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m Functions of several variables
m Matrix calculus

m Infinite series

m Integral



V.1. R" as a metric and linear space




V.1. R" as a metric and linear space

Definition
The set R”, n € N, is the set of all ordered n-tuples of real
numbers.



V.1. R" as a metric and linear space

Definition

The set R”, n € N, is the set of all ordered n-tuples of real
numbers.

Definition

Euclidean metric on R” is the function

p:R" x R" — [0, +00) defined by

p(X.y) = | Y (X —yi)
\ i=

The number p(x, y) is called distance of the point x from
the point y.



Theorem 5.1 (properties of Euclidean metric)
Euclidean metric p has the following properties:



Theorem 5.1 (properties of Euclidean metric)
Euclidean metric p has the following properties:
(i) Vx,y e R p(x,y) =0 x =y,
(i) vx,y € R p(X,y) = p(¥, X), (symmetry)
(i) vx,y.z e R"p(x,y) < p(X.2) + p(z.y),
(triangle inequality)
(iv) VX, y € R". VA € R:p(AX,Ay) = |A]| p(X, y),
(homogeneity)
(v) Vx,y,ze R p(x+ 2,y + 2) = p(X,y).
(translation invariance)



Definition
Let x e R", r € R,r > 0. The set B(x, r) defined by

B(x,r) ={y e R" p(x.y) <r}

is called open ball with radius r centered at x.



Definition
Let M C R". We say that x € R" is an interior point of M, if
there exists r > 0 such that B(x, r) C M.



Definition

Let M C R". We say that x € R" is an interior point of M, if
there exists r > 0 such that B(x,r) ¢ M. The set M C R"
is open in R", if each point of M is an interior point of M.



Definition

Let M C R". We say that x € R" is an interior point of M, if
there exists r > 0 such that B(x,r) ¢ M. The set M C R"
is open in R", if each point of M is an interior point of M.
We say that M is closed in R”, if its complement is closed.



Theorem 5.2 (properties of open sets)

(i) The empty set and R" are open in R".
(i) Letsets G, C R",ax € A+# @, be open inR". Then
Uwea Go is open in R".
(iii) Letsets G;,i=1,...,m, be openinR". Then
N, Gi is open in R".



Theorem 5.3 (properties of closed sets)

(i) The empty set and R" are closed in R".
(i) Letsets F, C R, € A# @, be closed in R". Then
(oea Fo is closed in R".
(iii) Letsets F;,i=1,...,m, are closed in R". Then
\U™, Fi is closed in R".



Definition
Let M c R" and x € R". We say that x is a boundary point
of M, if for each r > 0 we have B(x,r) N M # @ and

B(x,r)n (R"\ M) # 0.



Definition

Let M c R" and x € R". We say that x is a boundary point
of M, if for each r > 0 we have B(x,r) N M # @ and
B(x,r)n (R"\ M) # 0.

Boundary of M is the set of all boundary points of M
(notation bd M).



Definition

Let M c R" and x € R". We say that x is a boundary point
of M, if for each r > 0 we have B(x,r) N M # @ and
B(x,r)n (R"\ M) # 0.

Boundary of M is the set of all boundary points of M
(notation bd M).

Closure of M is the set M U bd M (notation M).



Definition

Let M C R" and x € R". We say that x is a boundary point
of M, if for each r > 0 we have B(x,r) N M # @ and
B(x,r)n (R"\ M) # 0.

Boundary of M is the set of all boundary points of M
(notation bd M).

Closure of M is the set M U bd M (notation M).

Interior of M is the set of all interior points of M (notation
int M).



Definition

Let M C R" and x € R". We say that x is a boundary point
of M, if for each r > 0 we have B(x,r) N M # @ and
B(x,r)n (R"\ M) # 0.

Boundary of M is the set of all boundary points of M
(notation bd M).

Closure of M is the set M U bd M (notation M).

Interior of M is the set of all interior points of M (notation
int M).



5.2 Continuous function of several variables

Definition

Let x/ € R for each j € N and x € R". We say that a
sequence {xf'};’;’1 converges to x, if lim_.. p(X, x/) = 0.
The vector x is called limit of the sequence {x/'};’;q.



Theorem 5.4
Let x' € R" for each j € N and x € R". The sequence
{(x/ ji21 converges to X ifand only if foreachi e {1,...,n}

the sequence of real numbers {x{ }i24 converges to the
real number Xx;.



Definition
Let M C R", x e M, and f: M — R. We say that f is
continuous at x with respect to M, if we have

VeeR,e>036 €R,§ >0Vy e B(x,5)NM: f(y) € B(f(x),¢).



Definition

Let M C R", x e M, and f: M — R. We say that f is
continuous at x with respect to M, if we have
VeeR,e>036 €R,§ >0Vy e B(x,5)NM: f(y) € B(f(x),¢).

We say that f is continuous at the point x, it it is
continuous at x with respect to a neighborhood of x, i.e.,

VeeR,e>036 € R, 6 >0Vy e B(x,6§):f(y) € B(f(x),¢).



Remark

LetMcR", xeM,fM—-R,gM—>R,andceR.Iff
and g are continuous at the point x with respect to M,
then the functions cf, f + g a fg are continuous at x with
respect to M. If the function g is nonzero at each point of
M, then also the function f/g is continuous at x with
respect to M.



Theorem 5.5 (Heine)

LetM Cc R", x € M, and f: M — R. Then the following are
equivalent.

(i) The function f is continuous at x with respect to M.
(i) For each sequence {x/}""1 suchthatx’ e M projeN
alim x' = x, we have I|m f(x') = f(x).

j—)OO



Remark

Letr,seNNMCRS, LCR',andy € M. Let ¢y, ..., ©r
are functions defined on M, which are continuous at y
with respect to M and [¢1(X), ..., ¢(Xx)] € L for each

X € M. Let f: L — R be continuous at the point

[01(Y), ..., e(y)] with respect to L. Then the composed
function F: M — R defined by

F(x) = f(p1(X).....0/(X)), xeM,

is continuous at y with respect to M.



Definition
Let M c R"a f: M — R. We say that f is continuous on M,
if it is continuous at each point x € M with respect to M.



Definition
Let M c R"a f: M — R. We say that f is continuous on M,
if it is continuous at each point x € M with respect to M.

Remark
The projection 7;: R” — R, mj(x) = x, 1 <j < n, are
continuous on R”.
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Let f be a continuous function on R" and ¢ € R. Then we
have:

(i) The set {x € R"; f(x) < c}is openin R".
(i) The set {x € R"; f(x) > c}is openin R".
(i) The set {x € R"; f(x) < c}is closedin R".
(iv) The set {x € R"; f(x) > c} is closed in R".
(v) The set {x € R"; f(x) = c} is closed in R".
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Definition
We say that a set M C R” is compact, if for each
sequence of elements of M there exists a convergent

subsequence with limit in M.



Definition

We say that a set M C R” is compact, if for each
sequence of elements of M there exists a convergent
subsequence with limit in M.

Theorem 5.6 (characterization of compact

subsets of R")
The set M C R" is compact if and only if M is bounded
and closed.
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Definition
Let M c R, x € M, and f be a function defined at least
on M, i.e., M C D;. We say that f attains at the point x

m maximum on M, if for every y € M we have
f(y) = f(x),



Definition
Let M c R, x € M, and f be a function defined at least
on M, i.e., M C D;. We say that f attains at the point x

m maximum on M, if for every y € M we have
f(y) = f(x),

m local maximum with respect to M, if there exists § > 0
such that for every y € B(x, §) N M we have

f(y) < f(x),



Definition
Let M c R, x € M, and f be a function defined at least
on M, i.e., M C D;. We say that f attains at the point x

m maximum on M, if for every y € M we have
f(y) = f(x),

m local maximum with respect to M, if there exists § > 0
such that for every y € B(x,§) N M we have
f(y) = f(x),

m sharp local maximum with respect to M, if there
exists § > 0 such that for every
y € (B(x,8) \ {x}) N M we have f(y) < f(x).



Definition
Let M c R, x € M, and f be a function defined at least
on M, i.e., M C D;. We say that f attains at the point x

m maximum on M, if for every y € M we have
f(y) = f(x),

m local maximum with respect to M, if there exists § > 0
such that for every y € B(x,§) N M we have
f(y) = f(x),

m sharp local maximum with respect to M, if there
exists § > 0 such that for every
y € (B(x,8) \ {x}) N M we have f(y) < f(x).

The notions minimum, local minimum, and sharp local
minimum with respect to M are defined analogically.



