Mathematics II

Mathematics II

■ Functions of several variables

- Matrix calculus

■ Infinite series

- Integral

V.1. \mathbf{R}^{n} as a metric and linear space

V.1. \mathbf{R}^{n} as a metric and linear space

Definition
The set $\mathbf{R}^{n}, n \in \mathbf{N}$, is the set of all ordered n-tuples of real numbers.

V.1. \mathbf{R}^{n} as a metric and linear space

Definition

The set $\mathbf{R}^{n}, n \in \mathbf{N}$, is the set of all ordered n-tuples of real numbers.

Definition
Euclidean metric on \mathbf{R}^{n} is the function $\rho: \mathbf{R}^{n} \times \mathbf{R}^{n} \rightarrow[0,+\infty)$ defined by

$$
\rho(\boldsymbol{x}, \boldsymbol{y})=\sqrt{\sum_{i=1}^{n}\left(x_{i}-y_{i}\right)^{2}} .
$$

The number $\rho(\boldsymbol{x}, \boldsymbol{y})$ is called distance of the point \boldsymbol{x} from the point y.

Theorem 5.1 (properties of Euclidean metric)
Euclidean metric ρ has the following properties:

Theorem 5.1 (properties of Euclidean metric)

Euclidean metric ρ has the following properties:
(i) $\forall \boldsymbol{x}, \boldsymbol{y} \in \mathbf{R}^{n}: \rho(\boldsymbol{x}, \boldsymbol{y})=0 \Leftrightarrow \boldsymbol{x}=\boldsymbol{y}$,
(ii) $\forall \boldsymbol{x}, \boldsymbol{y} \in \mathbf{R}^{n}: \rho(\boldsymbol{x}, \boldsymbol{y})=\rho(\boldsymbol{y}, \boldsymbol{x})$,
(symmetry)
(iii) $\forall \boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z} \in \mathbf{R}^{n}: \rho(\boldsymbol{x}, \boldsymbol{y}) \leq \rho(\boldsymbol{x}, \boldsymbol{z})+\rho(\boldsymbol{z}, \boldsymbol{y})$, (triangle inequality)
(iv) $\forall \boldsymbol{x}, \boldsymbol{y} \in \mathbf{R}^{n}, \forall \lambda \in \mathbf{R}: \rho(\lambda \boldsymbol{x}, \lambda \boldsymbol{y})=|\lambda| \rho(\boldsymbol{x}, \boldsymbol{y})$, (homogeneity)
(v) $\forall \boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z} \in \mathbf{R}^{n}: \rho(\boldsymbol{x}+\boldsymbol{z}, \boldsymbol{y}+\boldsymbol{z})=\rho(\boldsymbol{x}, \boldsymbol{y})$. (translation invariance)

Definition
Let $\boldsymbol{x} \in \mathbf{R}^{n}, r \in \mathbf{R}, r>0$. The set $B(\boldsymbol{x}, r)$ defined by

$$
B(\boldsymbol{x}, r)=\left\{\boldsymbol{y} \in \mathbf{R}^{n} ; \rho(\boldsymbol{x}, \boldsymbol{y})<r\right\}
$$

is called open ball with radius r centered at \boldsymbol{x}.

Definition
Let $M \subset \mathbf{R}^{n}$. We say that $\boldsymbol{x} \in \mathbf{R}^{n}$ is an interior point of M, if there exists $r>0$ such that $B(\boldsymbol{x}, r) \subset M$.

Definition

Let $M \subset \mathbf{R}^{n}$. We say that $\boldsymbol{x} \in \mathbf{R}^{n}$ is an interior point of M, if there exists $r>0$ such that $B(\boldsymbol{x}, r) \subset M$. The set $M \subset \mathbf{R}^{n}$ is open in \mathbf{R}^{n}, if each point of M is an interior point of M.

Definition

Let $M \subset \mathbf{R}^{n}$. We say that $\boldsymbol{x} \in \mathbf{R}^{n}$ is an interior point of M, if there exists $r>0$ such that $B(\boldsymbol{x}, r) \subset M$. The set $M \subset \mathbf{R}^{n}$ is open in \mathbf{R}^{n}, if each point of M is an interior point of M. We say that M is closed in \mathbf{R}^{n}, if its complement is closed.

Theorem 5.2 (properties of open sets)
(i) The empty set and \mathbf{R}^{n} are open in \mathbf{R}^{n}.
(ii) Let sets $G_{\alpha} \subset \mathbf{R}^{n}, \alpha \in A \neq \emptyset$, be open in \mathbf{R}^{n}. Then $\bigcup_{\alpha \in A} G_{\alpha}$ is open in \mathbf{R}^{n}.
(iii) Let sets $G_{i}, i=1, \ldots, m$, be open in \mathbf{R}^{n}. Then $\bigcap_{i=1}^{m} G_{i}$ is open in \mathbf{R}^{n}.

Theorem 5.3 (properties of closed sets)
(i) The empty set and \mathbf{R}^{n} are closed in \mathbf{R}^{n}.
(ii) Let sets $F_{\alpha} \subset \mathbf{R}^{n}, \alpha \in A \neq \emptyset$, be closed in \mathbf{R}^{n}. Then $\bigcap_{\alpha \in A} F_{\alpha}$ is closed in \mathbf{R}^{n}.
(iii) Let sets $F_{i}, i=1, \ldots, m$, are closed in \mathbf{R}^{n}. Then $\bigcup_{i=1}^{m} F_{i}$ is closed in \mathbf{R}^{n}.

Definition
Let $M \subset \mathbf{R}^{n}$ and $\boldsymbol{x} \in \mathbf{R}^{n}$. We say that \boldsymbol{x} is a boundary point of M, if for each $r>0$ we have $B(\boldsymbol{x}, r) \cap M \neq \emptyset$ and $B(\boldsymbol{x}, r) \cap\left(\mathbf{R}^{n} \backslash M\right) \neq \emptyset$.

Definition
Let $M \subset \mathbf{R}^{n}$ and $\boldsymbol{x} \in \mathbf{R}^{n}$. We say that \boldsymbol{x} is a boundary point of M, if for each $r>0$ we have $B(\boldsymbol{x}, r) \cap M \neq \emptyset$ and $B(\boldsymbol{x}, r) \cap\left(\mathbf{R}^{n} \backslash M\right) \neq \emptyset$.
Boundary of M is the set of all boundary points of M (notation bd M).

Definition

Let $M \subset \mathbf{R}^{n}$ and $\boldsymbol{x} \in \mathbf{R}^{n}$. We say that \boldsymbol{x} is a boundary point of M, if for each $r>0$ we have $B(\boldsymbol{x}, r) \cap M \neq \emptyset$ and $B(\boldsymbol{x}, r) \cap\left(\mathbf{R}^{n} \backslash M\right) \neq \emptyset$.
Boundary of M is the set of all boundary points of M (notation bd M).

Closure of M is the set $M \cup \mathrm{bd} M$ (notation \bar{M}).

Definition

Let $M \subset \mathbf{R}^{n}$ and $\boldsymbol{x} \in \mathbf{R}^{n}$. We say that \boldsymbol{x} is a boundary point of M, if for each $r>0$ we have $B(\boldsymbol{x}, r) \cap M \neq \emptyset$ and $B(\boldsymbol{x}, r) \cap\left(\mathbf{R}^{n} \backslash M\right) \neq \emptyset$.
Boundary of M is the set of all boundary points of M (notation bd M).
Closure of M is the set $M \cup \mathrm{bd} M$ (notation \bar{M}). Interior of M is the set of all interior points of M (notation int M).

Definition

Let $M \subset \mathbf{R}^{n}$ and $\boldsymbol{x} \in \mathbf{R}^{n}$. We say that \boldsymbol{x} is a boundary point of M, if for each $r>0$ we have $B(\boldsymbol{x}, r) \cap M \neq \emptyset$ and $B(\boldsymbol{x}, r) \cap\left(\mathbf{R}^{n} \backslash M\right) \neq \emptyset$.
Boundary of M is the set of all boundary points of M (notation bd M).
Closure of M is the set $M \cup \mathrm{bd} M$ (notation \bar{M}). Interior of M is the set of all interior points of M (notation int M).

5.2 Continuous function of several variables

Definition

Let $\boldsymbol{x}^{j} \in \mathbf{R}^{n}$ for each $j \in \mathbf{N}$ and $\boldsymbol{x} \in \mathbf{R}^{n}$. We say that a sequence $\left\{\boldsymbol{x}^{j}\right\}_{j=1}^{\infty}$ converges to \boldsymbol{x}, if $\lim _{j \rightarrow \infty} \rho\left(\boldsymbol{x}, \boldsymbol{x}^{j}\right)=0$.
The vector \boldsymbol{x} is called limit of the sequence $\left\{\boldsymbol{x}^{j}\right\}_{j=1}^{\infty}$.

Theorem 5.4
Let $\boldsymbol{x}^{j} \in \mathbf{R}^{n}$ for each $j \in \mathbf{N}$ and $\boldsymbol{x} \in \mathbf{R}^{n}$. The sequence $\left\{\boldsymbol{x}^{j}\right\}_{j=1}^{\infty}$ converges to \boldsymbol{x} if and only if for each $i \in\{1, \ldots, n\}$ the sequence of real numbers $\left\{x_{i}^{j}\right\}_{j=1}^{\infty}$ converges to the real number x_{i}.

Definition
Let $M \subset \mathbf{R}^{n}, \boldsymbol{x} \in M$, and $f: M \rightarrow \mathbf{R}$. We say that f is continuous at \boldsymbol{x} with respect to M, if we have
$\forall \varepsilon \in \mathbf{R}, \varepsilon>0 \exists \delta \in \mathbf{R}, \delta>0 \forall \boldsymbol{y} \in B(\boldsymbol{x}, \delta) \cap M: f(\boldsymbol{y}) \in B(f(\boldsymbol{x}), \varepsilon)$.

Definition

Let $M \subset \mathbf{R}^{n}, \boldsymbol{x} \in M$, and $f: M \rightarrow \mathbf{R}$. We say that f is continuous at \boldsymbol{x} with respect to M, if we have
$\forall \varepsilon \in \mathbf{R}, \varepsilon>0 \exists \delta \in \mathbf{R}, \delta>0 \forall \boldsymbol{y} \in B(\boldsymbol{x}, \delta) \cap M: f(\boldsymbol{y}) \in B(f(\boldsymbol{x}), \varepsilon)$.
We say that f is continuous at the point \boldsymbol{x}, it it is continuous at \boldsymbol{x} with respect to a neighborhood of \boldsymbol{x}, i.e.,
$\forall \varepsilon \in \mathbf{R}, \varepsilon>0 \exists \delta \in \mathbf{R}, \delta>0 \forall \boldsymbol{y} \in B(\boldsymbol{x}, \delta): f(\boldsymbol{y}) \in B(f(\boldsymbol{x}), \varepsilon)$.

Remark
Let $M \subset \mathbf{R}^{n}, \boldsymbol{x} \in M, f: M \rightarrow \mathbf{R}, g: M \rightarrow \mathbf{R}$, and $c \in \mathbf{R}$. If f and g are continuous at the point \boldsymbol{x} with respect to M, then the functions $c f, f+g$ a $f g$ are continuous at \boldsymbol{x} with respect to M. If the function g is nonzero at each point of M, then also the function f / g is continuous at \boldsymbol{x} with respect to M.

Theorem 5.5 (Heine)
Let $M \subset \mathbf{R}^{n}, \boldsymbol{x} \in M$, and $f: M \rightarrow \mathbf{R}$. Then the following are equivalent.
(i) The function f is continuous at \boldsymbol{x} with respect to M.
(ii) For each sequence $\left\{\boldsymbol{x}^{j}\right\}_{j=1}^{\infty}$ such that $\boldsymbol{x}^{j} \in M$ pro $j \in \mathbf{N}$ a $\lim _{j \rightarrow \infty} \boldsymbol{x}^{j}=\boldsymbol{x}$, we have $\lim _{j \rightarrow \infty} f\left(\boldsymbol{x}^{j}\right)=f(\boldsymbol{x})$.

Remark

Let $r, s \in \mathbf{N}, M \subset \mathbf{R}^{s}, L \subset \mathbf{R}^{r}$, and $\boldsymbol{y} \in M$. Let $\varphi_{1}, \ldots, \varphi_{r}$ are functions defined on M, which are continuous at \boldsymbol{y} with respect to M and $\left[\varphi_{1}(\boldsymbol{x}), \ldots, \varphi_{r}(\boldsymbol{x})\right] \in L$ for each $\boldsymbol{x} \in M$. Let $f: L \rightarrow \mathbf{R}$ be continuous at the point $\left[\varphi_{1}(\boldsymbol{y}), \ldots, \varphi_{r}(\boldsymbol{y})\right]$ with respect to L. Then the composed function $F: M \rightarrow \mathbf{R}$ defined by

$$
F(\boldsymbol{x})=f\left(\varphi_{1}(\boldsymbol{x}), \ldots, \varphi_{r}(\boldsymbol{x})\right), \quad \boldsymbol{x} \in M,
$$

is continuous at \boldsymbol{y} with respect to M.

