22 � � � � � ann:
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Let A D .aij/i;jD1::n. We say that A is upper triangular
matrix if we have aij D 0 for i > j , i ; j 2 f1; : : : ;ng. We say
that A is lower triangular matrix, if we have aij D 0 for
i < j , i ; j 2 f1; : : : ;ng.

Theorem 6.15
Let A D .aij/i;jD1::n is upper (lower, respectively) triangular
matrix. Then we have
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Theorem 6.16
Let A 2 M.n � n/. Then A is regular if and only if
det A ¤ 0.



The system of n equations with n unknowns:

a11x1 C a12x2 C � � � C a1nxn D b1

a21x1 C a22x2 C � � � C a2nxn D b2

:::

an1x1 C an2x2 C � � � C annxn D bn

(S)

Matrix form
Ax D b;

where A D

� a11 ::: a1n
:::
:::

:::
an1 ::: ann

�
is called matrix of the system,

b D

 
b1
:::

bn

!
vector of the right side and x D

� x1
:::

xn

�
vectors

of unknowns.



Theorem 6.17
Let A 2 M.n � n/. Then the following are equivalent.

(i) The matrix A is regular.

(ii) The system (S) have for each b a unique solution.
(iii) The system (S) have for each b at least one solution.



Theorem 6.17
Let A 2 M.n � n/. Then the following are equivalent.

(i) The matrix A is regular.
(ii) The system (S) have for each b a unique solution.

(iii) The system (S) have for each b at least one solution.



Theorem 6.17
Let A 2 M.n � n/. Then the following are equivalent.

(i) The matrix A is regular.
(ii) The system (S) have for each b a unique solution.
(iii) The system (S) have for each b at least one solution.



Theorem 6.18 (Cramer’s rule)
Let A 2 M.n � n/ be a regular matrix, b 2 M.n � 1/,
x 2 M.n � 1/, and Ax D b. Then

xj D

ˇ̌̌̌
ˇ̌̌a11 : : : a1;j�1 b1 a1;jC1 : : : a1n
:::

:::
:::

an1 : : : an;j�1 bn an;jC1 : : : ann

ˇ̌̌̌
ˇ̌̌

det A

for j D 1; : : : ;n.



System of m equations with n unknowns:

a11x1 C a12x2 C � � � C a1nxn D b1

a21x1 C a22x2 C � � � C a2nxn D b2

:::

am1x1 C am2x2 C � � � C amnxn D bm

(S’)

Matrix notation
Ax D b;

where A D

� a11 ::: a1n
:::
:::

:::
am1 ::: amn

�
2 M.m � n/,

b D

 
b1
:::

bm

!
2 M.m � 1/ a x D

� x1
:::

xn

�
2 M.n � 1/.



Definition
The matrix

.Ajb/ D

�
a11 : : : a1n
:::

: : :
:::

am1 : : : amn

ˇ̌̌̌
ˇ̌̌ b1
:::

bm

�

is called extended matrix of the system (S’).

Theorem 6.19
The system (S’) has a solution if and only if the matrix has
the same rank as the extended matrix of the system.



Definition
The matrix

.Ajb/ D

�
a11 : : : a1n
:::

: : :
:::

am1 : : : amn

ˇ̌̌̌
ˇ̌̌ b1
:::

bm

�

is called extended matrix of the system (S’).

Theorem 6.19
The system (S’) has a solution if and only if the matrix has
the same rank as the extended matrix of the system.



Definition
We say that a mapping f WRn ! Rm is linear if

(i) 8u;v 2 RnW f .u C v/ D f .u/C f .v/,

(ii) 8� 2 R 8u 2 RnW f .�u/ D �f .u/.
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We say that a mapping f WRn ! Rm is linear if

(i) 8u;v 2 RnW f .u C v/ D f .u/C f .v/,
(ii) 8� 2 R 8u 2 RnW f .�u/ D �f .u/.



Definition
Let i 2 f1; : : : ;ng. The vector

ei
D

ˇ
0
:::
0
1
0
:::
0




: : : i-th coordinate

is called i-th canonical vector of the space Rn.

The set
fe1; : : : ;eng of all canonical vectors in Rn is called
canonical basis of the space Rn.
The properties of canonical vectors:

(i) 8x 2 Rn 9�1; : : : ; �n 2 RWx D �1e1 C � � � C �nen,
(ii) the vectors e1; : : : ;en are linearly independent.
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Theorem 6.20 (representation of linear
mappings)
The mapping f WRn ! Rm is linear if and only if there
exists a matrix A 2 M.m � n/ such that

8u 2 Rn
W f .u/ D Au D

�
a11 : : : a1n
:::

: : :
:::

am1 : : : amn

��
u1
:::

un

�

:



Theorem 6.21
Let a mapping f WRn ! Rn be linear. Then the following
are equivalent.