Definition

We say that a function f attains at the point x € R” local
maximum, if x is a local maximum with respect to some
ball centered at the point x. Similarly one can define local
minimum, sharp local maximum and sharp local minimum.



Theorem 5.7 (attaining extrema)

Let M C R" be a nonempty compact set and f: M — R be
continuous on M. Then f attains on M its maximum and
minimum.



Theorem 5.7 (attaining extrema)

Let M C R" be a nonempty compact set and f: M — R be
continuous on M. Then f attains on M its maximum and
minimum.

Corollary 5.8

Let M C R" be a nonempty compact set and f: M — R be
continuous on M. Then f is bounded on M.



Definition
We say that function f:R” — R has at a point a € R” limit
equal A € R*, if we have

VeeR,e>035§€R,§ >0Vx € B(a,é)\{a}: f(x) € B(A,¢).



Definition
We say that function f:R” — R has at a point a € R” limit
equal A € R*, if we have

VeeR,e>035§€R,§ >0Vx € B(a,é)\{a}: f(x) € B(A,¢).

Remark

m Each function has at a given point at most one limit.
We write limy_,, f(x) = A.

m The function f is continuous at a if and only if
limy_a f(x) = f(a).

m For functions of several variables one can prove
similar theorems as for functions of one variable
(arithmetics, sandwich theorem, .. .).



Theorem 5.9

Letr, seN,ae MCRS LCR,¢s,...,9 be functions
defined on M such that limy_.a¢(X) = b, j=1,...,r, and
b=1[by,...,b] L. Letf.L— R be continuous at the
point b. We define a function F: M — R by

F(X) = f(@1(X), p2(X). ..., e (X)),  xeM.
Then limy_,, F(x) = f(b).
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Definition
Let f be a function of nvariables, j € {1,...,n}, a € R".
Then the number

of . fla+te))—f(a)
a—xj(a) = lim

t—0 t

is called partial derivatives (of first order) of function f
according to j-th variable at the point a (if it exists).



Definition
Let f be a function of nvariables, j € {1,...,n}, a € R".
Then the number

f(a+ te) —f(a)

3_(a)_!—>0 t
— Iim (81, <> 81, a,+t@+1,...,an)—f(a1,...,an)
t—=0 t

is called partial derivatives (of first order) of function f
according to j-th variable at the point a (if it exists).
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Theorem 5.10 (necessary condition of existence
of local extremum)

Let G ¢ R" be an open set, a € G, and a function

f: G — R have at the point a local extremum. Then for
eachje {1,...,n} we have:

The partial derivative g—;(a) either does not exit or is zero.
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Definition

Let G ¢ R” be a nonempty open set. Let a function

f: G — R have at each point of the set G all partial
derivatives continuous (i.e., function x — g—;(x) are
continuous on G for each j € {1,..., n}). Then we say that
f is of the class C' on G. The set of all these functions is
denoted by C'(G).



Definition

Let G ¢ R” be a nonempty open set. Let a function

f: G — R have at each point of the set G all partial
derivatives continuous (i.e., function x — g—;(x) are
continuous on G for each j € {1,..., n}). Then we say that
f is of the class C' on G. The set of all these functions is
denoted by C'(G).

Remark

If G c R"is a nonempty open set and and f, g € C'(G),
thenf4+ g e C'(G),f—geC'(G),and fg € C'(G). If
moreover for each x € G we have : g(x) # 0, then

f/g e C'(G).



Proposition 5.11 (Lagrange)

LetneN, I;,..., I, C R be open intervals,

=1l xhkbx---x1, feC'(]), a, b e l. Then there exist
points &', ..., £" e I with§ € (g. b)) for each

ije{l, ..., n}, such that

n

of .
f(b) —f(a) = &(5')(19/ — a).
i=1 "






Definition
Let G C R"be anopen set, ac G, and f € C'(G). Then
the graph of the function

T.x > f(a) + 88—;(a>(x1 —a)+ aa—x’;(axe _ &)

of
+"'+a_)(n(a)(Xn_an), X € Rn,

is called tangent hyperplane to the graph of the function f
at the point [a, f(a)].






Theorem 5.12

LetGCR"beanopenset,ac G,fcC'(G),and T be a

function, such that its graph is the tangent hyperplane of
the function f at the point [a, f(a)]. Then

o2 p(x.a)



Theorem 5.12

LetGCR"beanopenset,ac G,fcC'(G),and T be a

function, such that its graph is the tangent hyperplane of
the function f at the point [a, f(a)]. Then

o2 p(x.a)

Theorem 5.13

Let G c R" be an open nonempty set and f € C'(G).
Then f is continuous on G.



Theorem 5.14

Letr,s e N, Gc R%, HC R’ be open sets. Let

@1,....0r € C(G), f € C'(H) and [p1(X), ..., ¢ (X)] € H for
each x € G. Then the composed function F: G — R
defined by

F(x) = f(g1(X), p2(X).....0/(X)), Xx€G,

is of the class C' on G. Leta € G and

b = [pi(a),..., o-(a)]. Then foreachje {1,..., s} we
have ,

JoF of  0dg;

B_Xj(a) = s a_y,-(b)a_)g(a)'



Definition
Let G C R"be anopen set, ac G, and f € C'(G).
Gradient of f at the point a is defined as the vector

of of of
Vf(a) = [ﬁ(a), a—XZ(a), cee a—Xn(a)] .
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Definition
Let GC R"be anopenset,ac G, f € C'(G), and
Vf(a) = o. Then the point a is called stationary (or also

critical) point of the function f.



Definition

Let GC R"beanopenset, :G—R,i,je{l,...,n}, and
g—)’;(x) exists for each x € G. Then partial derivative of the
second order of the function f according to i-th and j-th
variable at the point a € G is defined by

2
@ =5 (5 ) @

0X;0X 0x \ 0X;

If i = j then we use the notation

9°f
ﬁ(a).



Definition

Let GC R"beanopenset, :G—R,i,je{l,...,n}, and
g—)’;(x) exists for each x € G. Then partial derivative of the
second order of the function f according to i-th and j-th
variable at the point a € G is defined by

2
@ =5 (5 ) @

0X;0X 0x \ 0X;

If i = j then we use the notation

9°f
ﬁ(a).



Theorem 5.15

Leti,j e {1,...,n} and let both partial derivatives 51
and -2 be continuous at a point a € R". Then we have

9x0X;

9*f 92f
(@ = (a).

axox  0x0x;




Definition

Let G C R"” be an open set and k € N. We say that a
function f is of the class C* on G, if all partial derivatives
of f till k-th order are continuous on G. The set of all these

functions is denoted by C*(G).



Definition

Let G C R"” be an open set and k € N. We say that a
function f is of the class C* on G, if all partial derivatives
of f till k-th order are continuous on G. The set of all these
functions is denoted by C*(G). We say that a function f is
of the class C* on G, if all partial derivatives of all orders
of f are continuous on G. The set of all functions of the
class C*° on G is denoted by C*(G).






Theorem 5.16 (implicit function theorem)
Let Gc R™' beanopenset, F:G— R, X cR", y €R,
[X,y] € G. Suppose that



Theorem 5.16 (implicit function theorem)
Let G c R beanopenset, F:G— R, X cR", y €R,
[X, ¥] € G. Suppose that

1. FeCY(G),

2. F(X.7) =0,

oF . .
3. W(X’ y) # 0.

Then there exist a neighborhood U C R" of the point X
and a neighborhood V C R of the point y such that for
each x € U there exists unique y € V with the property
F(x,y) =0.



Theorem 5.16 (implicit function theorem)
Let G c R beanopenset, F:G— R, X cR", y €R,
[X,y] € G. Suppose that

1. FeC'(G),

2. F(x,y) =0,

oF . .
3. W(X’ y) # 0.

Then there exist a neighborhood U C R" of the point X
and a neighborhood V C R of the point y such that for
each x € U there exists unique y € V with the property
F(x,y) = 0. If we denote this y by ¢(x), then the resulting
function ¢ is in C'(U) and

09 ) _ (% e)

——— forxeU,je{l,...,n}.
0% T (X, 0(x))
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Theorem 5.17 (implicit function theorem)

Letm,neN, k e NU {oo}, G C R™™ be an open set,
F:G—Rforj=1,....m,xcR", yeR" [X,y] € G
Suppose that



Theorem 5.17 (implicit function theorem)
Letm,neN, k e NU {oo}, G C R™™ be an open set,
F:G—Rforj=1,....m,xcR", yeR" [X,y] € G
Suppose that

1. F eCK(@G) foreachje {1,...,m},

2. Fi(x,y) =0 foreachje{1,...,m},

Bxy) . LEP
3. : : # 0.
FREy) ... grEy)

Then there exist a neighborhood U c R" of the point X
and a neighborhood V c R™ of the point y such that for
each x € U there exists unique y € V with the property
Fi(x,y) =0foreachje{1,...,m}.