Definition
Let $M \subset \mathbf{R}^{n}$ a $f: M \rightarrow \mathbf{R}$. We say that f is continuous on M, if it is continuous at each point $\boldsymbol{x} \in M$ with respect to M.

Definition

Let $M \subset \mathbf{R}^{n}$ a $f: M \rightarrow \mathbf{R}$. We say that f is continuous on M, if it is continuous at each point $\boldsymbol{x} \in M$ with respect to M.

Remark
The projection $\pi_{j}: \mathbf{R}^{n} \rightarrow \mathbf{R}, \pi_{j}(\boldsymbol{x})=x_{j}, 1 \leq j \leq n$, are continuous on \mathbf{R}^{n}.
-

$$
4
$$

Let f be a continuous function on \mathbf{R}^{n} and $c \in \mathbf{R}$. Then we have:
(i) The set $\left\{\boldsymbol{x} \in \mathbf{R}^{n} ; f(\boldsymbol{x})<c\right\}$ is open in \mathbf{R}^{n}.
(ii) The set $\left\{\boldsymbol{x} \in \mathbf{R}^{n} ; f(\boldsymbol{x})>c\right\}$ is open in \mathbf{R}^{n}.
(iii) The set $\left\{\boldsymbol{x} \in \mathbf{R}^{n} ; f(\boldsymbol{x}) \leq c\right\}$ is closed in \mathbf{R}^{n}.
(iv) The set $\left\{\boldsymbol{x} \in \mathbf{R}^{n} ; f(\boldsymbol{x}) \geq c\right\}$ is closed in \mathbf{R}^{n}.
(v) The set $\left\{\boldsymbol{x} \in \mathbf{R}^{n} ; f(\boldsymbol{x})=c\right\}$ is closed in \mathbf{R}^{n}.

Definition

We say that a set $M \subset \mathbf{R}^{n}$ is compact, if for each sequence of elements of M there exists a convergent subsequence with limit in M.

Definition

We say that a set $M \subset \mathbf{R}^{n}$ is compact, if for each sequence of elements of M there exists a convergent subsequence with limit in M.

Theorem 5.6 (characterization of compact subsets of \mathbf{R}^{n})
The set $M \subset \mathbf{R}^{n}$ is compact if and only if M is bounded and closed.

Definition

Let $M \subset \mathbf{R}^{n}, \boldsymbol{x} \in M$, and f be a function defined at least on M, i.e., $M \subset D_{f}$. We say that f attains at the point \boldsymbol{x}
■ maximum on M, if for every $\boldsymbol{y} \in M$ we have $f(\boldsymbol{y}) \leq f(\boldsymbol{x})$,

Definition

Let $M \subset \mathbf{R}^{n}, \boldsymbol{x} \in M$, and f be a function defined at least on M, i.e., $M \subset D_{f}$. We say that f attains at the point \boldsymbol{x}
■ maximum on M, if for every $\boldsymbol{y} \in M$ we have $f(\boldsymbol{y}) \leq f(\boldsymbol{x})$,

- local maximum with respect to M, if there exists $\delta>0$ such that for every $\boldsymbol{y} \in B(\boldsymbol{x}, \delta) \cap M$ we have $f(\boldsymbol{y}) \leq f(\boldsymbol{x})$,

Definition

Let $M \subset \mathbf{R}^{n}, \boldsymbol{x} \in M$, and f be a function defined at least on M, i.e., $M \subset D_{f}$. We say that f attains at the point \boldsymbol{x}
■ maximum on M, if for every $\boldsymbol{y} \in M$ we have $f(\boldsymbol{y}) \leq f(\boldsymbol{x})$,

- local maximum with respect to M, if there exists $\delta>0$ such that for every $\boldsymbol{y} \in B(\boldsymbol{x}, \delta) \cap M$ we have $f(\boldsymbol{y}) \leq f(\boldsymbol{x})$,
- sharp local maximum with respect to M, if there exists $\delta>0$ such that for every $\boldsymbol{y} \in(B(\boldsymbol{x}, \delta) \backslash\{x\}) \cap M$ we have $f(\boldsymbol{y})<f(\boldsymbol{x})$.

Definition

Let $M \subset \mathbf{R}^{n}, \boldsymbol{x} \in M$, and f be a function defined at least on M, i.e., $M \subset D_{f}$. We say that f attains at the point \boldsymbol{x}
■ maximum on M, if for every $\boldsymbol{y} \in M$ we have $f(\boldsymbol{y}) \leq f(\boldsymbol{x})$,

- local maximum with respect to M, if there exists $\delta>0$ such that for every $\boldsymbol{y} \in B(\boldsymbol{x}, \delta) \cap M$ we have $f(\boldsymbol{y}) \leq f(\boldsymbol{x})$,
- sharp local maximum with respect to M, if there exists $\delta>0$ such that for every $\boldsymbol{y} \in(B(\boldsymbol{x}, \delta) \backslash\{x\}) \cap M$ we have $f(\boldsymbol{y})<f(\boldsymbol{x})$.

The notions minimum, local minimum, and sharp local minimum with respect to M are defined analogically.

Definition

We say that a function f attains at the point $\boldsymbol{x} \in \mathbf{R}^{n}$ local maximum, if \boldsymbol{x} is a local maximum with respect to some ball centered at the point \boldsymbol{x}. Similarly one can define local minimum, sharp local maximum and sharp local minimum.

Theorem 5.7 (attaining extrema)
Let $M \subset \mathbf{R}^{n}$ be a nonempty compact set and $f: M \rightarrow \mathbf{R}$ be continuous on M. Then f attains on M its maximum and minimum.

Theorem 5.7 (attaining extrema)
Let $M \subset \mathbf{R}^{n}$ be a nonempty compact set and $f: M \rightarrow \mathbf{R}$ be continuous on M. Then f attains on M its maximum and minimum.

Corollary 5.8
Let $M \subset \mathbf{R}^{n}$ be a nonempty compact set and $f: M \rightarrow \mathbf{R}$ be continuous on M. Then f is bounded on M.

Definition

We say that function $f: \mathbf{R}^{n} \rightarrow \mathbf{R}$ has at a point $\mathbf{a} \in \mathbf{R}^{n}$ limit equal $A \in \mathbb{R}^{*}$, if we have
$\forall \varepsilon \in \mathbf{R}, \varepsilon>0 \exists \delta \in \mathbf{R}, \delta>0 \forall \boldsymbol{x} \in B(\mathbf{a}, \delta) \backslash\{\mathbf{a}\}: f(\boldsymbol{x}) \in B(A, \varepsilon)$.

Definition

We say that function $f: \mathbf{R}^{n} \rightarrow \mathbf{R}$ has at a point $\boldsymbol{a} \in \mathbf{R}^{n}$ limit equal $A \in \mathbb{R}^{*}$, if we have
$\forall \varepsilon \in \mathbf{R}, \varepsilon>0 \exists \delta \in \mathbf{R}, \delta>0 \forall \boldsymbol{x} \in B(\mathbf{a}, \delta) \backslash\{\boldsymbol{a}\}: f(\boldsymbol{x}) \in B(A, \varepsilon)$.

Remark

- Each function has at a given point at most one limit. We write $\lim _{x \rightarrow a} f(\boldsymbol{x})=A$.
- The function f is continuous at \boldsymbol{a} if and only if $\lim _{\boldsymbol{x} \rightarrow \mathbf{a}} f(\boldsymbol{x})=f(\boldsymbol{a})$.
- For functions of several variables one can prove similar theorems as for functions of one variable (arithmetics, sandwich theorem, ...).

Theorem 5.9
Let $r, s \in \mathbf{N}, \boldsymbol{a} \in M \subset \mathbf{R}^{s}, L \subset \mathbf{R}^{r}, \varphi_{1}, \ldots, \varphi_{r}$ be functions defined on M such that $\lim _{\boldsymbol{x} \rightarrow \mathbf{a}} \varphi_{j}(\boldsymbol{x})=b_{j}, j=1, \ldots, r$, and $\boldsymbol{b}=\left[b_{1}, \ldots, b_{r}\right] \in L$. Let $f: L \rightarrow \mathbf{R}$ be continuous at the point \mathbf{b}. We define a function $F: M \rightarrow \mathbf{R}$ by

$$
F(\boldsymbol{x})=f\left(\varphi_{1}(\boldsymbol{x}), \varphi_{2}(\boldsymbol{x}), \ldots, \varphi_{r}(\boldsymbol{x})\right), \quad \boldsymbol{x} \in M .
$$

Then $\lim _{\boldsymbol{x} \rightarrow \mathbf{a}} F(\boldsymbol{x})=f(\boldsymbol{b})$.

Definition

Let f be a function of n variables, $j \in\{1, \ldots, n\}, \boldsymbol{a} \in \mathbf{R}^{n}$. Then the number

$$
\frac{\partial f}{\partial x_{j}}(\boldsymbol{a})=\lim _{t \rightarrow 0} \frac{f\left(\boldsymbol{a}+t \boldsymbol{e}^{j}\right)-f(\boldsymbol{a})}{t}
$$

is called partial derivatives (of first order) of function f according to j-th variable at the point \boldsymbol{a} (if it exists).

Definition

Let f be a function of n variables, $j \in\{1, \ldots, n\}, \boldsymbol{a} \in \mathbf{R}^{n}$. Then the number

$$
\begin{aligned}
\frac{\partial f}{\partial x_{j}}(\boldsymbol{a}) & =\lim _{t \rightarrow 0} \frac{f\left(\boldsymbol{a}+t \boldsymbol{e}^{j}\right)-f(\boldsymbol{a})}{t} \\
& =\lim _{t \rightarrow 0} \frac{f\left(a_{1}, \ldots, a_{j-1}, a_{j}+t, a_{j+1}, \ldots, a_{n}\right)-f\left(a_{1}, \ldots, a_{n}\right)}{t}
\end{aligned}
$$

is called partial derivatives (of first order) of function f according to j-th variable at the point \boldsymbol{a} (if it exists).

Theorem 5.10 (necessary condition of existence of local extremum)
Let $G \subset \mathbf{R}^{n}$ be an open set, $\mathbf{a} \in G$, and a function
$f: G \rightarrow \mathbf{R}$ have at the point a local extremum. Then for each $j \in\{1, \ldots, n\}$ we have:
The partial derivative $\frac{\partial f}{\partial x_{j}}(\boldsymbol{a})$ either does not exit or is zero.

Definition

Let $G \subset \mathbf{R}^{n}$ be a nonempty open set. Let a function $f: G \rightarrow \mathbf{R}$ have at each point of the set G all partial derivatives continuous (i.e., function $\boldsymbol{x} \mapsto \frac{\partial f}{\partial x_{j}}(\boldsymbol{x})$ are continuous on G for each $j \in\{1, \ldots, n\}$). Then we say that f is of the class \mathcal{C}^{1} on G. The set of all these functions is denoted by $\mathcal{C}^{1}(G)$.

Definition

Let $G \subset \mathbf{R}^{n}$ be a nonempty open set. Let a function $f: G \rightarrow \mathbf{R}$ have at each point of the set G all partial derivatives continuous (i.e., function $\boldsymbol{x} \mapsto \frac{\partial f}{\partial x_{j}}(\boldsymbol{x})$ are continuous on G for each $j \in\{1, \ldots, n\}$). Then we say that f is of the class \mathcal{C}^{1} on G. The set of all these functions is denoted by $\mathcal{C}^{1}(G)$.

Remark

If $G \subset \mathbf{R}^{n}$ is a nonempty open set and and $f, g \in \mathcal{C}^{1}(G)$, then $f+g \in \mathcal{C}^{1}(G), f-g \in \mathcal{C}^{1}(G)$, and $f g \in \mathcal{C}^{1}(G)$. If moreover for each $\boldsymbol{x} \in G$ we have : $g(\boldsymbol{x}) \neq 0$, then $f / g \in \mathcal{C}^{1}(G)$.

Proposition 5.11 (Lagrange)

Let $n \in \mathbf{N}, l_{1}, \ldots, I_{n} \subset \mathbf{R}$ be open intervals, $I=I_{1} \times I_{2} \times \cdots \times I_{n}, f \in \mathcal{C}^{1}(I), \boldsymbol{a}, \boldsymbol{b} \in I$. Then there exist points $\xi^{1}, \ldots, \xi^{n} \in I$ with $\xi_{j}^{i} \in\left\langle a_{j}, b_{j}\right\rangle$ for each
$i, j \in\{1, \ldots, n\}$, such that

$$
f(\boldsymbol{b})-f(\boldsymbol{a})=\sum_{i=1}^{n} \frac{\partial f}{\partial x_{i}}\left(\xi^{i}\right)\left(b_{i}-a_{i}\right) .
$$

Definition

Let $G \subset \mathbf{R}^{n}$ be an open set, $\boldsymbol{a} \in G$, and $f \in \mathcal{C}^{1}(G)$. Then the graph of the function

$$
\begin{aligned}
& T: \boldsymbol{x} \mapsto f(\boldsymbol{a})+\frac{\partial f}{\partial x_{1}}(\boldsymbol{a})\left(x_{1}-a_{1}\right)+\frac{\partial f}{\partial x_{2}}(\boldsymbol{a})\left(x_{2}-a_{2}\right) \\
&+\cdots+\frac{\partial f}{\partial x_{n}}(\boldsymbol{a})\left(x_{n}-a_{n}\right), \quad \boldsymbol{x} \in \mathbf{R}^{n},
\end{aligned}
$$

is called tangent hyperplane to the graph of the function f at the point $[\mathbf{a}, f(\mathbf{a})]$.