(i) The mapping f is a bijection (i.e., f is an injective
mapping Rn onto Rn).

(ii) The mapping f is an injective mapping.
(iii) The mapping f is a mapping Rn onto Rn.

Theorem 6.22
Let f WRn ! Rm be a linear mapping represented by matrix
A 2 M.m � n/ a gWRm ! Rk be a linear mapping
represented by a matrix B 2 M.k �m/. Then the
composed mapping g ı f WRn ! Rk is linear and is
represented by the matrix BA.
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Infinite series

Definition
Let fang be a sequence of real numbers. Symbol

P1
nD1 an

is called an infinite series.

For m 2 N we set

sm D a1 C a2 C � � � C am:

The number sm is called m-th partial sum of the seriesP1
nD1 an. The element an is called n-th member of the

series
P1

nD1 an. The sum of infinite series
P1

nD1 an is
defined as the limit of the sequence fsmg, if such a limit
exists. The sum of the series is denoted by the symbolP1

nD1 an. We say that a series converges, if its sum is a
real number. In the opposite case, we say that the series
diverges.
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Theorem 7.1 (necessary condition)
If a series

P1
nD1 an converges, then lim an D 0.

Remark
Suppose that ˛ 2 R and a series

P1
nD1 an converges.

Then the series
P1

nD1 ˛an converges and it holdsP1
nD1 ˛an D ˛

P1
nD1 an. If

P1
nD1 an and

P1
nD1 bn converge,

then the series
P1

nD1.an C bn/ convergens and if holdsP1
nD1.an C bn/ D

P1
nD1 an C

P1
nD1 bn.
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Theorem 7.2
Let

P1
nD1 an and

P1
nD1 bn be series satisfying 0 � an � bn

for each n 2 N.
(i) If

P1
nD1 bn converges, then

P1
nD1 an converges.

(ii) If
P1

nD1 an diverges, then
P1

nD1 bn diverges.
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Theorem 7.3
Let fang be a sequence of real numbers. If

P1
nD1 janj

converges, then
P1

nD1 an converges.

Definition
We say that

P1
nD1 an is absolute convergent, if

P1
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converges. If
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nD1 an converges but not absolutely, thenP1
nD1 an converges nonabsolutely.

Remark
Let janj � bn for each n 2 N. If the series

P1
nD1 bn

converges, then
P1

nD1 an converges.
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Let
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D c 2 .0;C1/:
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Theorem 7.5 (Cauchy test)
Let

P1
nD1 an be a series. The we have

(i) If lim n
p
janj < 1, then

P1
nD1 an is absolutely

convergent.

(ii) If lim n
p
janj > 1, then

P1
nD1 an diverges.



Theorem 7.5 (Cauchy test)
Let

P1
nD1 an be a series. The we have

(i) If lim n
p
janj < 1, then

P1
nD1 an is absolutely

convergent.
(ii) If lim n

p
janj > 1, then

P1
nD1 an diverges.



Theorem 7.6 (d’Alembert test)
Let

P1
nD1 an be a series with nonzero members. Then we

have
(i) If lim janC1=anj < 1, then

P1
nD1 an absolutely

convergent.

(ii) If lim janC1=anj > 1, then
P1

nD1 an diverges.



Theorem 7.6 (d’Alembert test)
Let

P1
nD1 an be a series with nonzero members. Then we

have
(i) If lim janC1=anj < 1, then

P1
nD1 an absolutely

convergent.
(ii) If lim janC1=anj > 1, then

P1
nD1 an diverges.



Theorem 7.7
Let ˛ 2 R. The series

P1
nD1 1=n˛ converges if and only if

˛ > 1.



Theorem 7.8 (Leibniz)
Let

P1
nD1.�1/nan be a series. Assume

an � anC1 � 0 for every n 2 N,
limn!1 an D 0.

Then
P1

nD1.�1/nan converges.
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Definition
A finite sequence fxjg

n
jD0 is called a partition of the interval

Œa;b�, if we have

a D x0 < x1 < � � � < xn D b:

The points x0; : : : ; xn are called partition points.

By a norm of partition D D fxjg
n
jD0 we mean

�.D/ D maxfxj � xj�1I j D 1; : : : ;ng:

We say that a partition D0 of an interval Œa;b� is a
refinement of the partition D of the interval Œa;b�, if each
point of D is a partition point of D0.
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point of D is a partition point of D0.