Theorem 5.17 (implicit function theorem)
Letm,neN, k e NU {oo}, G C R™™ be an open set,
F:G—Rforj=1,....m,xcR", yeR" [X,y] € G
Suppose that

1. F eCK(@G) foreachje {1,...,m},

2. Fi(x,y) =0 foreachje{1,...,m},

Py . &)
3. : : # 0.
Un(x.y) ... ¥nx.y)

Then there exist a neighborhood U c R" of the point X
and a neighborhood V c R™ of the point y such that for
each x € U there exists unique y € V with the property
Fi(x,y) =0 foreachje {1,...,m}. If we denote
coordinates of thisy by ¢j(x), j=1,..., m, then the
resulting functions ¢; are in C*(U).



Remark
The symbol in the condition (3) of Theorem 5.17 is called
determinant. The definition will presented later on.



Remark

The symbol in the condition (3) of Theorem 5.17 is called
determinant. The definition will presented later on.

For m=1we have |a| = a,a<R.

For m = 2 we have i 2‘:ad—bc, ab,c,deR.




Theorem 5.18 (Lagrange multiplier theorem)

Let G c R? be an open set, f,g € C'(G),

M = {[x,y] € G; g(x,y) =0}, and [x, ¥] € M be a point of
local extremum of f with respect to the set M. Then at
least one of the following conditions holds:



Theorem 5.18 (Lagrange multiplier theorem)
Let G c R? be an open set, f,g € C'(G),
M = {[x,y] € G; g(x,y) =0}, and [x, ¥] € M be a point of
local extremum of f with respect to the set M. Then at
least one of the following conditions holds:

1. Vg(x,y) = o,

2. there exists A € R satisfying

of . . -
& y)+xa—g(x 7) =0,

af~~
—( y)+k (xy)—O
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Theorem 5.19 (Lagrange multiplier theorem)

Letm,ne N, m< n, GC R" be an open set,
f.91.....9m € C'(G),

M={z e G: g1(2) =0.92(2) = 0.....gn(2) = 0}

and let z € M be a point of local extremum of f with
respect to the set M. Then at least one of the following
conditions holds:



Theorem 5.19 (Lagrange multiplier theorem)

Letm,ne N, m< n, GC R" be an open set,
f.01,....9m € C'(G),

M={z e G: g1(2) =0.92(2) = 0.....gn(2) = 0}

and let z € M be a point of local extremum of f with
respect to the set M. Then at least one of the following
conditions holds:

1. the vectors

Vg1 (2)’ Vg?(i)’ cee ng(i)

are linearly dependent,
2. there exist A1, A2, ..., Am € R satisfying

VI(Z) + MV91(2) + A2V 02(2) + -+ + AmVgm(Z) = 0.
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a=1-a+0-b=a+0-(b—a)



b=0-a+1-b=a+1-(b—a)
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t-a+t(1—t)-b=a+({1-1t-(b—a)



Definition
Let M C R". We say that M is convex, if we have

VX, ye MVte (0,1):tx+ (1 -1ty e M.



Definition
Let M Cc R" be a convex set and a function f be defined
on M. We say that f is

m concave on M, if
va,be MVte (0,1): f(ta+(1-t)b) > tf(a)+(1-1)f(b),

m strictly concave on M, if

Va,be M,a+# bVte (0,1):
f(ta+ (1—-1t)b) > tf(a) + (1 — Hf(b).



Theorem 5.20
Let a function f be concave on an open convex set
G Cc R". Then f is continuous on G.



Theorem 5.20

Let a function f be concave on an open convex set
G c R". Then f is continuous on G.

Theorem 5.21
Let a function f be concave on a convex set M C R". Then
for each o« € R the set Q, = {x € M; f(x) > «} is convex.



Theorem 5.22 (characterization of concave
functions of the class C')

Let G C R" be a convex open set and f € C'(G). Then the
function f is convex on G if and only if we have

. of
VX.y e Gy <fx)+ ) = 00 = X).
i=1 !


















Corollary 5.23

Let G c R" be a convex open set and f € C'(G) be
concave on G. If a point a € G is a stationary point of f,
then a is a point of maximum of f with respect to G.



Theorem 5.24 (characterization of strictly
concave functions of the class C')

Let G Cc R" be a convex open set and f € C'(G). Then the
function f is strictly concave on G if and only if we have

", of
VX.y € G.x # yi(y) < )+ Y (00— X).
i=1 !



Definition
Let M C R"” be a convex set and f be defined on M. We
say that f is

m quasiconcave on M, if
Va,be MVt e [0,1]: f(ta+(1—t)b) > min{f(a), f(b)},
m strictly quasiconcave on M, if

Va,be M, a+# b, Vt e (0,1): f(tat+(1—t)b) > min{f(a), f(b



























Remark
Let M Cc R" be a convex set and f be a function defined
on M.



Remark
Let M Cc R" be a convex set and f be a function defined
on M.

m Let f be concave on M. Then f is quasiconcave on M.

m Let f be strictly concave on M. Then f is strictly
quasiconcave on M.



Theorem 5.25 (on uniqueness of extremum)

Let f be a strictly quasiconcave function on a convex set

M c R". Then there exists at most one point of maximum
of f.



Theorem 5.25 (on uniqueness of extremum)

Let f be a strictly quasiconcave function on a convex set
M c R". Then there exists at most one point of maximum
of f.

Corollary 5.26

Let M C R" be a convex, bounded, closed and nonempty

set. Let f be continuous and strictly quasiconcave function
on M. Then f attains its maximum on M in a unique point.



Theorem 5.27 (characterization of quasiconcave
functions via level sets)
Let M C R" be a convex set and f be defined on M. The

function f is quasiconcave on M if and only if for each
a € R the set Q, = {x € M; f(x) > a} is convex.



Definition

The scheme
ayr a2 ... an
do1 a2 ... aop
dm dm2 ... dmn

where gje R, i=1,....m,j=1,...,n,is called a matrix
of the type m x n. We write (&;)i=1..m.
j=

1..n



Definition

The scheme
ayr  ape ain
doy a2 aon
am Aame mn
where gje R, i=1,....m,j=1,...,n,is called a matrix

of the type m x n. We write (a,-j),-,:11__m. A matrix of type
j=1.n
n x nis called square matrix of the order n.



Definition

The scheme
ayr a2 ... an
doy a2 ... @op
am1 am2 o e amn
where gje R, i=1,....m,j=1,...,n,is called a matrix

of the type m x n. We write (a,-j),-,:11__m. A matrix of type
=1..n

j=1..
n x nis called square matrix of the order n. The set of all
matrices of the type m x nis denoted M(m x n).



Definition

Let
ayr a2 ... @
do1 a2 ... aop
A = . ) .
ami dm2 ... dmn

The n-tuple (a1, a2, ..., ain), where i € {1,2, ..., mj},
ief{1,2,...,m},is called i-th row of the matrix A.



Definition

Let
ayr a2 ... @
do1 a2 ... aop
A = . ) .
ami dm2 ... dmn

The n-tuple (a1, a2, . .., ain), where i € {1,2, ..., mj},
ief{1,2,...,m},is called i-th row of the matrix A.



Definition

Let
ayr a2 ... @
do1 a2 ... aop
A = . ) .
ami dm2 ... dmn

The n-tuple (a1, a2, ..., ain), where i € {1,2, ..., mj},
ief{1,2,...,m},is called i-th row of the matrix A.



Definition

Let
ayr a2 ... @
do1 a2 ... aop
A = . ) .
ami dm2 ... dmn

The n-tuple (a1, a2, . .., ain), where i € {1,2, ..., mj},
ief{1,2,...,m},is called i-th row of the matrix A.



Definition

Let
ayr a2 ... @
do1 a2 ... aop
A = . ) .
ami dm2 ... dmn

The n-tuple (a1, a2, ..., ain), where i € {1,2, ..., mj},
ief{1,2,...,m},is called i-th row of the matrix A.



Definition

Let
a1 a2 ... ain
do1 a2 ... aop
A = . . .
ami dm2 ... dmn

The n-tuple (a1, a2, ..., ain), where i € {1,2, ..., mj},
ie{l1,2,...,m}, is called i-th row of the matrix A. The

aj

o
m-tuple :Zj ,Where je {1,2, ..., n},
a;n,-

je{l1,2,...,n},is called j-th column matrix A.