Theorem 5.12
Let $G \subset \mathbf{R}^{n}$ be an open set, $\boldsymbol{a} \in G, f \in \mathcal{C}^{1}(G)$, and T be a function, such that its graph is the tangent hyperplane of the function f at the point $[\mathbf{a}, f(\mathbf{a})]$. Then

$$
\lim _{\boldsymbol{x} \rightarrow \mathbf{a}} \frac{f(\boldsymbol{x})-T(\boldsymbol{x})}{\rho(\boldsymbol{x}, \boldsymbol{a})}=0
$$

Theorem 5.12
Let $G \subset \mathbf{R}^{n}$ be an open set, $\mathbf{a} \in G, f \in \mathcal{C}^{1}(G)$, and T be a function, such that its graph is the tangent hyperplane of the function f at the point $[\mathbf{a}, f(\mathbf{a})]$. Then

$$
\lim _{x \rightarrow a} \frac{f(\boldsymbol{x})-T(\boldsymbol{x})}{\rho(\boldsymbol{x}, \boldsymbol{a})}=0
$$

Theorem 5.13
Let $G \subset \mathbf{R}^{n}$ be an open nonempty set and $f \in \mathcal{C}^{1}(G)$.
Then f is continuous on G.

Theorem 5.14

Let $r, s \in \mathbf{N}, G \subset \mathbf{R}^{s}, H \subset \mathbf{R}^{r}$ be open sets. Let
$\varphi_{1}, \ldots, \varphi_{r} \in \mathcal{C}^{1}(G), f \in \mathcal{C}^{1}(H)$ and $\left[\varphi_{1}(\boldsymbol{x}), \ldots, \varphi_{r}(\boldsymbol{x})\right] \in H$ for each $\boldsymbol{x} \in G$. Then the composed function $F: G \rightarrow \mathbf{R}$ defined by

$$
F(\boldsymbol{x})=f\left(\varphi_{1}(\boldsymbol{x}), \varphi_{2}(\boldsymbol{x}), \ldots, \varphi_{r}(\boldsymbol{x})\right), \quad \boldsymbol{x} \in G,
$$

is of the class \mathcal{C}^{1} on G. Let $\mathbf{a} \in G$ and $\boldsymbol{b}=\left[\varphi_{1}(\boldsymbol{a}), \ldots, \varphi_{r}(\mathbf{a})\right]$. Then for each $j \in\{1, \ldots, s\}$ we have

$$
\frac{\partial F}{\partial x_{j}}(\boldsymbol{a})=\sum_{i=1}^{r} \frac{\partial f}{\partial y_{i}}(\boldsymbol{b}) \frac{\partial \varphi_{i}}{\partial x_{j}}(\boldsymbol{a}) .
$$

Definition
Let $G \subset \mathbf{R}^{n}$ be an open set, $\boldsymbol{a} \in G$, and $f \in \mathcal{C}^{1}(G)$. Gradient of f at the point \boldsymbol{a} is defined as the vector

$$
\nabla f(\boldsymbol{a})=\left[\frac{\partial f}{\partial x_{1}}(\boldsymbol{a}), \frac{\partial f}{\partial x_{2}}(\mathbf{a}), \ldots, \frac{\partial f}{\partial x_{n}}(\boldsymbol{a})\right] .
$$

Definition

Let $G \subset \mathbf{R}^{n}$ be an open set, $\boldsymbol{a} \in G, f \in \mathcal{C}^{1}(G)$, and $\nabla f(\boldsymbol{a})=\boldsymbol{o}$. Then the point \boldsymbol{a} is called stationary (or also critical) point of the function f.

Definition

Let $G \subset \mathbf{R}^{n}$ be an open set, $f: G \rightarrow \mathbf{R}, i, j \in\{1, \ldots, n\}$, and $\frac{\partial f}{\partial x_{i}}(\boldsymbol{x})$ exists for each $\boldsymbol{x} \in G$. Then partial derivative of the second order of the function f according to i-th and j-th variable at the point $\boldsymbol{a} \in G$ is defined by

$$
\frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}(\mathbf{a})=\frac{\partial}{\partial x_{j}}\left(\frac{\partial f}{\partial x_{i}}\right)(\boldsymbol{a}) .
$$

If $i=j$ then we use the notation

$$
\frac{\partial^{2} f}{\partial x_{i}^{2}}(\boldsymbol{a}) .
$$

Definition

Let $G \subset \mathbf{R}^{n}$ be an open set, $f: G \rightarrow \mathbf{R}, i, j \in\{1, \ldots, n\}$, and $\frac{\partial f}{\partial x_{i}}(\boldsymbol{x})$ exists for each $\boldsymbol{x} \in G$. Then partial derivative of the second order of the function f according to i-th and j-th variable at the point $\boldsymbol{a} \in G$ is defined by

$$
\frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}(\mathbf{a})=\frac{\partial}{\partial x_{j}}\left(\frac{\partial f}{\partial x_{i}}\right)(\boldsymbol{a}) .
$$

If $i=j$ then we use the notation

$$
\frac{\partial^{2} f}{\partial x_{i}^{2}}(\boldsymbol{a}) .
$$

Theorem 5.15
Let $i, j \in\{1, \ldots, n\}$ and let both partial derivatives $\frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}$ and $\frac{\partial^{2} f}{\partial x_{j} \partial x_{i}}$ be continuous at a point $\mathbf{a} \in \mathbf{R}^{n}$. Then we have

$$
\frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}(\boldsymbol{a})=\frac{\partial^{2} f}{\partial x_{j} \partial x_{i}}(\boldsymbol{a}) .
$$

Definition

Let $G \subset \mathbf{R}^{n}$ be an open set and $k \in \mathbf{N}$. We say that a function f is of the class \mathcal{C}^{k} on G, if all partial derivatives of f till k-th order are continuous on G. The set of all these functions is denoted by $\mathcal{C}^{k}(G)$.

Definition

Let $G \subset \mathbf{R}^{n}$ be an open set and $k \in \mathbf{N}$. We say that a function f is of the class \mathcal{C}^{k} on G, if all partial derivatives of f till k-th order are continuous on G. The set of all these functions is denoted by $\mathcal{C}^{k}(G)$. We say that a function f is of the class \mathcal{C}^{∞} on G, if all partial derivatives of all orders of f are continuous on G. The set of all functions of the class \mathcal{C}^{∞} on G is denoted by $\mathcal{C}^{\infty}(G)$.

Theorem 5.16 (implicit function theorem)
Let $G \subset \mathbf{R}^{n+1}$ be an open set, $F: G \rightarrow \mathbf{R}, \tilde{\boldsymbol{x}} \in \mathbf{R}^{n}, \tilde{y} \in \mathbf{R}$, $[\tilde{\boldsymbol{x}}, \tilde{y}] \in G$. Suppose that

Theorem 5.16 (implicit function theorem) Let $G \subset \mathbf{R}^{n+1}$ be an open set, $F: G \rightarrow \mathbf{R}, \tilde{\boldsymbol{x}} \in \mathbf{R}^{n}, \tilde{y} \in \mathbf{R}$, $[\tilde{\boldsymbol{x}}, \tilde{y}] \in G$. Suppose that

1. $F \in \mathcal{C}^{1}(G)$,
2. $F(\tilde{\boldsymbol{x}}, \tilde{y})=0$,
3. $\frac{\partial F}{\partial y}(\tilde{\boldsymbol{x}}, \tilde{y}) \neq 0$.

Then there exist a neighborhood $U \subset \mathbf{R}^{n}$ of the point $\tilde{\boldsymbol{x}}$ and a neighborhood $V \subset \mathbf{R}$ of the point \tilde{y} such that for each $\boldsymbol{x} \in U$ there exists unique $y \in V$ with the property $F(\boldsymbol{x}, \boldsymbol{y})=0$.

Theorem 5.16 (implicit function theorem)

 Let $G \subset \mathbf{R}^{n+1}$ be an open set, $F: G \rightarrow \mathbf{R}, \tilde{\boldsymbol{x}} \in \mathbf{R}^{n}, \tilde{y} \in \mathbf{R}$, $[\tilde{\boldsymbol{x}}, \tilde{y}] \in G$. Suppose that1. $F \in \mathcal{C}^{1}(G)$,
2. $F(\tilde{\boldsymbol{x}}, \tilde{y})=0$,
3. $\frac{\partial F}{\partial y}(\tilde{\boldsymbol{x}}, \tilde{y}) \neq 0$.

Then there exist a neighborhood $U \subset \mathbf{R}^{n}$ of the point $\tilde{\boldsymbol{x}}$ and a neighborhood $V \subset \mathbf{R}$ of the point \tilde{y} such that for each $\boldsymbol{x} \in U$ there exists unique $y \in V$ with the property $F(\boldsymbol{x}, \boldsymbol{y})=0$. If we denote this y by $\varphi(\boldsymbol{x})$, then the resulting function φ is in $\mathcal{C}^{1}(U)$ and

$$
\frac{\partial \varphi}{\partial x_{j}}(\boldsymbol{x})=-\frac{\frac{\partial F}{\partial x_{j}}(\boldsymbol{x}, \varphi(\boldsymbol{x}))}{\frac{\partial F}{\partial y}(\boldsymbol{x}, \varphi(\boldsymbol{x}))} \quad \text { for } \boldsymbol{x} \in U, j \in\{1, \ldots, n\} .
$$

Theorem 5.17 (implicit function theorem)

Let $m, n \in \mathbf{N}, k \in \mathbf{N} \cup\{\infty\}, G \subset \mathbf{R}^{n+m}$ be an open set, $F_{j}: G \rightarrow \mathbf{R}$ for $j=1, \ldots, m, \tilde{\boldsymbol{x}} \in \mathbf{R}^{n}, \tilde{\boldsymbol{y}} \in \mathbf{R}^{m},[\tilde{\boldsymbol{x}}, \tilde{\boldsymbol{y}}] \in G$. Suppose that

Theorem 5.17 (implicit function theorem)

Let $m, n \in \mathbf{N}, k \in \mathbf{N} \cup\{\infty\}, G \subset \mathbf{R}^{n+m}$ be an open set, $F_{j}: G \rightarrow \mathbf{R}$ for $j=1, \ldots, m, \tilde{\boldsymbol{x}} \in \mathbf{R}^{n}, \tilde{\boldsymbol{y}} \in \mathbf{R}^{m},[\tilde{\boldsymbol{x}}, \tilde{\boldsymbol{y}}] \in G$. Suppose that

$$
\begin{aligned}
& \text { 1. } F_{j} \in \mathcal{C}^{k}(G) \text { for each } j \in\{1, \ldots, m\} \text {, } \\
& \text { 2. } F_{j}(\tilde{\boldsymbol{x}}, \tilde{\boldsymbol{y}})=0 \text { for each } j \in\{1, \ldots, m\} \text {, } \\
& \text { 3. }\left|\begin{array}{ccc}
\frac{\partial F_{1}}{\partial y_{1}}(\tilde{\boldsymbol{x}}, \tilde{\boldsymbol{y}}) & \ldots & \frac{\partial F_{1}}{\partial y_{m}}(\tilde{\boldsymbol{x}}, \tilde{\boldsymbol{y}}) \\
\vdots & \ddots & \vdots \\
\frac{\partial F_{m}}{\partial y_{1}}(\tilde{\boldsymbol{x}}, \tilde{\boldsymbol{y}}) & \ldots & \frac{\partial F_{m}}{\partial y_{m}}(\tilde{\boldsymbol{x}}, \tilde{\boldsymbol{y}})
\end{array}\right| \neq 0 \text {, }
\end{aligned}
$$

Then there exist a neighborhood $U \subset \mathbf{R}^{n}$ of the point $\tilde{\boldsymbol{x}}$ and a neighborhood $V \subset \mathbf{R}^{m}$ of the point $\tilde{\boldsymbol{y}}$ such that for each $\boldsymbol{x} \in U$ there exists unique $\boldsymbol{y} \in V$ with the property $F_{j}(\boldsymbol{x}, \boldsymbol{y})=0$ for each $j \in\{1, \ldots, m\}$.