Definition
Let f be a bounded function on an interval Œa;b� and
D D fxjg

n
jD0 be a partition of Œa;b�. We denote

S.f ;D/ D
nX

jD1

Mj.xj � xj�1/; where Mj D supff .x/I x 2 Œxj�1; xj �g;

S.f ;D/ D
nX

jD1

mj.xj � xj�1/; where mj D infff .x/I x 2 Œxj�1; xj �g;

Z b

a
f .x/ dx D inf

˚
S.f ;D/I D is a partition of the interval Œa;b�

	
;Z b

a
f .x/ dx D sup

˚
S.f ;D/I D is a partition of the interval Œa;b�

	
:
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Definition
We say that a bounded function f has Riemann integral

over the interval Œa;b�, if
R b

a f .x/ dx D
R b

a f .x/ dx .

Then the
value of the integral of f over the interval Œa;b� is equal toR b

a f .x/ dx and is denoted by
R b

a f .x/ dx . If a > b, we defineR b
a f .x/ dx D �

R a
b f .x/ dx . If a D b, we defineR b

a f .x/ dx D 0.



Definition
We say that a bounded function f has Riemann integral

over the interval Œa;b�, if
R b

a f .x/ dx D
R b

a f .x/ dx . Then the
value of the integral of f over the interval Œa;b� is equal toR b

a f .x/ dx and is denoted by
R b

a f .x/ dx .

If a > b, we defineR b
a f .x/ dx D �

R a
b f .x/ dx . If a D b, we defineR b

a f .x/ dx D 0.



Definition
We say that a bounded function f has Riemann integral

over the interval Œa;b�, if
R b

a f .x/ dx D
R b

a f .x/ dx . Then the
value of the integral of f over the interval Œa;b� is equal toR b

a f .x/ dx and is denoted by
R b

a f .x/ dx . If a > b, we defineR b
a f .x/ dx D �

R a
b f .x/ dx . If a D b, we defineR b

a f .x/ dx D 0.



Remark
Let D;D0 be partitions of the interval Œa;b�, D0 refine D,
and let f be a bounded function on the interval Œa;b�. Then
we have

S.f ;D/ � S.f ;D0/ � S.f ;D0/ � S.f ;D/:



S.f ;D/ � S.f ;D0/ � S.f ;D0/ � S.f ;D/:



S.f ;D/ � S.f ;D0/ � S.f ;D0/ � S.f ;D/:



S.f ;D/ � S.f ;D0/ � S.f ;D0/ � S.f ;D/:



S.f ;D/ � S.f ;D0/ � S.f ;D0/ � S.f ;D/:



S.f ;D/ � S.f ;D0/ � S.f ;D0/ � S.f ;D/:



Theorem 8.1
(i) Let a function f have Riemann integral over Œa;b� and

let Œc;d � � Œa;b�. Then f has Riemann integral over
Œc;d �.

(ii) Let c 2 .a;b/ and a function f have Riemann integral
over Œa; c� and Œc;b�. Then f has Riemann integral
over Œa;b� and we haveZ b

a
f .x/ dx D

Z c

a
f .x/ dx C

Z b

c
f .x/ dx :
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a
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Z c

a
f .x/ dx C

Z b

c
f .x/ dx :



Theorem 8.2
Let f and g be functions with Riemann integral over Œa;b�
and let ˛ 2 R. Then

(i) the function ˛f has Riemann integral over Œa;b� and it
holds Z b

a
˛f .x/ dx D ˛

Z b

a
f .x/ dx ;

(ii) the function f C g has Riemann integral over Œa;b�
and it holdsZ b

a

�
f .x/C g.x/

�
dx D

Z b

a
f .x/ dx C

Z b

a
g.x/ dx :
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Z b
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and it holdsZ b

a

�
f .x/C g.x/

�
dx D

Z b

a
f .x/ dx C

Z b

a
g.x/ dx :



Theorem 8.3
Let a;b 2 R, a < b, and let f and g be functions with
Riemann integral over Œa;b�.

(i) If f .x/ � 0 for each x 2 Œa;b�, thenZ b

a
f .x/ dx � 0:

(ii) If f .x/ � g.x/ for each x 2 Œa;b�, thenZ b

a
f .x/ dx �

Z b

a
g.x/ dx :

(iii) The function jf j has Riemann integral over Œa;b� and
it holds ˇ̌̌̌Z b

a
f .x/ dx

ˇ̌̌̌
�

Z b

a
jf .x/j dx :
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�
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a
jf .x/j dx :



Theorem 8.3
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a
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it holds ˇ̌̌̌Z b

a
f .x/ dx

ˇ̌̌̌
�

Z b

a
jf .x/j dx :



Theorem 8.4
Let a function f be continuous on the interval Œa;b�,
a;b 2 R. Then f has Riemann integral over Œa;b�.