Definition

Let
a1 a2 ... ain
do1 a2 ... aop
A = . . .
ami dm2 ... dmn

The n-tuple (a1, a2, ..., ain), where i € {1,2, ..., mj},
ie{l1,2,...,m}, is called i-th row of the matrix A. The

aj

o
m-tuple :Zj ,Where j e {1,2, ..., n},
a;n,-

je{l1,2,...,n},is called j-th column matrix A.



Definition

Let
a1 a2 ... ain
do1 a2 ... aop
A = . . .
ami dm2 ... dmn

The n-tuple (a1, a2, ..., ain), where i € {1,2, ..., mj},
ie{l1,2,...,m}, is called i-th row of the matrix A. The

aj

o
m-tuple :Zj ,Where je {1,2, ..., n},
a;n,-

je{l1,2,...,n},is called j-th column matrix A.



Definition

Let
a1 a2 ... ain
do1 a2 ... aop
A = . . .
ami dm2 ... dmn

The n-tuple (a1, a2, ..., ain), where i € {1,2, ..., mj},
ie{l1,2,...,m}, is called i-th row of the matrix A. The

aj

o
m-tuple :Zj ,Where je {1,2, ..., n},
a;n,-

je{l1,2,...,n},is called j-th column matrix A.



Definition

Let
a1 a2 ... ain
do1 a2 ... aop
A = . . .
ami dm2 ... dmn

The n-tuple (a1, a2, ..., ain), where i € {1,2, ..., mj},
ie{l1,2,...,m}, is called i-th row of the matrix A. The

aj

o
m-tuple :Zj ,Where j e {1,2, ..., n},
a;n,-

je{l1,2,...,n},is called j-th column matrix A.



Definition

We say that two matrices are equal, if they are of the

same type and the corresponding elements are equal,
e.,if A = (a,-,-)5_311.,,5, and B = (byy)u= e then A = B if and

v=1..s

onlyifm=r,n = sand aj = bjforeveryic{l,...,mj,
je{l,...,n}.



Definition

Let A,B e M(mxn), A = (aij)i_:11..m, B = (bij)i;11..ma A €R.
j=1..n J=1..n

The sum of A and B is defined by

ap + by a + b2

ax + b1 axm+ b
A+B= . .

amt + bm1 ampz + bm1

ain + b1n
aop + b2n

amn + bmn



Definition
Let A,Be M(mxn), A = (a,-,-),-_:11_,m, B = (bij)i;11..m, A €R.
j=1..n J=1..n

The sum of A and B is defined by

ayy+byy an+biz ... aip+ by
a + b2y @p+bx ... axnm+ b
A+B= . . . :
am + bm1 amz + bm1 coo @mn T+ bmn
Product of a real number A and the matrix A is defined by
/\811 1312 /\am
JA — 1?21 13'22 . /lc?zn

Aam‘| kamz e kamn



Proposition 6.1 (basic properties)

VA,B,C e M(mxn):A+ B+ C)=(A+B)+C,
(associativity)

VA,Be M(mxn):A+B =B+ A, (commutativity)
A0 e M(mx n) VA e M(mx n):A + O = A,
(existence of the zero element)

VA e M(mxn)3dCy e M(mx n): A + Cx = O,

VA e M(mxn) VA, u € R:(Auw)A = A(nA),

VA e M(mxn)y:1-A=A,

VAeM(mxn) VA, ueR: (A4 pA = 1A + uA,
VA,B e M(mxn) VA € R:A(A +B) = 1A + AB.



Definition
Let A e M(mxn), A = (a,s), =1.m, B € M(n x k),
(bs,)s 1 Then the product of matrices A and B is

defined as AIB% e M(m x k), AB = (¢j)i= 1m, where
j=1..

n
Cij = Z a,-sbs,-.
s=1
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Theorem 6.2 (properties of matrix multiplication)
Letm,n, k,| € N. Then we have:
(i) VA e M(mxn) VB € M(nx k) VC €
Mk x ): A(BC) = (AB)C, (associativity)



Theorem 6.2 (properties of matrix multiplication)
Letm,n, k,| € N. Then we have:
(i) VA e M(mxn) VB € M(nx k) VC €
Mk x ): A(BC) = (AB)C, (associativity)
(i) VA € M(mx n) VB, C ¢
M(nx k):A(B + C) = AB + AC, (left distributivity)



Theorem 6.2 (properties of matrix multiplication)
Letm,n, k,| € N. Then we have:
(i) VA e M(mxn) VB € M(nx k) VC €
M(k x ): A(BC) = (AB)C, (associativity)
(i) VA e M(mx n) VB, C €
M(nx k):A(B + C) = AB + AC, (left distributivity)
(i) YA,B € M(mx n) VC €
M(n x k): (A + B)C = AC + BC, (right distributivity)



Theorem 6.2 (properties of matrix multiplication)
Letm,n, k,| € N. Then we have:
(i) VA e M(mxn) VB € M(nx k) VC €
Mk x ): A(BC) = (AB)C, (associativity)
(i) YA € M(mx n) VB, C €
M(nx k):A(B + C) = AB + AC, (left distributivity)
(i) YA,B € M(mx n) VC €
M(n x k): (A + B)C = AC + BC, (right distributivity)
(iv) 3T € M(nx n) YA € M(nx n):TA = Al = A.(identity
matrix 1)



Theorem 6.2 (properties of matrix multiplication)
Letm,n, k,| € N. Then we have:
(i) VA e M(mxn) VB € M(nx k) VC €
M(k x ): A(BC) = (AB)C, (associativity)
(i) YA € M(mx n) VB, C €
M(nx k):A(B + C) = AB + AC, (left distributivity)
(i) YA,B € M(mx n) VC €
M(n x k): (A + B)C = AC + BC, (right distributivity)
(iv) 3T € M(nx n) YA € M(nx n):TA = Al = A.(identity
matrix 1)

Remark
Warning! Matrix multiplication is not commutative.



Definition
Transpose matrix for a matrix

ayy a2 a3 ... ain
axy ax a3 ... an
A=1 . : ; )
am1 am2 am3 P amn
is defined by

a1 der ... am

g A ... ame
AT = a13 ds3 ... ams ,

ayp dop ... Aamn

ie,if A= (a,,-),;=11,,m, then AT = (by) u=1.n, where
=1..n v=1l..m
b, =ayforeachue{l,...,n},vef{l,2 ...,m}.



Definition
Transpose matrix for a matrix

ayy a2 a3 ... ain
axy ax a3 ... an
A=1 | : ; )
am1 am2 ams P amn
is defined by

ayr der ... am

aipg ax ... ame
AT = [ @3 as ... am |,

ayp dop ... Qamn

ie,if A= (a,',-),-.=11,,m, then AT = (by) u=1.n, where
=1..n v=1l..m
b, =ayforeachue{l,...,n},ve{l,2 ...,m}



Definition
Transpose matrix for a matrix

ayy a2 a3 ... ain
axy dxpp a3 ... aoxp
A=1 . : : :
am1 am2 am3 P amn
is defined by

a1 det ... am

g a2 ... ame
AT = a13 doz ... ams ,

ayp dop ... Aamn

ie,if A= (a,,-),;=11,,m, then AT = (by) u=1.n, where
=1..n v=1l..m
b, =ayforeachue{l,...,n},vef{l,2 ...,m}.



Definition
Transpose matrix for a matrix

ayy a2 a3 ... ain
axy ax a3 ... an
A=1 . . . .
am1 am2 am3 P amn
is defined by

a1 der ... am

g A ... ame
AT = a13 ds3 ... ams ,

ayp dop ... Aamn

ie,if A= (a,,-),;=11,,m, then AT = (by) u=1.n, where
=1..n v=1l..m
b, =ayforeachue{l,...,n},vef{l,2 ...,m}.



Definition
Transpose matrix for a matrix

ayy a2 a3 ... ain
axy ax a3 ... an
A=1 . : ; )
am1 am2 amS .. amn
is defined by
a1 der ... am
g A ... ame
AT = a13 ds3 ... ams ,
ayp dop ... Amn

ie,if A= (a,,-),;=11,,m, then AT = (by) u=1.n, where
=1..n v=1l..m
b, =ayforeachue{l,...,n},vef{l,2 ...,m}.