Theorem 5.17 (implicit function theorem)

Let $m, n \in \mathbf{N}, k \in \mathbf{N} \cup\{\infty\}, G \subset \mathbf{R}^{n+m}$ be an open set, $F_{j}: G \rightarrow \mathbf{R}$ for $j=1, \ldots, m, \tilde{\boldsymbol{x}} \in \mathbf{R}^{n}, \tilde{\boldsymbol{y}} \in \mathbf{R}^{m},[\tilde{\boldsymbol{x}}, \tilde{\boldsymbol{y}}] \in G$. Suppose that

$$
\begin{aligned}
& \text { 1. } F_{j} \in \mathcal{C}^{k}(G) \text { for each } j \in\{1, \ldots, m\} \text {, } \\
& \text { 2. } F_{j}(\tilde{\boldsymbol{x}}, \tilde{\boldsymbol{y}})=0 \text { for each } j \in\{1, \ldots, m\} \text {, } \\
& \text { 3. }\left|\begin{array}{ccc}
\frac{\partial F_{1}}{\partial y_{1}}(\tilde{\boldsymbol{x}}, \tilde{\boldsymbol{y}}) & \ldots & \frac{\partial F_{1}}{\partial y_{m}}(\tilde{\boldsymbol{x}}, \tilde{\boldsymbol{y}}) \\
\vdots & \ddots & \vdots \\
\frac{\partial F_{m}}{\partial y_{1}}(\tilde{\boldsymbol{x}}, \tilde{\boldsymbol{y}}) & \ldots & \frac{\partial F_{m}}{\partial y_{m}}(\tilde{\boldsymbol{x}}, \tilde{\boldsymbol{y}})
\end{array}\right| \neq 0 \text {, }
\end{aligned}
$$

Then there exist a neighborhood $U \subset \mathbf{R}^{n}$ of the point $\tilde{\boldsymbol{x}}$ and a neighborhood $V \subset \mathbf{R}^{m}$ of the point $\tilde{\boldsymbol{y}}$ such that for each $\boldsymbol{x} \in U$ there exists unique $\boldsymbol{y} \in V$ with the property $F_{j}(\boldsymbol{x}, \boldsymbol{y})=0$ for each $j \in\{1, \ldots, m\}$. If we denote coordinates of this \boldsymbol{y} by $\varphi_{j}(\boldsymbol{x}), j=1, \ldots$, m, then the resulting functions φ_{j} are in $\mathcal{C}^{k}(U)$.

Remark
The symbol in the condition (3) of Theorem 5.17 is called determinant. The definition will presented later on.

Remark
The symbol in the condition (3) of Theorem 5.17 is called determinant. The definition will presented later on.
For $m=1$ we have $|a|=a, a \in \mathbf{R}$.
For $m=2$ we have $\left|\begin{array}{ll}a & b \\ c & d\end{array}\right|=a d-b c, a, b, c, d \in \mathbf{R}$.

Theorem 5.18 (Lagrange multiplier theorem) Let $G \subset \mathbf{R}^{2}$ be an open set, $f, g \in \mathcal{C}^{1}(G)$, $M=\{[x, y] \in G ; g(x, y)=0\}$, and $[\tilde{x}, \tilde{y}] \in M$ be a point of local extremum of f with respect to the set M. Then at least one of the following conditions holds:

Theorem 5.18 (Lagrange multiplier theorem) Let $G \subset \mathbf{R}^{2}$ be an open set, $f, g \in \mathcal{C}^{1}(G)$, $M=\{[x, y] \in G ; g(x, y)=0\}$, and $[\tilde{x}, \tilde{y}] \in M$ be a point of local extremum of f with respect to the set M. Then at least one of the following conditions holds:

1. $\nabla g(\tilde{x}, \tilde{y})=\mathbf{o}$,
2. there exists $\lambda \in \mathbf{R}$ satisfying

$$
\begin{aligned}
& \frac{\partial f}{\partial x}(\tilde{x}, \tilde{y})+\lambda \frac{\partial g}{\partial x}(\tilde{x}, \tilde{y})=0, \\
& \frac{\partial f}{\partial y}(\tilde{x}, \tilde{y})+\lambda \frac{\partial g}{\partial y}(\tilde{x}, \tilde{y})=0 .
\end{aligned}
$$

Theorem 5.19 (Lagrange multiplier theorem)
Let $m, n \in \mathbf{N}, m<n, G \subset \mathbf{R}^{n}$ be an open set, $f, g_{1}, \ldots, g_{m} \in \mathcal{C}^{1}(G)$,

$$
M=\left\{\boldsymbol{z} \in G ; g_{1}(\boldsymbol{z})=0, g_{2}(\boldsymbol{z})=0, \ldots, g_{m}(\boldsymbol{z})=0\right\}
$$

and let $\tilde{\boldsymbol{z}} \in M$ be a point of local extremum of f with respect to the set M. Then at least one of the following conditions holds:

Theorem 5.19 (Lagrange multiplier theorem) Let $m, n \in \mathbf{N}, m<n, G \subset \mathbf{R}^{n}$ be an open set, $f, g_{1}, \ldots, g_{m} \in \mathcal{C}^{1}(G)$,

$$
M=\left\{\boldsymbol{z} \in G ; g_{1}(\boldsymbol{z})=0, g_{2}(\boldsymbol{z})=0, \ldots, g_{m}(\boldsymbol{z})=0\right\}
$$

and let $\tilde{\boldsymbol{z}} \in M$ be a point of local extremum of f with respect to the set M. Then at least one of the following conditions holds:

1. the vectors

$$
\nabla g_{1}(\tilde{\mathbf{z}}), \nabla g_{2}(\tilde{\mathbf{z}}), \ldots, \nabla g_{m}(\tilde{\mathbf{z}})
$$

are linearly dependent,
2. there exist $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{m} \in \mathbf{R}$ satisfying
$\nabla f(\tilde{\boldsymbol{z}})+\lambda_{1} \nabla g_{1}(\tilde{\boldsymbol{z}})+\lambda_{2} \nabla g_{2}(\tilde{\boldsymbol{z}})+\cdots+\lambda_{m} \nabla g_{m}(\tilde{\boldsymbol{z}})=\mathbf{0}$.
ot

$$
\boldsymbol{b}=0 \cdot a+1 \cdot b=a+1 \cdot(b-a)
$$

$$
\frac{3}{4} \cdot a+\frac{1}{4} \cdot b=a+\frac{1}{4} \cdot(b-a)
$$

$$
\frac{1}{2} \cdot a+\frac{1}{2} \cdot b=a+\frac{1}{2} \cdot(b-a)
$$

$$
\frac{1}{4} \cdot a+\frac{3}{4} \cdot b=a+\frac{3}{4} \cdot(b-a)
$$

Definition

Let $M \subset \mathbf{R}^{n}$. We say that M is convex, if we have

$$
\forall \boldsymbol{x}, \boldsymbol{y} \in M \forall t \in\langle 0,1\rangle: t \boldsymbol{x}+(1-t) \boldsymbol{y} \in M .
$$

Definition

Let $M \subset \mathbf{R}^{n}$ be a convex set and a function f be defined on M. We say that f is

- concave on M, if
$\forall \mathbf{a}, \boldsymbol{b} \in M \forall t \in\langle 0,1\rangle: f(t \boldsymbol{a}+(1-t) \boldsymbol{b}) \geq t f(\mathbf{a})+(1-t) f(\boldsymbol{b})$,
■ strictly concave on M, if
$\forall \boldsymbol{a}, \boldsymbol{b} \in M, \boldsymbol{a} \neq \boldsymbol{b} \forall t \in(0,1):$

$$
f(t \boldsymbol{a}+(1-t) \boldsymbol{b})>t f(\boldsymbol{a})+(1-t) f(\boldsymbol{b}) .
$$

Theorem 5.20
Let a function f be concave on an open convex set $G \subset \mathbf{R}^{n}$. Then f is continuous on G.

Theorem 5.20
Let a function f be concave on an open convex set $G \subset \mathbf{R}^{n}$. Then f is continuous on G.

Theorem 5.21
Let a function f be concave on a convex set $M \subset \mathbf{R}^{n}$. Then for each $\alpha \in \mathbf{R}$ the set $Q_{\alpha}=\{\boldsymbol{x} \in M ; f(\boldsymbol{x}) \geq \alpha\}$ is convex.

Theorem 5.22 (characterization of concave functions of the class \mathcal{C}^{1})
Let $G \subset \mathbf{R}^{n}$ be a convex open set and $f \in \mathcal{C}^{1}(G)$. Then the function f is convex on G if and only if we have

$$
\forall \boldsymbol{x}, \boldsymbol{y} \in G: f(\boldsymbol{y}) \leq f(\boldsymbol{x})+\sum_{i=1}^{n} \frac{\partial f}{\partial x_{i}}(\boldsymbol{x})\left(y_{i}-x_{i}\right) .
$$

$$
\Lambda
$$

$$
\Lambda
$$

$$
\Lambda
$$

$$
\Lambda
$$

Corollary 5.23

Let $G \subset \mathbf{R}^{n}$ be a convex open set and $f \in \mathcal{C}^{1}(G)$ be concave on G. If a point $\boldsymbol{a} \in G$ is a stationary point of f, then \boldsymbol{a} is a point of maximum of f with respect to G.

Theorem 5.24 (characterization of strictly concave functions of the class \mathcal{C}^{1}) Let $G \subset \mathbf{R}^{n}$ be a convex open set and $f \in \mathcal{C}^{1}(G)$. Then the function f is strictly concave on G if and only if we have

$$
\forall \boldsymbol{x}, \boldsymbol{y} \in G, \boldsymbol{x} \neq \boldsymbol{y}: f(\boldsymbol{y})<f(\boldsymbol{x})+\sum_{i=1}^{n} \frac{\partial f}{\partial x_{i}}(\boldsymbol{x})\left(y_{i}-x_{i}\right) .
$$

Definition

Let $M \subset \mathbf{R}^{n}$ be a convex set and f be defined on M. We say that f is

- quasiconcave on M, if
$\forall \boldsymbol{a}, \boldsymbol{b} \in M \forall t \in[0,1]: f(t \boldsymbol{a}+(1-t) \boldsymbol{b}) \geq \min \{f(\boldsymbol{a}), f(\boldsymbol{b})\}$,
■ strictly quasiconcave on M, if
$\forall \boldsymbol{a}, \boldsymbol{b} \in M, \boldsymbol{a} \neq \boldsymbol{b}, \forall t \in(0,1): f(t \boldsymbol{a}+(1-t) \boldsymbol{b})>\min \{f(\boldsymbol{a}), f(\boldsymbol{b}$

$$
\Lambda
$$

$$
\Lambda
$$

$$
\Lambda
$$

n

$$
\Lambda
$$

$$
\Lambda
$$

,

Remark

Let $M \subset \mathbf{R}^{n}$ be a convex set and f be a function defined on M.

Remark

Let $M \subset \mathbf{R}^{n}$ be a convex set and f be a function defined on M.

■ Let f be concave on M. Then f is quasiconcave on M.
■ Let f be strictly concave on M. Then f is strictly quasiconcave on M.

Theorem 5.25 (on uniqueness of extremum) Let f be a strictly quasiconcave function on a convex set $M \subset \mathbf{R}^{n}$. Then there exists at most one point of maximum of f.

Theorem 5.25 (on uniqueness of extremum)
Let f be a strictly quasiconcave function on a convex set $M \subset \mathbf{R}^{n}$. Then there exists at most one point of maximum of f.

Corollary 5.26
Let $M \subset \mathbf{R}^{n}$ be a convex, bounded, closed and nonempty set. Let f be continuous and strictly quasiconcave function on M. Then f attains its maximum on M in a unique point.

Theorem 5.27 (characterization of quasiconcave functions via level sets)
Let $M \subset \mathbf{R}^{n}$ be a convex set and f be defined on M. The function f is quasiconcave on M if and only if for each $\alpha \in \mathbf{R}$ the set $Q_{\alpha}=\{\boldsymbol{x} \in M ; f(\boldsymbol{x}) \geq \alpha\}$ is convex.

Definition

The scheme

$$
\left(\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 n} \\
a_{21} & a_{22} & \ldots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m 1} & a_{m 2} & \ldots & a_{m n}
\end{array}\right),
$$

where $a_{i j} \in \mathbf{R}, i=1, \ldots, m, j=1, \ldots, n$, is called a matrix of the type $m \times n$. We write $\left(a_{i j}\right)_{\substack{i=1 . m \\ j=1 \ldots n}}$.

Definition

The scheme

$$
\left(\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 n} \\
a_{21} & a_{22} & \ldots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m 1} & a_{m 2} & \ldots & a_{m n}
\end{array}\right),
$$

where $a_{i j} \in \mathbf{R}, i=1, \ldots, m, j=1, \ldots, n$, is called a matrix of the type $m \times n$. We write $\left(a_{i j}\right)_{i=1}^{i=1 . m} 1=$. A matrix of type $n \times n$ is called square matrix of the order n.

Definition

The scheme

$$
\left(\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 n} \\
a_{21} & a_{22} & \ldots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m 1} & a_{m 2} & \ldots & a_{m n}
\end{array}\right),
$$

where $a_{i j} \in \mathbf{R}, i=1, \ldots, m, j=1, \ldots, n$, is called a matrix of the type $m \times n$. We write $\left(a_{i j}\right)_{\substack{i=1 . m \\ j=1 \ldots n}}$. A matrix of type $n \times n$ is called square matrix of the order n. The set of all matrices of the type $m \times n$ is denoted $M(m \times n)$.

Definition

Let

$$
\mathbb{A}=\left(\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 n} \\
a_{21} & a_{22} & \ldots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m 1} & a_{m 2} & \ldots & a_{m n}
\end{array}\right) .
$$

The n-tuple ($a_{i 1}, a_{i 2}, \ldots, a_{i n}$), where $i \in\{1,2, \ldots, m\}$, $i \in\{1,2, \ldots, m\}$, is called i-th row of the matrix \mathbb{A}.