Theorem 8.5
Let f be a continuous function on Œa;b� and let c 2 Œa;b�. If
we denote F .x/ D

R x
c f .t/ dt for x 2 .a;b/, then

F 0.x/ D f .x/ for each x 2 .a;b/.



Primitive function

Definition
Let a function f be defined on an open interval I. We say
that a function F is a primitive function of f on I, if for each
x 2 I there exists F 0.x/ and F 0.x/ D f .x/.

Theorem 8.6
Let F and G be primitive functions of f on an open interval
I. Then there exists c 2 R such that F .x/ D G.x/C c for
each x 2 I.



Theorem 8.7
Let f be a continuous function on an open interval I. Then
f has on I a primitive function.

Theorem 8.8
Let f have on an open interval I a primitive function F , let
a function g have on I a primitive function G, and ˛; ˇ 2 R.
Then the function ˛F C ˇG is a primitive function of
˛f C ˇg on I.



Theorem 8.7
Let f be a continuous function on an open interval I. Then
f has on I a primitive function.

Theorem 8.8
Let f have on an open interval I a primitive function F , let
a function g have on I a primitive function G, and ˛; ˇ 2 R.
Then the function ˛F C ˇG is a primitive function of
˛f C ˇg on I.



Theorem 8.9 (substitution)
(i) Let F be a primitive function of f on .a;b/. Let ' be a
function defined on an interval .˛; ˇ/ with values in .a;b/
and ' has at each point t 2 .˛; ˇ/ proper derivative. Then
we have Z

f .'.t//' 0.t/dt c
D F .'.t// on .˛; ˇ/:

(ii) Let a function ' have at each point of an interval .˛; ˇ/
nonzero proper derivative and '..˛; ˇ// D .a;b/. Let f be
defined on an interval .a;b/ and we haveZ

f .'.t//' 0.t/dt c
D G.t/ on .˛; ˇ/:

Then we haveZ
f .x/dx c

D G.'�1.x// on .a;b/:



Theorem 8.9 (substitution)
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and ' has at each point t 2 .˛; ˇ/ proper derivative. Then
we have Z

f .'.t//' 0.t/dt c
D F .'.t// on .˛; ˇ/:

(ii) Let a function ' have at each point of an interval .˛; ˇ/
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f .'.t//' 0.t/dt c
D G.t/ on .˛; ˇ/:

Then we haveZ
f .x/dx c

D G.'�1.x// on .a;b/:



Theorem 8.10 (integration per partes)
Let I be an open interval and let functions f and g be
continuous on I. Let F be a primitive function of f on I and
G be a primitive function of g on I. Then we haveZ

g.x/F .x/dx D G.x/F .x/ �
Z

G.x/f .x/dx na I:



Definition
Rational function is a ratio of two polynomials, where the
polynomial in denominator is not identically zero.



Definition
Rational function is a ratio of two polynomials, where the
polynomial in denominator is not identically zero.



Theorem 8.11
Let P;Q be polynomial functions with real coefficients
such that

(i) degree of P is strictly smaller than degree of Q,

(ii) Q.x/ D an.x � x1/
p1 : : : .x � xk/

pk .x2 C ˛1x C
ˇ1/

q1 : : : .x2 C ˛lx C ˇl/
ql ,

(iii) an; x1; : : : xk ; ˛1; : : : ; ˛l ; ˇ1; : : : ; ˇl 2 R; an 6D 0,
(iv) p1; : : : ;pk ; q1; : : : ;ql 2 N,
(v) the polynomials

x�x1; x�x2; : : : ; x�xk ; x2C˛1xCˇ1; : : : ; x2C˛lxCˇl

have no common root,
(vi) the polynomials x2 C ˛1x C ˇ1; : : : ; x2 C ˛lx C ˇl

have no real root.
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Then there exist unique real numbers A1
1; : : : ;A

1
p1

,
: : : ;Ak

1; : : : ;A
k
pk

, B1
1 ; C1

1 ; : : : ;B
1
q1

, C1
q1
; : : : ;B l

1,
C l

1; : : : ;B
l
ql
; C l

ql
such that we have

P.x/
Q.x/

D
A1

1

.x � x1/p1
C � � � C

A1
p1

.x � x1/

C � � � C
Ak

1

.x � xk/pk
C � � � C

Ak
pk

x � xk

C
B1

1x C C1
1

.x2 C ˛1x C ˇ1/q1
C � � � C

B1
q1

x C C1
q1

x2 C ˛1x C ˇ1
C : : :

C
B l

1x C C l
1

.x2 C ˛lx C ˇl/ql
C � � � C

B l
ql

x C C l
ql

x2 C ˛lx C ˇl
:
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