Theorem 6.3 (properties of transpose matrix)
We have
(i) YA € M(mx n): (AT)" = A,



Theorem 6.3 (properties of transpose mairix)
We have

(i) YA € M(mx n): (AT)" = A,

(i) VA, B e M(mx n): (A +B)" = AT + BT,



Theorem 6.3 (properties of transpose matrix)
We have

(i) YA € M(mx n): (AT)" = A,

(i) VA,Be M(mxn):(A+B)" =AT +B’,

(i) YA e M(mxn) VB e M(nx k): (AB)" =BTAT.



Definition
Let A € M(nx n). We say that A is regular matrix, if there
exists B € M(n x n) such that

AB = BA = 1.



Definition
Let A € M(nx n). We say that A is regular matrix, if there
exists B € M(n x n) such that

AB = BA = 1.
Definition

We say that B € M(n x n) is inverse to a matrix
A e M(nxn),if AB=BA =1.



Definition
Let A € M(nx n). We say that A is regular matrix, if there
exists B € M(n x n) such that

AB = BA = 1.

Definition
We say that B € M(n x n) is inverse to a matrix
A e M(nxn),if AB=BA =1.

Remark
A matrix A € M(n x n) is regular, if and only if A has its

inverse matrix.



Theorem 6.4 (regularity and matrix operations)
Let A,B € M(nx n) be regular. Then we have:

(iy A~ is regular and (A‘1)_1 = A,



Theorem 6.4 (regularity and matrix operations)
Let A,B € M(nx n) be regular. Then we have:

(iy A~ is regular and (A‘1)_1 = A,
(i) AT is regular and (AT)_1 = (A‘1)T,



Theorem 6.4 (regularity and matrix operations)
Let A,B € M(nx n) be regular. Then we have:

(iy A~ is regular and (A‘1)_1 = A,

(i) AT is regular and (AT)_1 = (A‘1)T,

(iiiy AB is regular and (AB)™' = B~TA~",



Definition
Let v',..., vk € R" be vectors. Linear combination of
vectors v', ..., vKis an expression A1v' + --- + A, VK,

where A4,..., A« € R.



Definition

Let v',..., vk € R be vectors. Linear combination of
vectors v', ..., vKis an expression A1v' + --- + A, VK,
where A4,...,Ax € R. Trivial linear combination of vectors
v', ..., vK we mean the linear combination
O-v'4+.--4+0-vk



Definition

Let v',..., vk € R be vectors. Linear combination of
vectors v', ..., vKis an expression A1v' + --- + A, VK,
where A4,...,Ax € R. Trivial linear combination of vectors
v', ..., vK we mean the linear combination
0-v'+4---4+0- v~ Linear combination, which is not trivial,
is called nontrivial.



Definition
We say that vectors v', ..., v¥ are linearly dependent, if
there exists their nontrivial linear combination, which is

equal to the zero vector.



Definition

We say that vectors v', ..., v¥ are linearly dependent, if
there exists their nontrivial linear combination, which is
equal to the zero vector.

We say that vectors v',. .., v are linearly independent, if
they are not linearly dependent, i.e., if A1,..., Ak € R
satisfy A1v' + --- + A,v¥ = o, then

A =Ar=---=X=0.



Definition

Let A € M(m x n). Rank of the matrix A is the maximal
number of linearly independent row vectors of A. Rank of
A is denoted by rk(A).



Definition

Let A € M(m x n). Rank of the matrix A is the maximal
number of linearly independent row vectors of A. Rank of
A is denoted by rk(A).

Definition

We say that A € M(m x n) is in the row echelon form, if for
each i € {2,..., m} we have, that j-th row of A is a zero
vector or the number of zeros at the beginning of the row
is bigger than the number of zeros at the beginning of

(f —1)-st row.



Definition

Let A € M(m x n). Rank of the matrix A is the maximal
number of linearly independent row vectors of A. Rank of
A is denoted by rk(A).

Definition

We say that A € M(m x n) is in the row echelon form, if for
each i € {2,..., m} we have, that j-th row of A is a zero
vector or the number of zeros at the beginning of the row
is bigger than the number of zeros at the beginning of

(f —1)-st row.

Remark
The rank of row echelon matrix A is equal to the number
of nonzero rows of A.



Definition
Elementary row transformations of the matrix A are
defined as:

(i) interchange of two rows,



Definition
Elementary row transformations of the matrix A are
defined as:

(i) interchange of two rows,
(i) multiplication of a row by a nonzero real number,



Definition
Elementary row transformations of the matrix A are
defined as:

(i) interchange of two rows,
(i) multiplication of a row by a nonzero real number,
(iii) addition of a row to another row.



Definition
Elementary row transformations of the matrix A are
defined as:

(i) interchange of two rows,

(i) multiplication of a row by a nonzero real number,

(iii) addition of a row to another row.

Definition

Transformation is defined as a finite sequence of
elementary row transformation. If the matrix B € M(m x n)
was created from A € M(m x n) applying a transformation

T to A, then this fact is denoted by A 5 B.



Theorem 6.5 (properties of transformation)

(i) Let A € M(m x n). Then there exists a transformation
transforming A to a row echelon matrix.



Theorem 6.5 (properties of transformation)

(i) Let A € M(m x n). Then there exists a transformation
transforming A to a row echelon matrix.

(i) Let Ty be a transformation applicable to matrices of
the type m x n. Then there exists a transformation T,
applicable to matrices of the type m x n such that if

A K B for some A,B € M(m x n), then B B A.



Theorem 6.5 (properties of transformation)

(i) Let A € M(m x n). Then there exists a transformation
transforming A to a row echelon matrix.

(i) Let Ty be a transformation applicable to matrices of
the type m x n. Then there exists a transformation T,
applicable to matrices of the type m x n such that if

A K B for some A,B € M(m x n), then B B A.
(i) Let A,B € M(m x n) and there exist a transformation
T such that A ~> B. Then rk(A) = rk(B).
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Theorem 6.6 (multiplication and transformation)
LetA €e M(mx k), B € M(k x n), C € M(m x n) and we

havTe AB = C. Let T be a transformation and A «T» A’ and
C ~ C’. Then we have A'B = C'.



Theorem 6.6 (multiplication and transformation)
LetA €e M(mx k), B € M(k x n), C € M(m x n) and we

havTe AB = C. Let T be a transformation and A «T» A’ and
C ~ C’. Then we have A'B = C'.

Lemma 6.7
Let A € M(nx n) andrk(A) = n. Then there exists a
transformation transforming A to 1.



Theorem 6.6 (multiplication and transformation)
LetA €e M(mx k), B € M(k x n), C € M(m x n) and we
havTe AB = C. Let T be a transformation and A Y and
C ~ C’. Then we have A'B = C’.

Lemma 6.7
Let A € M(nx n) andrk(A) = n. Then there exists a
transformation transforming A to 1.

Theorem 6.8
Let A € M(nx n). Then A is regular if and only if

rk(A) = n.



Definition
Let A € M(n x n). The symbol A; denotes the matrix of
the type (n—1) x (n—1), which is created from A omitting

I-th row and j-th column.



Definition

Let A € M(n x n). The symbol A; denotes the matrix of
the type (n—1) x (n—1), which is created from A omitting
I-th row and j-th column.

ai i . a,j—1 a a j+1 . ain
ai—1,1 ... 8i-1j-1 ai-1,j &8i—1,j+1 --. di—1,n
A= ai R a;j—1 a; a; j+1 R ain

ai+11 ... 8i+1,j-1 8i+1,j 8i+1j+1 ... Qiti;n

an1 e an’j_‘] an’j an,j+1 .. an,n



Definition

Let A € M(n x n). The symbol A; denotes the matrix of
the type (n—1) x (n—1), which is created from A omitting
I-th row and j-th column.

ai i . a,j—1 ai a j+1 . ain
ai—1,1 ... 8i-1j-1 4ai-1,j &8i—1,j+1 ... di-1,n
A= aij.1 . aj,j—1 a; aj j+1 R Aj.n

ai+1,1 ... A@it1j-1 diy1j dit1j+1 ... 8itin

an1 e an’j_‘] an’j an,j+1 .. an,n



Definition
Let A € M(n x n). The symbol A; denotes the matrix of
the type (n—1) x (n—1), which is created from A omitting

I-th row and j-th column.

ai i . a,j—1 a j+1 . ain
ai—1,1 ... 8j—1,j—1 ai—1,j+1 .- di-1n

ai+11 ... 8it1,j—1 di+1,j41 ... diti,n

ani ... @apj-1 anj+1 ... @nn



Definition
Let A € M(n x n). The symbol A; denotes the matrix of
the type (n—1) x (n—1), which is created from A omitting

I-th row and j-th column.

a1 cee @11 ai j+1 ... @in
A — ai—1,1 ... 8i-1j-1 8i-1j+1 ... di-1;n
I'j —

ai+1,1 - ir1,j—1 Qit1,j+1 --- di+1,n

an,‘] “ e an’j_‘] an,]+1 e an,n



Definition
Let A = (&j)jj=1.n. Determinant of the matrix A is defined
by

ai1 thenn=1,

detA = .
> (=1)*'a detA; thenn> 1.