Definition

Let

$$
\mathbb{A}=\left(\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 n} \\
a_{21} & a_{22} & \ldots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m 1} & a_{m 2} & \ldots & a_{m n}
\end{array}\right) .
$$

The n-tuple ($a_{i 1}, a_{i 2}, \ldots, a_{i n}$), where $i \in\{1,2, \ldots, m\}$, $i \in\{1,2, \ldots, m\}$, is called i-th row of the matrix \mathbb{A}.

Definition

Let

$$
\mathbb{A}=\left(\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 n} \\
a_{21} & a_{22} & \ldots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m 1} & a_{m 2} & \ldots & a_{m n}
\end{array}\right) .
$$

The n-tuple ($a_{i 1}, a_{i 2}, \ldots, a_{i n}$), where $i \in\{1,2, \ldots, m\}$, $i \in\{1,2, \ldots, m\}$, is called i-th row of the matrix \mathbb{A}.

Definition

Let

$$
\mathbb{A}=\left(\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 n} \\
a_{21} & a_{22} & \ldots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m 1} & a_{m 2} & \ldots & a_{m n}
\end{array}\right) .
$$

The n-tuple ($a_{i 1}, a_{i 2}, \ldots, a_{i n}$), where $i \in\{1,2, \ldots, m\}$, $i \in\{1,2, \ldots, m\}$, is called i-th row of the matrix \mathbb{A}.

Definition

Let

$$
\mathbb{A}=\left(\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 n} \\
a_{21} & a_{22} & \ldots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m 1} & a_{m 2} & \ldots & a_{m n}
\end{array}\right)
$$

The n-tuple ($a_{i 1}, a_{i 2}, \ldots, a_{i n}$), where $i \in\{1,2, \ldots, m\}$, $i \in\{1,2, \ldots, m\}$, is called i-th row of the matrix \mathbb{A}.

Definition

Let

$$
\mathbb{A}=\left(\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 n} \\
a_{21} & a_{22} & \ldots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m 1} & a_{m 2} & \ldots & a_{m n}
\end{array}\right)
$$

The n-tuple $\left(a_{i 1}, a_{i 2}, \ldots, a_{i n}\right)$, where $i \in\{1,2, \ldots, m\}$, $i \in\{1,2, \ldots, m\}$, is called i-th row of the matrix \mathbb{A}. The m-tuple $\left(\begin{array}{c}a_{1 j} \\ a_{2 j} \\ \vdots \\ a_{m j}\end{array}\right)$, where $j \in\{1,2, \ldots, n\}$,
$j \in\{1,2, \ldots, n\}$, is called j-th column matrix \mathbb{A}.

Definition

Let

$$
\mathbb{A}=\left(\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 n} \\
a_{21} & a_{22} & \ldots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m 1} & a_{m 2} & \ldots & a_{m n}
\end{array}\right)
$$

The n-tuple $\left(a_{i 1}, a_{i 2}, \ldots, a_{i n}\right)$, where $i \in\{1,2, \ldots, m\}$, $i \in\{1,2, \ldots, m\}$, is called i-th row of the matrix \mathbb{A}. The m-tuple $\left(\begin{array}{c}a_{1 j} \\ a_{2 j} \\ \vdots \\ a_{m j}\end{array}\right)$, where $j \in\{1,2, \ldots, n\}$,
$j \in\{1,2, \ldots, n\}$, is called j-th column matrix \mathbb{A}.

Definition

Let

$$
\mathbb{A}=\left(\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 n} \\
a_{21} & a_{22} & \ldots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m 1} & a_{m 2} & \ldots & a_{m n}
\end{array}\right)
$$

The n-tuple $\left(a_{i 1}, a_{i 2}, \ldots, a_{i n}\right)$, where $i \in\{1,2, \ldots, m\}$, $i \in\{1,2, \ldots, m\}$, is called i-th row of the matrix \mathbb{A}. The m-tuple $\left(\begin{array}{c}a_{1 j} \\ a_{2 j} \\ \vdots \\ a_{m j}\end{array}\right)$, where $j \in\{1,2, \ldots, n\}$,
$j \in\{1,2, \ldots, n\}$, is called j-th column matrix \mathbb{A}.

Definition

Let

$$
\mathbb{A}=\left(\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 n} \\
a_{21} & a_{22} & \ldots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m 1} & a_{m 2} & \ldots & a_{m n}
\end{array}\right)
$$

The n-tuple $\left(a_{i 1}, a_{i 2}, \ldots, a_{i n}\right)$, where $i \in\{1,2, \ldots, m\}$, $i \in\{1,2, \ldots, m\}$, is called i-th row of the matrix \mathbb{A}. The m-tuple $\left(\begin{array}{c}a_{1 j} \\ a_{2 j} \\ \vdots \\ a_{m j}\end{array}\right)$, where $j \in\{1,2, \ldots, n\}$,
$j \in\{1,2, \ldots, n\}$, is called j-th column matrix \mathbb{A}.

Definition

Let

$$
\mathbb{A}=\left(\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 n} \\
a_{21} & a_{22} & \ldots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m 1} & a_{m 2} & \ldots & a_{m n}
\end{array}\right)
$$

The n-tuple $\left(a_{i 1}, a_{i 2}, \ldots, a_{i n}\right)$, where $i \in\{1,2, \ldots, m\}$, $i \in\{1,2, \ldots, m\}$, is called i-th row of the matrix \mathbb{A}. The m-tuple $\left(\begin{array}{c}a_{1 j} \\ a_{2 j} \\ \vdots \\ a_{m j}\end{array}\right)$, where $j \in\{1,2, \ldots, n\}$,
$j \in\{1,2, \ldots, n\}$, is called j-th column matrix \mathbb{A}.

Definition

We say that two matrices are equal, if they are of the same type and the corresponding elements are equal, i.e., if $\mathbb{A}=\left(a_{i j}\right)_{\substack{i=1 . m \\ j=1 . . n}}$ and $\mathbb{B}=\left(b_{u v}\right)_{\substack{u=1 . . r \\ v=1 . .5}}$, then $\mathbb{A}=\mathbb{B}$ if and only if $m=r, n=s$ and $a_{i j}=b_{i j}$ for every $i \in\{1, \ldots, m\}$, $j \in\{1, \ldots, n\}$.

Definition

Let $\mathbb{A}, \mathbb{B} \in M(m \times n), \mathbb{A}=\left(a_{i j}\right)_{\substack{i=1 . m \\ j=1 . . n}}, \mathbb{B}=\left(b_{i j}\right)_{\substack{i=1 . m \\ j=1 . . n}}, \lambda \in \mathbf{R}$.
The sum of \mathbb{A} and \mathbb{B} is defined by

$$
\mathbb{A}+\mathbb{B}=\left(\begin{array}{cccc}
a_{11}+b_{11} & a_{12}+b_{12} & \ldots & a_{1 n}+b_{1 n} \\
a_{21}+b_{21} & a_{22}+b_{22} & \ldots & a_{2 n}+b_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m 1}+b_{m 1} & a_{m 2}+b_{m 1} & \ldots & a_{m n}+b_{m n}
\end{array}\right) .
$$

Definition

Let $\mathbb{A}, \mathbb{B} \in M(m \times n), \mathbb{A}=\left(a_{i j}\right)_{\substack{i=1 . m \\ j=1 . . n}}, \mathbb{B}=\left(b_{i j}\right)_{\substack{i=1 . m \\ j=1 . . n}}, \lambda \in \mathbf{R}$.
The sum of \mathbb{A} and \mathbb{B} is defined by

$$
\mathbb{A}+\mathbb{B}=\left(\begin{array}{cccc}
a_{11}+b_{11} & a_{12}+b_{12} & \ldots & a_{1 n}+b_{1 n} \\
a_{21}+b_{21} & a_{22}+b_{22} & \ldots & a_{2 n}+b_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m 1}+b_{m 1} & a_{m 2}+b_{m 1} & \ldots & a_{m n}+b_{m n}
\end{array}\right) .
$$

Product of a real number λ and the matrix \mathbb{A} is defined by

$$
\lambda \mathbb{A}=\left(\begin{array}{cccc}
\lambda a_{11} & \lambda a_{12} & \ldots & \lambda a_{1 n} \\
\lambda a_{21} & \lambda a_{22} & \ldots & \lambda a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
\lambda a_{m 1} & \lambda a_{m 2} & \ldots & \lambda a_{m n}
\end{array}\right) .
$$

Proposition 6.1 (basic properties)

$\square \forall \mathbb{A}, \mathbb{B}, \mathbb{C} \in M(m \times n): \mathbb{A}+(\mathbb{B}+\mathbb{C})=(\mathbb{A}+\mathbb{B})+\mathbb{C}$, (associativity)
$\square \forall \mathbb{A}, \mathbb{B} \in M(m \times n): \mathbb{A}+\mathbb{B}=\mathbb{B}+\mathbb{A}, \quad$ (commutativity)
$\square \exists!\mathbb{O} \in M(m \times n) \forall \mathbb{A} \in M(m \times n): \mathbb{A}+\mathbb{O}=\mathbb{A}$, (existence of the zero element)
$\square \forall \mathbb{A} \in M(m \times n) \exists \mathbb{C}_{\mathbb{A}} \in M(m \times n): \mathbb{A}+\mathbb{C}_{\mathbb{A}}=\mathbb{O}$,
$\square \forall \mathbb{A} \in M(m \times n) \forall \lambda, \mu \in \mathbf{R}:(\lambda \mu) \mathbb{A}=\lambda(\mu \mathbb{A})$,
$\square \forall \mathbb{A} \in M(m \times n): 1 \cdot \mathbb{A}=\mathbb{A}$,
$\square \forall \mathbb{A} \in M(m \times n) \forall \lambda, \mu \in \mathbf{R}:(\lambda+\mu) \mathbb{A}=\lambda \mathbb{A}+\mu \mathbb{A}$,
$\square \forall \mathbb{A}, \mathbb{B} \in M(m \times n) \forall \lambda \in \mathbf{R}: \lambda(\mathbb{A}+\mathbb{B})=\lambda \mathbb{A}+\lambda \mathbb{B}$.

Definition

Let $\mathbb{A} \in M(m \times n), \mathbb{A}=\left(a_{i s}\right)_{\substack{i=1 \ldots m \\ s=1 \ldots n}}, \mathbb{B} \in M(n \times k)$,
$\mathbb{B}=\left(b_{s j}\right)_{\substack{s=1 . n \\ j=1 . n}}$ Then the product of matrices \mathbb{A} and \mathbb{B} is defined as $\mathbb{A} \mathbb{B} \in M(m \times k), \mathbb{A} \mathbb{B}=\left(c_{i j}\right)_{\substack{i=1 . . m \\ j=1 . . k}}$, where

$$
c_{i j}=\sum_{s=1}^{n} a_{i s} b_{s j}
$$

Theorem 6.2 (properties of matrix multiplication)
Let $m, n, k, l \in \mathbf{N}$. Then we have:
(i) $\forall \mathbb{A} \in M(m \times n) \forall \mathbb{B} \in M(n \times k) \forall \mathbb{C} \in$ $M(k \times I): \mathbb{A}(\mathbb{B} \mathbb{C})=(\mathbb{A} \mathbb{B}) \mathbb{C}$,
(associativity)

Theorem 6.2 (properties of matrix multiplication) Let $m, n, k, l \in \mathbf{N}$. Then we have:
(i) $\forall \mathbb{A} \in M(m \times n) \forall \mathbb{B} \in M(n \times k) \forall \mathbb{C} \in$ $M(k \times I): \mathbb{A}(\mathbb{B} \mathbb{C})=(\mathbb{A} \mathbb{B}) \mathbb{C}$,
(associativity)
(ii) $\forall \mathbb{A} \in M(m \times n) \forall \mathbb{B}, \mathbb{C} \in$ $M(n \times k): \mathbb{A}(\mathbb{B}+\mathbb{C})=\mathbb{A} \mathbb{B}+\mathbb{A} \mathbb{C}$,
(left distributivity)

Theorem 6.2 (properties of matrix multiplication) Let $m, n, k, l \in \mathbf{N}$. Then we have:
(i) $\forall \mathbb{A} \in M(m \times n) \forall \mathbb{B} \in M(n \times k) \forall \mathbb{C} \in$ $M(k \times l): \mathbb{A}(\mathbb{B} \mathbb{C})=(\mathbb{A} \mathbb{B}) \mathbb{C}$,
(associativity)
(ii) $\forall \mathbb{A} \in M(m \times n) \forall \mathbb{B}, \mathbb{C} \in$ $M(n \times k): \mathbb{A}(\mathbb{B}+\mathbb{C})=\mathbb{A} \mathbb{B}+\mathbb{A} \mathbb{C}, \quad$ (left distributivity)
(iii) $\forall \mathbb{A}, \mathbb{B} \in M(m \times n) \forall \mathbb{C} \in$ $M(n \times k):(\mathbb{A}+\mathbb{B}) \mathbb{C}=\mathbb{A} \mathbb{C}+\mathbb{B} \mathbb{C}, \quad$ (right distributivity)