Definition
Let A = (&j)jj=1.n. Determinant of the matrix A is defined

by

aiy thenn=1,

detA = .
> (=1)*'a detA; thenn> 1.

For det A we will use also the symbol

ayy a2 ... Ain
asxy axp ... dop

dnm dp2 ... @amn



Theorem 6.9
Letj,ne N, j < n, and matrices A,B,C € M(n x n)
coincide at each row except j-th row. Let j-th row of A be

equal to the sum of j-th rows of B and C. Then we have
detA = detB + detC.



Theorem 6.9
Letj,ne N, j < n, and matrices A,B,C € M(n x n)
coincide at each row except j-th row. Let j-th row of A be

equal to the sum of j-th rows of B and C. Then we have
detA = detB + detC.

ai

ain

ar ain ai ain
g—1,1 ... &G—1,n g—1,1 .. % 1n % 11 a, 1n
u1+vi ... Up+Vp U
d+1,1 - G+1.n a+1,1 - a/+1 n a,+1 1 e a,+1 n
an ann ant ann an ann




Theorem 6.10 (determinant and transformation)
Let A,A" € M(n x n).

(i) Let A’ be created from A such that we interchanged
two rows in A (i.e., we applied an elementary row
transformation of the first kind). Then we have
detA’ = —detA.



Theorem 6.10 (determinant and transformation)
Let A,A" € M(n x n).

(i) Let A’ be created from A such that we interchanged
two rows in A (i.e., we applied an elementary row
transformation of the first kind). Then we have
detA’ = —detA.

(i) Let A’ be created from A such that a row in A is
multiplied by A € R. Then we have detA’ = A detA.



Theorem 6.10 (determinant and transformation)
Let A,A" € M(n x n).

(i)

(ii)
(i)

Let A’ be created from A such that we interchanged
two rows in A (i.e., we applied an elementary row
transformation of the first kind). Then we have
detA’ = —detA.

Let A’ be created from A such that a row in A is
multiplied by A € R. Then we have detA’ = A detA.

Let A’ be created from A such that we added a row
of A to another row of A (i.e., we applied an
elementary row transformation of the third kind).
Then we have det A’ = det A.



Corollary 6.11

Let A,A" € M(nx n) and A’ be created from A applying a
transformation. Then det A’ # 0 if and only ifdet A # 0.



Corollary 6.11

Let A,A" € M(nx n) and A’ be created from A applying a
transformation. Then det A’ # 0 if and only ifdet A # 0.

Theorem 6.12 (determinant and transposition)
Let A € M(nx n). Then we have detA™ = detA.



Corollary 6.11
Let A,A" € M(nx n) and A’ be created from A applying a
transformation. Then det A’ # 0 if and only ifdet A # 0.

Theorem 6.12 (determinant and transposition)
Let A € M(nx n). Then we have detA™ = detA.

Theorem 6.13 (determinant of product)
Let A,B € M(n x n). Then we have

det AB = det A - detB.



Theorem 6.14
Let A = (a,-,-),-,j=1__,7, k € {1 ..... n}. Then

n
detA = Z(—'I )T Kay det Ay,

i=1

n
detA = ) (—1)*aydetAy.
j=1



Definition
Let A = (@j)ij=1.n- We say that A is upper triangular
matrix if we have @; =0fori>j, i,je{l,...,n}.



Definition

Let A = (@j)ij=1.n- We say that A is upper triangular
matrix if we have @; =0fori>j,i,je{1,...,n}. We say
that A is lower triangular matrix, if we have a; = 0 for
i<j,i,je{l,....,n}.



Definition

Let A = (@j)ij=1.n- We say that A is upper triangular
matrix if we have @; =0fori>j,i,je{1,...,n}. We say
that A is lower triangular matrix, if we have a; = 0 for
i<j,i,je{l,....,n}.

Theorem 6.15
Let A = (ay)ij=1.n IS upper (lower, respectively) triangular
matrix. Then we have

detA =ay1-am----- ann-



Theorem 6.16
Let A € M(nx n). Then A is regular if and only if

detA # 0.



The system of n equations with n unknowns:

a1 X1 + aipXo + -+ + aypXn = by
21Xy + @2Xo + - + az2pXp = b2

an X1 + @naXo + -+ + ApnXn = bn

Matrix form
Ax = b,
a1 ... ain

where A = ( SR ) is called matrix of the system,

anm ... apn
X1

by

b= ( : ) vector of the right side and x = ( : ) vectors
bn Xn

of unknowns.



Theorem 6.17
Let A € M(n x n). Then the following are equivalent.

(i) The matrix A is regular.



Theorem 6.17
Let A € M(n x n). Then the following are equivalent.

(i) The matrix A is regular.
(i) The system (S) have for each b a unique solution.



Theorem 6.17
Let A € M(n x n). Then the following are equivalent.

(i) The matrix A is regular.
(i) The system (S) have for each b a unique solution.
(iii) The system (S) have for each b at least one solution.



Theorem 6.18 (Cramer’s rule)

Let A € M(nx n) be a regular matrix, b € M(nx 1),
X e M(nx1),and Ax = b. Then

ayr ... a1 b1 aij+1 ... in
an1 o e an’j_1 bn an’]+1 “ e ann
)(j =
detA

forj=1,....n.



System of m equations with n unknowns:

a1 Xy + aipXe + -+ + aipXn = by
a1 X1 + @paXo + -+ + az2pXpn = b2

amXi + @maXo + -+ + @mnXp = bm

Matrix notation
Ax = b,
ait ... ain
where A = ( Do ) € M(mx n),

ami ... @mn

by X1
b:(g)eM(mx1)ax:(g)eM(nx1).

bm Xn



Definition
The matrix

a4 ... ain b1
(Alb) = SR
am‘] .« amn bm

is called extended matrix of the system (S’).



Definition
The matrix
ayy ... Qin b1
(Alb) = Pl
am‘] PP amn bm

is called extended matrix of the system (S’).

Theorem 6.19
The system (S’) has a solution if and only if the matrix has
the same rank as the extended matrix of the system.



Definition
We say that a mapping f: R” — R™ is linear if
(i) Yu,ve R f(u+v) = f(u)+ f(v),



Definition

We say that a mapping f: R” — R™ is linear if
(i) Yu,ve R f(u+v) = f(u)+ f(v),
(i) VA € RVYu e R": f(Au) = Af(u).



Definition
Letie{1,...,n}. The vector

0

. iI-th coordinate

m‘.
I

0

is called i-th canonical vector of the space R".
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0

. iI-th coordinate
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I

0

is called i-th canonical vector of the space R". The set
{e',..., e"} of all canonical vectors in R" is called
canonical basis of the space R”".



Definition
Letie{1,...,n}. The vector

0

. iI-th coordinate

m‘.
I

0

is called i-th canonical vector of the space R". The set
{e',..., e"} of all canonical vectors in R" is called
canonical basis of the space R”".

The properties of canonical vectors:

() VX €R"3Ay,..., Ane R:X = L@ +--- + A,€",



Definition
Letie{1,...,n}. The vector

0

. iI-th coordinate

m‘.
I

0

is called i-th canonical vector of the space R". The set
{e',..., e"} of all canonical vectors in R" is called
canonical basis of the space R”".

The properties of canonical vectors:
(i) VXeR"3Aq,....Ah e Rix =€ +---+ 1,€",
(i) the vectors e',. .., e" are linearly independent.



Theorem 6.20 (representation of linear
mappings)

The mapping f: R" — R™ is linear if and only if there
exists a matrix A € M(m x n) such that

a1 ... @in U4
VueR"f(u)y=Au = :

am1 . e amn Un



Theorem 6.21
Let a mapping f-R" — R" be linear. Then the following
are equivalent.
(i) The mapping f is a bijection (i.e., f is an injective
mapping R" onto R").



Theorem 6.21
Let a mapping f-R" — R" be linear. Then the following
are equivalent.

(i) The mapping f is a bijection (i.e., f is an injective
mapping R" onto R").
(i) The mapping f is an injective mapping.



Theorem 6.21
Let a mapping f-R" — R" be linear. Then the following
are equivalent.

(i) The mapping f is a bijection (i.e., f is an injective
mapping R" onto R").
(i) The mapping f is an injective mapping.
(iii) The mapping f is a mapping R" onto R".



Theorem 6.21
Let a mapping f-R" — R" be linear. Then the following
are equivalent.

(i) The mapping f is a bijection (i.e., f is an injective
mapping R" onto R").
(i) The mapping f is an injective mapping.
(iii) The mapping f is a mapping R" onto R".



Theorem 6.21
Let a mapping f-R" — R" be linear. Then the following
are equivalent.
(i) The mapping f is a bijection (i.e., f is an injective
mapping R" onto R").
(i) The mapping f is an injective mapping.
(iii) The mapping f is a mapping R" onto R".

Theorem 6.22

Let f:R" — R™ be a linear mapping represented by matrix
A € M(mx n) a g:R™ — R¥ be a linear mapping
represented by a matrix B € M(k x m). Then the
composed mapping g o f:R" — R¥ is linear and is
represented by the matrix BA.



Infinite series

Definition
Let {a,} be a sequence of real numbers. Symbol > % . a,
is called an infinite series.



Infinite series

Definition
Let {a,} be a sequence of real numbers. Symbol > % . a,
is called an infinite series. For m € N we set

Sm:a1+az+"'+am.

The number s,, is called m-th partial sum of the series

> o1 an.



Infinite series

Definition
Let {a,} be a sequence of real numbers. Symbol > % . a,
is called an infinite series. For m € N we set

Sm:a1+az+"'+am.

The number s,, is called m-th partial sum of the series
> 7, an. The element a, is called n-th member of the
series > 0, an.



Infinite series

Definition
Let {a,} be a sequence of real numbers. Symbol > % . a,
is called an infinite series. For m € N we set

Sm:a1+az+"'+am.

The number s,, is called m-th partial sum of the series
Y ooy an. The element a, is called n-th member of the
series Y .-, a,. The sum of infinite series Y 72, a, is
defined as the limit of the sequence {s;}, if such a limit
exists.



Infinite series

Definition
Let {a,} be a sequence of real numbers. Symbol > % . a,
is called an infinite series. For m € N we set

Sm:a1+az+"'+am.

The number s,, is called m-th partial sum of the series
Y o1 @n. The element a, is called n-th member of the
series Y .-, a,. The sum of infinite series Y 72, a, is
defined as the limit of the sequence {s;}, if such a limit
exists. The sum of the series is denoted by the symbol

> o1 an.



Infinite series

Definition
Let {a,} be a sequence of real numbers. Symbol > % . a,
is called an infinite series. For m € N we set

Sm:a1+az+"'+am.

The number s,, is called m-th partial sum of the series

Y o1 @n. The element a, is called n-th member of the
series Y .-, a,. The sum of infinite series Y 72, a, is
defined as the limit of the sequence {s;}, if such a limit
exists. The sum of the series is denoted by the symbol
3> , a,. We say that a series converges, if its sum is a
real number. In the opposite case, we say that the series
diverges.



Theorem 7.1 (necessary condition)
If a series o>, a, converges, thenlim a, = 0.



Theorem 7.1 (necessary condition)
If a series o>, a, converges, thenlim a, = 0.

Remark
Suppose that « € R and a series Y .-, a, converges.
Then the series Y -, aa, converges and it holds

Dt @dn = a2, ap.



Theorem 7.1 (necessary condition)
If a series o>, a, converges, thenlim a, = 0.

Remark

Suppose that « € R and a series Y- , a, converges.
Then the series Y -, aa, converges and it holds

> jaap=a) 2 an lfY 0 a,and Y 02, b, converge,
then the series > ,(an + bn) convergens and if holds

> nei1(@n +bn) =302 an + 302 bn.



Theorem 7.2
Let> >, a,and ., b, be series satisfying 0 < a, < b,
for each n € N.

(i) IfY o2, by converges, then Y22 | a, converges.



Theorem 7.2
Let> >, a,and ., b, be series satisfying 0 < a, < b,
for each n € N.

(i) IfY o2, by converges, then Y22 | a, converges.
(i) Y72, an diverges, then > >, b, diverges.



Theorem 7.3
Let {a,} be a sequence of real numbers. If Y72, |a|
converges, then > . a, converges.



Theorem 7.3
Let {a,} be a sequence of real numbers. If Y72, |a|
converges, then > . a, converges.

Definition
We say that Y77, a, is absolute convergent, if > 72 . |an|
converges.



Theorem 7.3
Let {a,} be a sequence of real numbers. If Y72, |a|
converges, then > . a, converges.

Definition

We say that Y77, a, is absolute convergent, if > 72 . |an|
converges. If Y77 . a, converges but not absolutely, then
3> , an converges nonabsolutely.



Theorem 7.3
Let {a,} be a sequence of real numbers. If Y72, |a|
converges, then > . a, converges.

Definition

We say that Y77, a, is absolute convergent, if > 72 . |an|
converges. If Y77 . a, converges but not absolutely, then
3> , an converges nonabsolutely.

Remark
Let |a,| < b, for each n € N. If the series > 72, b,
converges, then Y _°2 | a, converges.



Theorem 7.4 (limit test)
Let> > ,anandy ;> b, be series with nonnegative
members.
(i) Let
lim &
n
exists proper. If Y72, b, converges, then > 72, a,
converges.



Theorem 7.4 (limit test)
Let> > ,anandy ;> b, be series with nonnegative
members.
(i) Let
lim &
n
exists proper. If Y72, b, converges, then > 72, a,
converges.
(i) Let
lim 27 — ¢ e (0, +00).
n—oo n
Theny_,> , a, converges if and only if ¥ 7. , b,
converges.



Theorem 7.5 (Cauchy test)
Let Y "7, a, be a series. The we have

(i) Iflim {/|a,| <1, then Y22, a, is absolutely
convergent.



Theorem 7.5 (Cauchy test)
Let > >, an be a series. The we have
(iy Iflim {/]a,| < 1, then 302, a, is absolutely
convergent.
(i) Iflim {/|a,| > 1, then Y2, a, diverges.



Theorem 7.6 (d’Alembert test)
Let > °7 . a, be a series with nonzero members. Then we
have
(i) Iflim|a,1/an| < 1, then > °2 . a, absolutely
convergent.



Theorem 7.6 (d’Alembert test)

Let > °7 . a, be a series with nonzero members. Then we
have

(i) Iflim|a,1/an| < 1, then > °2 . a, absolutely
convergent.

(i) Iflim|as1/anl > 1, then Y 72, a, diverges.



Theorem 7.7
Leta € R. The series Y .., 1/n* converges if and only if
a>1.



Theorem 7.8 (Leibniz)
Lety "> ,(—1)"a, be a series. Assume

B a,> ap >0foreveryneN,
mlim,a,=0.

Then > % . (—1)"a, converges.



Integrals — Riemann integral
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Definition
A finite sequence {x}_, is called a partition of the interval
[a, b], if we have

a=Xxy<X3<---<X,=b.

The points xo, ..., X, are called partition points.



Definition
A finite sequence {x}_, is called a partition of the interval
[a, b], if we have

a=Xxy<X3<---<X,=b.

The points xo, ..., X, are called partition points.
By a norm of partition D = {X}, we mean

v(D) =max{x —x_4; j=1,...,n}.



Definition
A finite sequence {x}_, is called a partition of the interval
[a, b], if we have

a=Xxy<X3<---<X,=b.

The points xo, ..., X, are called partition points.
By a norm of partition D = {X}, we mean

v(D) =max{x —x_4; j=1,...,n}.

We say that a partition D’ of an interval [a, b] is a
refinement of the partition D of the interval [a, b], if each
point of D is a partition point of D'



Definition
Let f be a bounded function on an interval [a, b] and
D = {x}/L, be a partition of [a, b]. We denote

S(f,D) = ) M(x — x-1), where M = sup{f(x); x € [x-1, ]},

j=1



Definition
Let f be a bounded function on an interval [a, b] and
D = {x}/L, be a partition of [a, b]. We denote

S(f,D) = ) M(x — x-1), where M = sup{f(x); x € [x-1, ]},

j=1
n

S(f,D) = Y my(%— x-1), where m; = inf{f(x); x € [x-1. %]},
Jj=1



Definition
Let f be a bounded function on an interval [a, b] and
D = {x}/L, be a partition of [a, b]. We denote

S(f.D) =Y M(x — %-1). where M = sup{f(x); x € [x_1.X]}.
j=1

S(f,D) = Y my(%— x-1), where m; = inf{f(x); x € [x-1. %]},
Jj=1

b —
/ f(x)dx = inf{S(f, D); D is a partition of the interval [a, b]},
a

b
/ f(x) dx = sup{S(f, D); D s a partition of the interval [a, b]}.
Ja_



Definition
We say that a bounded function f has Riemann integral
over the interval [a, b, if jabf(x) dx = f:f(x) dx.