Theorem 6.2 (properties of matrix multiplication) Let $m, n, k, l \in \mathbf{N}$. Then we have:
(i) $\forall \mathbb{A} \in M(m \times n) \forall \mathbb{B} \in M(n \times k) \forall \mathbb{C} \in$ $M(k \times I): \mathbb{A}(\mathbb{B} \mathbb{C})=(\mathbb{A} \mathbb{B}) \mathbb{C}$,
(associativity)
(ii) $\forall \mathbb{A} \in M(m \times n) \forall \mathbb{B}, \mathbb{C} \in$ $M(n \times k): \mathbb{A}(\mathbb{B}+\mathbb{C})=\mathbb{A} \mathbb{B}+\mathbb{A} \mathbb{C}, \quad$ (left distributivity)
(iii) $\forall \mathbb{A}, \mathbb{B} \in M(m \times n) \forall \mathbb{C} \in$ $M(n \times k):(\mathbb{A}+\mathbb{B}) \mathbb{C}=\mathbb{A} \mathbb{C}+\mathbb{B} \mathbb{C}, \quad$ (right distributivity)
(iv) $\exists!\mathbb{I} \in M(n \times n) \forall \mathbb{A} \in M(n \times n): \mathbb{I} \mathbb{A}=\mathbb{A} \mathbb{I}=\mathbb{A}$. (identity matrix \mathbb{I})

Theorem 6.2 (properties of matrix multiplication) Let $m, n, k, l \in \mathbf{N}$. Then we have:
(i) $\forall \mathbb{A} \in M(m \times n) \forall \mathbb{B} \in M(n \times k) \forall \mathbb{C} \in$ $M(k \times I): \mathbb{A}(\mathbb{B} \mathbb{C})=(\mathbb{A} \mathbb{B}) \mathbb{C}$,
(associativity)
(ii) $\forall \mathbb{A} \in M(m \times n) \forall \mathbb{B}, \mathbb{C} \in$ $M(n \times k): \mathbb{A}(\mathbb{B}+\mathbb{C})=\mathbb{A} \mathbb{B}+\mathbb{A} \mathbb{C}, \quad$ (left distributivity)
(iii) $\forall \mathbb{A}, \mathbb{B} \in M(m \times n) \forall \mathbb{C} \in$ $M(n \times k):(\mathbb{A}+\mathbb{B}) \mathbb{C}=\mathbb{A} \mathbb{C}+\mathbb{B} \mathbb{C}, \quad$ (right distributivity)
(iv) $\exists!\mathbb{I} \in M(n \times n) \forall \mathbb{A} \in M(n \times n): \mathbb{I} \mathbb{A}=\mathbb{A} \mathbb{I}=\mathbb{A}$. (identity matrix II)

Remark
Warning! Matrix multiplication is not commutative.

Definition

Transpose matrix for a matrix

$$
\mathbb{A}=\left(\begin{array}{ccccc}
a_{11} & a_{12} & a_{13} & \ldots & a_{1 n} \\
a_{21} & a_{22} & a_{23} & \ldots & a_{2 n} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
a_{m 1} & a_{m 2} & a_{m 3} & \ldots & a_{m n}
\end{array}\right)
$$

is defined by

$$
\mathbb{A}^{T}=\left(\begin{array}{cccc}
a_{11} & a_{21} & \ldots & a_{m 1} \\
a_{12} & a_{22} & \ldots & a_{m 2} \\
a_{13} & a_{23} & \ldots & a_{m 3} \\
\vdots & \vdots & \ddots & \vdots \\
a_{1 n} & a_{2 n} & \ldots & a_{m n}
\end{array}\right),
$$

i.e., if $\mathbb{A}=\left(a_{i j}\right)_{\substack{i=1 . m \\ j=1 . . n}}$, then $\mathbb{A}^{T}=\left(b_{u v}\right)_{\substack{u=1 . n \\ v=1 . . m}}$, where
$b_{u v}=a_{v u}$ for each $u \in\{1, \ldots, n\}, v \in\{1,2, \ldots, m\}$.

Definition

Transpose matrix for a matrix

$$
\mathbb{A}=\left(\begin{array}{ccccc}
a_{11} & a_{12} & a_{13} & \ldots & a_{1 n} \\
a_{21} & a_{22} & a_{23} & \ldots & a_{2 n} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
a_{m 1} & a_{m 2} & a_{m 3} & \ldots & a_{m n}
\end{array}\right)
$$

is defined by

$$
\mathbb{A}^{T}=\left(\begin{array}{cccc}
a_{11} & a_{21} & \ldots & a_{m 1} \\
a_{12} & a_{22} & \ldots & a_{m 2} \\
a_{13} & a_{23} & \ldots & a_{m 3} \\
\vdots & \vdots & \ddots & \vdots \\
a_{1 n} & a_{2 n} & \ldots & a_{m n}
\end{array}\right),
$$

i.e., if $\mathbb{A}=\left(a_{i j}\right)_{\substack{i=1 . m \\ j=1 . . n}}$, then $\mathbb{A}^{T}=\left(b_{u v}\right)_{\substack{u=1 . n \\ v=1 . . m}}$, where
$b_{u v}=a_{v u}$ for each $u \in\{1, \ldots, n\}, v \in\{1,2, \ldots, m\}$.

Definition

Transpose matrix for a matrix

$$
\mathbb{A}=\left(\begin{array}{ccccc}
a_{11} & a_{12} & a_{13} & \ldots & a_{1 n} \\
a_{21} & a_{22} & a_{23} & \ldots & a_{2 n} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
a_{m 1} & a_{m 2} & a_{m 3} & \ldots & a_{m n}
\end{array}\right)
$$

is defined by

$$
\mathbb{A}^{T}=\left(\begin{array}{cccc}
a_{11} & a_{21} & \ldots & a_{m 1} \\
a_{12} & a_{22} & \ldots & a_{m 2} \\
a_{13} & a_{23} & \ldots & a_{m 3} \\
\vdots & \vdots & \ddots & \vdots \\
a_{1 n} & a_{2 n} & \ldots & a_{m n}
\end{array}\right),
$$

i.e., if $\mathbb{A}=\left(a_{i j}\right)_{\substack{i=1 . m \\ j=1 . . n}}$, then $\mathbb{A}^{T}=\left(b_{u v}\right)_{\substack{u=1 . n \\ v=1 . . m}}$, where
$b_{u v}=a_{v u}$ for each $u \in\{1, \ldots, n\}, v \in\{1,2, \ldots, m\}$.

Definition

Transpose matrix for a matrix

$$
\mathbb{A}=\left(\begin{array}{ccccc}
a_{11} & a_{12} & a_{13} & \ldots & a_{1 n} \\
a_{21} & a_{22} & a_{23} & \ldots & a_{2 n} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
a_{m 1} & a_{m 2} & a_{m 3} & \ldots & a_{m n}
\end{array}\right)
$$

is defined by

$$
\mathbb{A}^{T}=\left(\begin{array}{cccc}
a_{11} & a_{21} & \ldots & a_{m 1} \\
a_{12} & a_{22} & \ldots & a_{m 2} \\
a_{13} & a_{23} & \ldots & a_{m 3} \\
\vdots & \vdots & \ddots & \vdots \\
a_{1 n} & a_{2 n} & \ldots & a_{m n}
\end{array}\right),
$$

i.e., if $\mathbb{A}=\left(a_{i j}\right)_{\substack{i=1 . m \\ j=1 \ldots n}}$, then $\mathbb{A}^{T}=\left(b_{u v}\right)_{\substack{v=1 . n \\ v=1 . . m}}$, where
$b_{u v}=a_{v u}$ for each $u \in\{1, \ldots, n\}, v \in\{1,2, \ldots, m\}$.

Definition

Transpose matrix for a matrix

$$
\mathbb{A}=\left(\begin{array}{ccccc}
a_{11} & a_{12} & a_{13} & \ldots & a_{1 n} \\
a_{21} & a_{22} & a_{23} & \ldots & a_{2 n} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
a_{m 1} & a_{m 2} & a_{m 3} & \ldots & a_{m n}
\end{array}\right)
$$

is defined by

$$
\mathbb{A}^{T}=\left(\begin{array}{cccc}
a_{11} & a_{21} & \ldots & a_{m 1} \\
a_{12} & a_{22} & \ldots & a_{m 2} \\
a_{13} & a_{23} & \ldots & a_{m 3} \\
\vdots & \vdots & \ddots & \vdots \\
a_{1 n} & a_{2 n} & \ldots & a_{m n}
\end{array}\right),
$$

i.e., if $\mathbb{A}=\left(a_{i j}\right)_{\substack{i=1 . m \\ j=1 . . n}}$, then $\mathbb{A}^{T}=\left(b_{u v}\right)_{\substack{u=1 . n \\ v=1 . . m}}$, where
$b_{u v}=a_{v u}$ for each $u \in\{1, \ldots, n\}, v \in\{1,2, \ldots, m\}$.

Theorem 6.3 (properties of transpose matrix)
We have
(i) $\forall \mathbb{A} \in M(m \times n):\left(\mathbb{A}^{T}\right)^{T}=\mathbb{A}$,

Theorem 6.3 (properties of transpose matrix) We have
(i) $\forall \mathbb{A} \in M(m \times n):\left(\mathbb{A}^{T}\right)^{T}=\mathbb{A}$,
(ii) $\forall \mathbb{A}, \mathbb{B} \in M(m \times n):(\mathbb{A}+\mathbb{B})^{T}=\mathbb{A}^{T}+\mathbb{B}^{T}$,

Theorem 6.3 (properties of transpose matrix) We have
(i) $\forall \mathbb{A} \in M(m \times n):\left(\mathbb{A}^{T}\right)^{T}=\mathbb{A}$,
(ii) $\forall \mathbb{A}, \mathbb{B} \in M(m \times n):(\mathbb{A}+\mathbb{B})^{T}=\mathbb{A}^{T}+\mathbb{B}^{T}$,
(iii) $\forall \mathbb{A} \in M(m \times n) \forall \mathbb{B} \in M(n \times k):(\mathbb{A} \mathbb{B})^{T}=\mathbb{B}^{T} \mathbb{A}^{T}$.

Definition

Let $\mathbb{A} \in M(n \times n)$. We say that \mathbb{A} is regular matrix, if there exists $\mathbb{B} \in M(n \times n)$ such that

$$
\mathbb{A} \mathbb{B}=\mathbb{B} \mathbb{A}=\mathbb{I}
$$

Definition

Let $\mathbb{A} \in M(n \times n)$. We say that \mathbb{A} is regular matrix, if there exists $\mathbb{B} \in M(n \times n)$ such that

$$
\mathbb{A} \mathbb{B}=\mathbb{B} \mathbb{A}=\mathbb{I}
$$

Definition
We say that $\mathbb{B} \in M(n \times n)$ is inverse to a matrix
$\mathbb{A} \in M(n \times n)$, if $\mathbb{A} \mathbb{B}=\mathbb{B} \mathbb{A}=\mathbb{I}$.

Definition

Let $\mathbb{A} \in M(n \times n)$. We say that \mathbb{A} is regular matrix, if there exists $\mathbb{B} \in M(n \times n)$ such that

$$
\mathbb{A} \mathbb{B}=\mathbb{B} \mathbb{A}=\mathbb{I}
$$

Definition
We say that $\mathbb{B} \in M(n \times n)$ is inverse to a matrix
$\mathbb{A} \in M(n \times n)$, if $\mathbb{A} \mathbb{B}=\mathbb{B} \mathbb{A}=\mathbb{I}$.
Remark
A matrix $\mathbb{A} \in M(n \times n)$ is regular, if and only if \mathbb{A} has its inverse matrix.

Theorem 6.4 (regularity and matrix operations)
Let $\mathbb{A}, \mathbb{B} \in M(n \times n)$ be regular. Then we have:
(i) \mathbb{A}^{-1} is regular and $\left(\mathbb{A}^{-1}\right)^{-1}=\mathbb{A}$,

Theorem 6.4 (regularity and matrix operations)
Let $\mathbb{A}, \mathbb{B} \in M(n \times n)$ be regular. Then we have:
(i) \mathbb{A}^{-1} is regular and $\left(\mathbb{A}^{-1}\right)^{-1}=\mathbb{A}$,
(ii) \mathbb{A}^{T} is regular and $\left(\mathbb{A}^{T}\right)^{-1}=\left(\mathbb{A}^{-1}\right)^{T}$,

Theorem 6.4 (regularity and matrix operations)
Let $\mathbb{A}, \mathbb{B} \in M(n \times n)$ be regular. Then we have:
(i) \mathbb{A}^{-1} is regular and $\left(\mathbb{A}^{-1}\right)^{-1}=\mathbb{A}$,
(ii) \mathbb{A}^{T} is regular and $\left(\mathbb{A}^{T}\right)^{-1}=\left(\mathbb{A}^{-1}\right)^{T}$,
(iii) $\mathbb{A} \mathbb{B}$ is regular and $(\mathbb{A} \mathbb{B})^{-1}=\mathbb{B}^{-1} \mathbb{A}^{-1}$.

Definition
Let $\boldsymbol{v}^{1}, \ldots, \boldsymbol{v}^{k} \in \mathbf{R}^{n}$ be vectors. Linear combination of vectors $\boldsymbol{v}^{1}, \ldots, \boldsymbol{v}^{k}$ is an expression $\lambda_{1} \boldsymbol{v}^{1}+\cdots+\lambda_{k} \boldsymbol{v}^{k}$, where $\lambda_{1}, \ldots, \lambda_{k} \in \mathbf{R}$.

Definition

Let $\boldsymbol{v}^{1}, \ldots, \boldsymbol{v}^{k} \in \mathbf{R}^{n}$ be vectors. Linear combination of vectors $\boldsymbol{v}^{1}, \ldots, \boldsymbol{v}^{k}$ is an expression $\lambda_{1} \boldsymbol{v}^{1}+\cdots+\lambda_{k} \boldsymbol{v}^{k}$, where $\lambda_{1}, \ldots, \lambda_{k} \in \mathbf{R}$. Trivial linear combination of vectors $\boldsymbol{v}^{1}, \ldots, \boldsymbol{v}^{k}$ we mean the linear combination $0 \cdot \boldsymbol{v}^{1}+\cdots+0 \cdot \boldsymbol{v}^{k}$.

Definition

Let $\boldsymbol{v}^{1}, \ldots, \boldsymbol{v}^{k} \in \mathbf{R}^{n}$ be vectors. Linear combination of vectors $\boldsymbol{v}^{1}, \ldots, \boldsymbol{v}^{k}$ is an expression $\lambda_{1} \boldsymbol{v}^{1}+\cdots+\lambda_{k} \boldsymbol{v}^{k}$, where $\lambda_{1}, \ldots, \lambda_{k} \in \mathbf{R}$. Trivial linear combination of vectors $\boldsymbol{v}^{1}, \ldots, \boldsymbol{v}^{k}$ we mean the linear combination
$0 \cdot \boldsymbol{v}^{1}+\cdots+0 \cdot \boldsymbol{v}^{k}$. Linear combination, which is not trivial, is called nontrivial.

Definition

We say that vectors $\boldsymbol{v}^{1}, \ldots, \boldsymbol{v}^{k}$ are linearly dependent, if there exists their nontrivial linear combination, which is equal to the zero vector.

Definition

We say that vectors $\boldsymbol{v}^{1}, \ldots, \boldsymbol{v}^{k}$ are linearly dependent, if there exists their nontrivial linear combination, which is equal to the zero vector.
We say that vectors $\boldsymbol{v}^{1}, \ldots, \boldsymbol{v}^{k}$ are linearly independent, if they are not linearly dependent, i.e., if $\lambda_{1}, \ldots, \lambda_{k} \in \mathbf{R}$ satisfy $\lambda_{1} \boldsymbol{v}^{1}+\cdots+\lambda_{k} \boldsymbol{v}^{k}=\boldsymbol{o}$, then $\lambda_{1}=\lambda_{2}=\cdots=\lambda_{k}=0$.

Definition

Let $\mathbb{A} \in M(m \times n)$. Rank of the matrix \mathbb{A} is the maximal number of linearly independent row vectors of \mathbb{A}. Rank of \mathbb{A} is denoted by $\mathrm{rk}(\mathbb{A})$.

Definition

Let $\mathbb{A} \in M(m \times n)$. Rank of the matrix \mathbb{A} is the maximal number of linearly independent row vectors of \mathbb{A}. Rank of \mathbb{A} is denoted by $\mathrm{rk}(\mathbb{A})$.

Definition

We say that $\mathbb{A} \in M(m \times n)$ is in the row echelon form, if for each $i \in\{2, \ldots, m\}$ we have, that i-th row of \mathbb{A} is a zero vector or the number of zeros at the beginning of the row is bigger than the number of zeros at the beginning of ($i-1$)-st row.

Definition

Let $\mathbb{A} \in M(m \times n)$. Rank of the matrix \mathbb{A} is the maximal number of linearly independent row vectors of \mathbb{A}. Rank of \mathbb{A} is denoted by $\mathrm{rk}(\mathbb{A})$.

Definition
We say that $\mathbb{A} \in M(m \times n)$ is in the row echelon form, if for each $i \in\{2, \ldots, m\}$ we have, that i-th row of \mathbb{A} is a zero vector or the number of zeros at the beginning of the row is bigger than the number of zeros at the beginning of ($i-1$)-st row.
Remark
The rank of row echelon matrix \mathbb{A} is equal to the number of nonzero rows of \mathbb{A}.

Definition

Elementary row transformations of the matrix \mathbb{A} are defined as:
(i) interchange of two rows,

Definition

Elementary row transformations of the matrix \mathbb{A} are defined as:
(i) interchange of two rows,
(ii) multiplication of a row by a nonzero real number,

Definition

Elementary row transformations of the matrix \mathbb{A} are defined as:
(i) interchange of two rows,
(ii) multiplication of a row by a nonzero real number,
(iii) addition of a row to another row.

Definition

Elementary row transformations of the matrix \mathbb{A} are defined as:
(i) interchange of two rows,
(ii) multiplication of a row by a nonzero real number,
(iii) addition of a row to another row.

Definition
Transformation is defined as a finite sequence of elementary row transformation. If the matrix $\mathbb{B} \in M(m \times n)$ was created from $\mathbb{A} \in M(m \times n)$ applying a transformation T to \mathbb{A}, then this fact is denoted by $\mathbb{A} \stackrel{T}{\sim} \mathbb{B}$.

Theorem 6.5 (properties of transformation)

(i) Let $\mathbb{A} \in M(m \times n)$. Then there exists a transformation transforming \mathbb{A} to a row echelon matrix.

Theorem 6.5 (properties of transformation)

(i) Let $\mathbb{A} \in M(m \times n)$. Then there exists a transformation transforming \mathbb{A} to a row echelon matrix.
(ii) Let T_{1} be a transformation applicable to matrices of the type $m \times n$. Then there exists a transformation T_{2} applicable to matrices of the type $m \times n$ such that if
$\mathbb{A} \stackrel{T_{1}}{\sim} \mathbb{B}$ for some $\mathbb{A}, \mathbb{B} \in M(m \times n)$, then $\mathbb{B} \xrightarrow{T_{2}} \mathbb{A}$.

Theorem 6.5 (properties of transformation)

(i) Let $\mathbb{A} \in M(m \times n)$. Then there exists a transformation transforming \mathbb{A} to a row echelon matrix.
(ii) Let T_{1} be a transformation applicable to matrices of the type $m \times n$. Then there exists a transformation T_{2} applicable to matrices of the type $m \times n$ such that if
$\mathbb{A} \stackrel{T_{1}}{\sim} \mathbb{B}$ for some $\mathbb{A}, \mathbb{B} \in M(m \times n)$, then $\mathbb{B} \xrightarrow{T_{2}} \mathbb{A}$.
(iii) Let $\mathbb{A}, \mathbb{B} \in M(m \times n)$ and there exist a transformation T such that $\mathbb{A} \stackrel{T}{\sim} \mathbb{B}$. Then $\operatorname{rk}(\mathbb{A})=\operatorname{rk}(\mathbb{B})$.

$$
\left(\begin{array}{llllll}
\bullet & \bullet & \bullet & \bullet & \bullet & \bullet \\
\bullet & \bullet & \bullet & \bullet & \bullet & \bullet \\
\bullet & \bullet & \bullet & \bullet & \bullet & \bullet \\
\bullet & \bullet & \bullet & \bullet & \bullet & \bullet \\
\bullet & \bullet & \bullet & \bullet & \bullet & \bullet
\end{array}\right)
$$

$$
\left(\begin{array}{llllll}
\bullet & \bullet & \bullet & \bullet & \bullet & \bullet \\
\bullet & \bullet & \bullet & \bullet & \bullet & \bullet \\
\bullet & \bullet & \bullet & \bullet & \bullet & \bullet \\
\bullet & \bullet & \bullet & \bullet & \bullet & \bullet \\
\bullet & \bullet & \bullet & \bullet & \bullet & \bullet
\end{array}\right)
$$

$$
\left(\begin{array}{llllll}
\bullet & \bullet & \bullet & \bullet & \bullet & \bullet \\
\bullet & \bullet & \bullet & \bullet & \bullet & \bullet \\
\bullet & \bullet & \bullet & \bullet & \bullet & \bullet \\
\bullet & \bullet & \bullet & \bullet & \bullet & \bullet \\
\bullet & \bullet & \bullet & \bullet & \bullet & \bullet
\end{array}\right)
$$

$$
\left(\begin{array}{llllll}
\bullet & \bullet & \bullet & \bullet & \bullet & \bullet \\
\bullet & \bullet & \bullet & \bullet & \bullet & \bullet \\
\bullet & \bullet & \bullet & \bullet & \bullet & \bullet \\
\bullet & \bullet & \bullet & \bullet & \bullet & \bullet \\
\bullet & \bullet & \bullet & \bullet & \bullet & \bullet
\end{array}\right)
$$

$$
\left(\begin{array}{llllll}
\bullet & \bullet & \bullet & \bullet & \bullet & \bullet \\
0 & \bullet & \bullet & \bullet & \bullet & \bullet \\
0 & \bullet & \bullet & \bullet & \bullet & \bullet \\
0 & \bullet & \bullet & \bullet & \bullet & \bullet \\
0 & \bullet & \bullet & \bullet & \bullet & \bullet
\end{array}\right)
$$

$$
\left(\begin{array}{llllll}
\bullet & \bullet & \bullet & \bullet & \bullet & \bullet \\
0 & 0 & \bullet & \bullet & \bullet & \bullet \\
0 & 0 & \bullet & \bullet & \bullet & \bullet \\
0 & 0 & \bullet & \bullet & \bullet & \bullet \\
0 & 0 & \bullet & \bullet & \bullet & \bullet
\end{array}\right)
$$

$$
\left(\begin{array}{llllll}
\bullet & \bullet & \bullet & \bullet & \bullet & \bullet \\
0 & 0 & \bullet & \bullet & \bullet & \bullet \\
0 & 0 & \bullet & \bullet & \bullet & \bullet \\
0 & 0 & \bullet & \bullet & \bullet & \bullet \\
0 & 0 & \bullet & \bullet & \bullet & \bullet
\end{array}\right)
$$

$$
\left(\begin{array}{llllll}
\bullet & \bullet & \bullet & \bullet & \bullet & \bullet \\
0 & 0 & \bullet & \bullet & \bullet & \bullet \\
0 & 0 & \bullet & \bullet & \bullet & \bullet \\
0 & 0 & \bullet & \bullet & \bullet & \bullet \\
0 & 0 & \bullet & \bullet & \bullet & \bullet
\end{array}\right)
$$

$$
\left(\begin{array}{cccccc}
\bullet & \bullet & \bullet & \bullet & \bullet & \bullet \\
0 & 0 & \bullet & \bullet & \bullet & \bullet \\
0 & 0 & 0 & \bullet & \bullet & \bullet \\
0 & 0 & 0 & \bullet & \bullet & \bullet \\
0 & 0 & 0 & \bullet & \bullet & \bullet
\end{array}\right)
$$

$$
\left(\begin{array}{cccccc}
\bullet & \bullet & \bullet & \bullet & \bullet & \bullet \\
0 & 0 & \bullet & \bullet & \bullet & \bullet \\
0 & 0 & 0 & \bullet & \bullet & \bullet \\
0 & 0 & 0 & \bullet & \bullet & \bullet \\
0 & 0 & 0 & \bullet & \bullet & \bullet
\end{array}\right)
$$

$$
\left(\begin{array}{cccccc}
\bullet & \bullet & \bullet & \bullet & \bullet & \bullet \\
0 & 0 & \bullet & \bullet & \bullet & \bullet \\
0 & 0 & 0 & \bullet & \bullet & \bullet \\
0 & 0 & 0 & \bullet & \bullet & \bullet \\
0 & 0 & 0 & \bullet & \bullet & \bullet
\end{array}\right)
$$

$$
\left(\begin{array}{llllll}
\bullet & \bullet & \bullet & \bullet & \bullet & \bullet \\
0 & 0 & \bullet & \bullet & \bullet & \bullet \\
0 & 0 & 0 & \bullet & \bullet & \bullet \\
0 & 0 & 0 & 0 & \bullet & \bullet \\
0 & 0 & 0 & 0 & \bullet & \bullet
\end{array}\right)
$$

$$
\left(\begin{array}{cccccc}
\bullet & \bullet & \bullet & \bullet & \bullet & \bullet \\
0 & 0 & \bullet & \bullet & \bullet & \bullet \\
0 & 0 & 0 & \bullet & \bullet & \bullet \\
0 & 0 & 0 & 0 & \bullet & \bullet \\
0 & 0 & 0 & 0 & \bullet & \bullet
\end{array}\right)
$$

$$
\left(\begin{array}{llllll}
\bullet & \bullet & \bullet & \bullet & \bullet & \bullet \\
0 & 0 & \bullet & \bullet & \bullet & \bullet \\
0 & 0 & 0 & \bullet & \bullet & \bullet \\
0 & 0 & 0 & 0 & 0 & \bullet \\
0 & 0 & 0 & 0 & 0 & \bullet
\end{array}\right)
$$

$$
\left(\begin{array}{cccccc}
\bullet & \bullet & \bullet & \bullet & \bullet & \bullet \\
0 & 0 & \bullet & \bullet & \bullet & \bullet \\
0 & 0 & 0 & \bullet & \bullet & \bullet \\
0 & 0 & 0 & 0 & 0 & \bullet \\
0 & 0 & 0 & 0 & 0 & \bullet
\end{array}\right)
$$

$$
\left(\begin{array}{cccccc}
\bullet & \bullet & \bullet & \bullet & \bullet & \bullet \\
0 & 0 & \bullet & \bullet & \bullet & \bullet \\
0 & 0 & 0 & \bullet & \bullet & \bullet \\
0 & 0 & 0 & 0 & 0 & \bullet \\
0 & 0 & 0 & 0 & 0 & \bullet
\end{array}\right)
$$

$$
\left(\begin{array}{cccccc}
\bullet & \bullet & \bullet & \bullet & \bullet & \bullet \\
0 & 0 & \bullet & \bullet & \bullet & \bullet \\
0 & 0 & 0 & \bullet & \bullet & \bullet \\
0 & 0 & 0 & 0 & 0 & \bullet \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

$$
\left(\begin{array}{cccccc}
\bullet & \bullet & \bullet & \bullet & \bullet & \bullet \\
0 & 0 & \bullet & \bullet & \bullet & \bullet \\
0 & 0 & 0 & \bullet & \bullet & \bullet \\
0 & 0 & 0 & 0 & 0 & \bullet \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

Theorem 6.6 (multiplication and transformation)
Let $\mathbb{A} \in M(m \times k), \mathbb{B} \in M(k \times n), \mathbb{C} \in M(m \times n)$ and we have $\mathbb{A} \mathbb{B}=\mathbb{C}$. Let T be a transformation and $\mathbb{A} \stackrel{T}{\sim} \mathbb{A}^{\prime}$ and $\mathbb{C} \stackrel{T}{\sim} \mathbb{C}^{\prime}$. Then we have $\mathbb{A}^{\prime} \mathbb{B}=\mathbb{C}^{\prime}$.