Definition

We say that a bounded function f has Riemann integral
over the interval [a, b], if jabf(x) dx = f:f(x) dx. Then the
value of the integral of f over the interval [a, b] is equal to

[_abf(x) dx and is denoted by fab f(x) dx.



Definition

We say that a bounded function f has Riemann integral
over the interval [a, b], if jabf(x) dx = f:f(x) dx. Then the
value of the integral of f over the interval [a, b] is equal to
J2f(x) dx and is denoted by [ f(x)dx. If a > b, we define
J2f(x)dx = — [ f(x) dx. If a = b, we define

[P f(x)dx = 0.



Remark
Let D, D' be partitions of the interval [a, b], D’ refine D,

and let f be a bounded function on the interval [a, b]. Then
we have

S(f,D) < S(f.D') < S(f,D') < S(f, D).



S(f.D) < S(f,D') < S(f. D)) < S(f, D).

-

- -




S(f,D) < S(f.D') < S(f,D') < S(f, D).




S(f,D) < S(f.D') < S(f,D') < S(f, D).




S(f,D) < S(f.D') < S(f,D') < S(f, D).




S(f,D) < S(f.D') < S(f,D') < S(f, D).




Theorem 8.1

(i) Let a function f have Riemann integral over [a, b] and
let [c,d] C [a, b]. Then f has Riemann integral over
[c. d].



Theorem 8.1

(i) Let a function f have Riemann integral over [a, b] and
let [c,d] C [a, b]. Then f has Riemann integral over
[c, d].

(i) Letc € (a,b) and a function f have Riemann integral
over [a, c] and [c, b]. Then f has Riemann integral
over [a, b] and we have

/:) f(x)dx = /ac f(x)dx + /Cb f(x)dx.



Theorem 8.2

Let f and g be functions with Riemann integral over [a, b]
and leta € R. Then

(i) the function «f has Riemann integral over [a, b] and it
holds

/:af(x) dx = a/: f(x)dx,



Theorem 8.2

Let f and g be functions with Riemann integral over [a, b]
and leta € R. Then

(i) the function «f has Riemann integral over [a, b] and it
holds

/:af(x) dx = af: f(x)dx,

(il) the function f + g has Riemann integral over |a, b]
and it holds

b b b
/(f(x)+g(x))dx=/ f(x)dx—i—/ g(x) dx.



Theorem 8.3
Leta,be R, a< b, and let f and g be functions with
Riemann integral over |a, b].

(i) Iff(x) >0 for each x € [a, b], then

b
/ f(x)dx > 0.



Theorem 8.3
Leta,be R, a< b, and let f and g be functions with
Riemann integral over |a, b].

(i) Iff(x) >0 for each x € [a, b], then

b
/ f(x)dx > 0.
(i) Iff(x) < g(x) foreach x € |a, b], then

i f(x)dx < ’ g(x) dx.
J, foers |



Theorem 8.3
Leta,be R, a< b, and let f and g be functions with
Riemann integral over |a, b].

(i) Iff(x) >0 for each x € [a, b], then

b
/ f(x)dx > 0.
(i) Iff(x) < g(x) foreach x € |a, b], then

i f(x)dx < ’ g(x) dx.
J, foosrs |

(i) The function |f| has Riemann integral over [a, b] and

it holds
b b
/ f(x)dx 5/ |f(x)| dx.
a a




Theorem 8.4
Let a function f be continuous on the interval [a, b],
a,b € R. Then f has Riemann integral over [a, b].



Theorem 8.5

Let f be a continuous function on [a, b] and let ¢ € [a, b]. If

we denote F(x) = [ f(t)dt for x € (a, b), then
F’(x) = f(x) foreach x € (a, b).



Primitive function

Definition

Let a function f be defined on an open interval /. We say
that a function F is a primitive function of f on /, if for each
x € I there exists F'(x) and F'(x) = f(x).

Theorem 8.6

Let F and G be primitive functions of f on an open interval
I. Then there exists ¢ € R such that F(x) = G(x) + ¢ for
each x e I.



Theorem 8.7
Let f be a continuous function on an open interval I. Then
f has on | a primitive function.



Theorem 8.7
Let f be a continuous function on an open interval I. Then
f has on | a primitive function.

Theorem 8.8

Let f have on an open interval | a primitive function F, let
a function g have on | a primitive function G, and «, 8 € R.
Then the function o F + BG is a primitive function of

af +Bgonl.



Theorem 8.9 (substitution)

(i) Let F be a primitive function of f on (a, b). Let ¢ be a
function defined on an interval («, 8) with values in (a, b)

and ¢ has at each point t € («, B) proper derivative. Then
we have

[ Fo(D)e' (1) dt < Flg(t)) on (a. B).



Theorem 8.9 (substitution)

(i) Let F be a primitive function of f on (a, b). Let ¢ be a
function defined on an interval («, 8) with values in (a, b)

and ¢ has at each point t € («, B) proper derivative. Then
we have

/ﬂmmwmm Flo(t)) on (a. B).

(i) Let a function ¢ have at each point of an interval («, )
nonzero proper derivative and ¢((«, B)) = (a,b). Let f be
defined on an interval (a, b) and we have

/wmmmm G(t) on (. B).
Then we have

f f(x) dx = G(o~1(x)) on (a.b):



Theorem 8.10 (integration per partes)

Let | be an open interval and let functions f and g be
continuous on I. Let F be a primitive function of f on | and
G be a primitive function of g on I. Then we have

[ GO)F(x) dx = GO)F(x) / GO)F(x) dx na |



Definition
Rational function is a ratio of two polynomials, where the
polynomial in denominator is not identically zero.



Definition
Rational function is a ratio of two polynomials, where the
polynomial in denominator is not identically zero.
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Let P, Q be polynomial functions with real coefficients
such that

(i) degree of P is strictly smaller than degree of Q,
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(i) Q(x) = an(x —x1)P' ... (X — XK )P (X® + a1 X +
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Theorem 8.11

Let P, Q be polynomial functions with real coefficients
such that

(i) degree of P is strictly smaller than degree of Q,
(i) Q(x) = an(x —x1)P' ... (X — XK )P (X® + a1 X +
B .. (X% 4 ax + B9,
(i) an, X1, ... Xk, 01, ..., B1,..., B €R, a, #0,
(iV) p1,... Pk, Q1,1 €N,
(v) the polynomials

X—X{, X—=Xo, ..., X=Xk, X2+a1X+B1, ..., X2+ x+ B
have no common root,



Theorem 8.11

Let P, Q be polynomial functions with real coefficients
such that

(i) degree of P is strictly smaller than degree of Q,
(i) Q(x) = an(x —x1)P' ... (X — XK )P (X® + a1 X +
B .. (X% 4 ax + B9,
(i) an, X1, ... Xk, 01, ..., B1,..., B €R, a, #0,
(iV) p1,... Pk, Q1,1 €N,
(v) the polynomials

X—X{, X—=Xo, ..., X=Xk, X2+a1X+B1, ..., X2+ x+ B
have no common root,

(vi) the polynomials x? + a1 x + B1, ..., X2+ ax + By
have no real root.



Then there exist unique real numbers A}, ..., A},

K kK Rl 1 1 1 /
LA A B CLL.... B, CL.... B
Ci.....B,,. C, such that we have
P A A
QX)) (x—xq)P (X —Xxy)
K
_|_..._|_A—q( Apk
(X — X )Px X — Xx
1 1
Bix + C| By x + Cg, i
(X2 + a1 x + B1) X2+ a1x + By
I /
Bix + C B,x + C,
(X2 + o x + ,BI)q/ X2 + aX + ,3/.



Then there exist unique real numbers A}, ..., A},

K kK Rl 1 1 1 /
LA A B CLL.... B, CL.... B
Ci.....B,,. C, such that we have
P A A
QX)) (x—xq)P (X —Xxy)
K
_|_..._|_A—q( Apk
(X — X )Px X — Xx
1 1
Bix + C| By x + Cg, i
(X2 + a1 x + B1) X2+ a1x + By
I /
Bix + C B,x + C,
(X2 + o x + ,BI)q/ X2 + aX + ,3/.
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