Theorem 6.6 (multiplication and transformation)
Let $\mathbb{A} \in M(m \times k), \mathbb{B} \in M(k \times n), \mathbb{C} \in M(m \times n)$ and we have $\mathbb{A} \mathbb{B}=\mathbb{C}$. Let T be a transformation and $\mathbb{A} \stackrel{T}{\sim} \mathbb{A}^{\prime}$ and $\mathbb{C} \stackrel{T}{\sim} \mathbb{C}^{\prime}$. Then we have $\mathbb{A}^{\prime} \mathbb{B}=\mathbb{C}^{\prime}$.

Lemma 6.7
Let $\mathbb{A} \in M(n \times n)$ and $r \mathrm{k}(\mathbb{A})=n$. Then there exists a transformation transforming \mathbb{A} to \mathbb{I}.

Theorem 6.6 (multiplication and transformation) Let $\mathbb{A} \in M(m \times k), \mathbb{B} \in M(k \times n), \mathbb{C} \in M(m \times n)$ and we have $\mathbb{A} \mathbb{B}=\mathbb{C}$. Let T be a transformation and $\mathbb{A} \stackrel{T}{\sim} \mathbb{A}^{\prime}$ and $\mathbb{C} \stackrel{T}{\sim} \mathbb{C}^{\prime}$. Then we have $\mathbb{A}^{\prime} \mathbb{B}=\mathbb{C}^{\prime}$.
Lemma 6.7
Let $\mathbb{A} \in M(n \times n)$ and $\operatorname{rk}(\mathbb{A})=n$. Then there exists a transformation transforming \mathbb{A} to \mathbb{I}.

Theorem 6.8
Let $\mathbb{A} \in M(n \times n)$. Then \mathbb{A} is regular if and only if $\operatorname{rk}(\mathbb{A})=n$.

Definition

Let $\mathbb{A} \in M(n \times n)$. The symbol $\mathbb{A}_{i j}$ denotes the matrix of the type $(n-1) \times(n-1)$, which is created from \mathbb{A} omitting i-th row and j-th column.

Definition

Let $\mathbb{A} \in M(n \times n)$. The symbol $\mathbb{A}_{i j}$ denotes the matrix of the type $(n-1) \times(n-1)$, which is created from \mathbb{A} omitting i-th row and j-th column.
$\mathbb{A}=\left(\begin{array}{ccccccc}a_{1,1} & \ldots & a_{1, j-1} & a_{1, j} & a_{1, j+1} & \ldots & a_{1, n} \\ \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{i-1,1} & \ldots & a_{i-1, j-1} & a_{i-1, j} & a_{i-1, j+1} & \ldots & a_{i-1, n} \\ a_{i, 1} & \ldots & a_{i, j-1} & a_{i, j} & a_{i, j+1} & \ldots & a_{i, n} \\ a_{i+1,1} & \ldots & a_{i+1, j-1} & a_{i+1, j} & a_{i+1, j+1} & \ldots & a_{i+1, n} \\ \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{n, 1} & \ldots & a_{n, j-1} & a_{n, j} & a_{n, j+1} & \ldots & a_{n, n}\end{array}\right)$

Definition

Let $\mathbb{A} \in M(n \times n)$. The symbol $\mathbb{A}_{i j}$ denotes the matrix of the type $(n-1) \times(n-1)$, which is created from \mathbb{A} omitting i-th row and j-th column.
$\mathbb{A}=\left(\begin{array}{ccccccc}a_{1,1} & \ldots & a_{1, j-1} & a_{1, j} & a_{1, j+1} & \ldots & a_{1, n} \\ \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{i-1,1} & \ldots & a_{i-1, j-1} & a_{i-1, j} & a_{i-1, j+1} & \ldots & a_{i-1, n} \\ a_{i, 1} & \ldots & a_{i, j-1} & a_{i, j} & a_{i, j+1} & \ldots & a_{i, n} \\ a_{i+1,1} & \ldots & a_{i+1, j-1} & a_{i+1, j} & a_{i+1, j+1} & \ldots & a_{i+1, n} \\ \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{n, 1} & \ldots & a_{n, j-1} & a_{n, j} & a_{n, j+1} & \ldots & a_{n, n}\end{array}\right)$

Definition

Let $\mathbb{A} \in M(n \times n)$. The symbol $\mathbb{A}_{i j}$ denotes the matrix of the type $(n-1) \times(n-1)$, which is created from \mathbb{A} omitting i-th row and j-th column.
$\left(\begin{array}{cccccc}a_{1,1} & \cdots & a_{1, j-1} & a_{1, j+1} & \cdots & a_{1, n} \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ a_{i-1,1} & \cdots & a_{i-1, j-1} & a_{i-1, j+1} & \cdots & a_{i-1, n} \\ a_{i+1,1} & \cdots & a_{i+1, j-1} & a_{i+1, j+1} & \cdots & a_{i+1, n} \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ a_{n, 1} & \cdots & a_{n, j-1} & a_{n, j+1} & \cdots & a_{n, n}\end{array}\right)$

Definition

Let $\mathbb{A} \in M(n \times n)$. The symbol $\mathbb{A}_{i j}$ denotes the matrix of the type $(n-1) \times(n-1)$, which is created from \mathbb{A} omitting i-th row and j-th column.

$$
\mathbb{A}_{i j}=\left(\begin{array}{cccccc}
a_{1,1} & \ldots & a_{1, j-1} & a_{1, j+1} & \ldots & a_{1, n} \\
\vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\
a_{i-1,1} & \ldots & a_{i-1, j-1} & a_{i-1, j+1} & \ldots & a_{i-1, n} \\
a_{i+1,1} & \ldots & a_{i+1, j-1} & a_{i+1, j+1} & \ldots & a_{i+1, n} \\
\vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\
a_{n, 1} & \ldots & a_{n, j-1} & a_{n, j+1} & \ldots & a_{n, n}
\end{array}\right)
$$

Definition

Let $\mathbb{A}=\left(a_{i j}\right)_{i, j=1 . . n}$. Determinant of the matrix \mathbb{A} is defined by

$$
\operatorname{det} \mathbb{A}= \begin{cases}a_{11} & \text { then } n=1 \\ \sum_{i=1}^{n}(-1)^{i+1} a_{i 1} \operatorname{det} \mathbb{A}_{i 1} & \text { then } n>1\end{cases}
$$

Definition

Let $\mathbb{A}=\left(a_{i j}\right)_{i, j=1 . . n}$. Determinant of the matrix \mathbb{A} is defined by

$$
\operatorname{det} \mathbb{A}= \begin{cases}a_{11} & \text { then } n=1 \\ \sum_{i=1}^{n}(-1)^{i+1} a_{i 1} \operatorname{det} \mathbb{A}_{i 1} & \text { then } n>1\end{cases}
$$

For $\operatorname{det} \mathbb{A}$ we will use also the symbol

$$
\left|\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 n} \\
a_{21} & a_{22} & \ldots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{n 1} & a_{n 2} & \ldots & a_{n n}
\end{array}\right| .
$$

Theorem 6.9
Let $j, n \in \mathbf{N}, j \leq n$, and matrices $\mathbb{A}, \mathbb{B}, \mathbb{C} \in M(n \times n)$ coincide at each row except j-th row. Let j-th row of \mathbb{A} be equal to the sum of j-th rows of \mathbb{B} and \mathbb{C}. Then we have $\operatorname{det} \mathbb{A}=\operatorname{det} \mathbb{B}+\operatorname{det} \mathbb{C}$.

Theorem 6.9

Let $j, n \in \mathbf{N}, j \leq n$, and matrices $\mathbb{A}, \mathbb{B}, \mathbb{C} \in M(n \times n)$ coincide at each row except j-th row. Let j-th row of \mathbb{A} be equal to the sum of j-th rows of \mathbb{B} and \mathbb{C}. Then we have $\operatorname{det} \mathbb{A}=\operatorname{det} \mathbb{B}+\operatorname{det} \mathbb{C}$.

$$
\left|\begin{array}{ccc}
a_{11} & \ldots & a_{1 n} \\
\vdots & \ddots & \vdots \\
a_{j-1,1} & \ldots & a_{j-1, n} \\
u_{1}+v_{1} & \ldots & u_{n}+v_{n} \\
a_{j+1,1} & \cdots & a_{j+1, n} \\
\vdots & \ddots & \vdots \\
a_{n 1} & \cdots & a_{n n}
\end{array}\right|=\left|\begin{array}{ccc}
a_{11} & \ldots & a_{1 n} \\
\vdots & \ddots & \vdots \\
a_{j-1,1} & \ldots & a_{j-1, n} \\
u_{1} & \ldots & u_{n} \\
a_{j+1,1} & \cdots & a_{j+1, n} \\
\vdots & \ddots & \vdots \\
a_{n 1} & \cdots & a_{n n}
\end{array}\right|+\left|\begin{array}{ccc}
a_{11} & \ldots & a_{1 n} \\
\vdots & \ddots & \vdots \\
a_{j-1,1} & \ldots & a_{j-1, n} \\
v_{1} & \ldots & v_{n} \\
a_{j+1,1} & \cdots & a_{j+1, n} \\
\vdots & \ddots & \vdots \\
a_{n 1} & \cdots & a_{n n}
\end{array}\right|
$$

Theorem 6.10 (determinant and transformation)
Let $\mathbb{A}, \mathbb{A}^{\prime} \in M(n \times n)$.
(i) Let \mathbb{A}^{\prime} be created from \mathbb{A} such that we interchanged two rows in \mathbb{A} (i.e., we applied an elementary row transformation of the first kind). Then we have $\operatorname{det} \mathbb{A}^{\prime}=-\operatorname{det} \mathbb{A}$.

Theorem 6.10 (determinant and transformation)

Let $\mathbb{A}, \mathbb{A}^{\prime} \in M(n \times n)$.
(i) Let \mathbb{A}^{\prime} be created from \mathbb{A} such that we interchanged two rows in \mathbb{A} (i.e., we applied an elementary row transformation of the first kind). Then we have $\operatorname{det} \mathbb{A}^{\prime}=-\operatorname{det} \mathbb{A}$.
(ii) Let \mathbb{A}^{\prime} be created from \mathbb{A} such that a row in \mathbb{A} is multiplied by $\lambda \in \mathbf{R}$. Then we have $\operatorname{det} \mathbb{A}^{\prime}=\lambda \operatorname{det} \mathbb{A}$.

Theorem 6.10 (determinant and transformation)

Let $\mathbb{A}, \mathbb{A}^{\prime} \in M(n \times n)$.
(i) Let \mathbb{A}^{\prime} be created from \mathbb{A} such that we interchanged two rows in \mathbb{A} (i.e., we applied an elementary row transformation of the first kind). Then we have $\operatorname{det} \mathbb{A}^{\prime}=-\operatorname{det} \mathbb{A}$.
(ii) Let \mathbb{A}^{\prime} be created from \mathbb{A} such that a row in \mathbb{A} is multiplied by $\lambda \in \mathbf{R}$. Then we have $\operatorname{det} \mathbb{A}^{\prime}=\lambda \operatorname{det} \mathbb{A}$.
(iii) Let \mathbb{A}^{\prime} be created from \mathbb{A} such that we added a row of \mathbb{A} to another row of \mathbb{A} (i.e., we applied an elementary row transformation of the third kind). Then we have $\operatorname{det} \mathbb{A}^{\prime}=\operatorname{det} \mathbb{A}$.

Corollary 6.11

Let $\mathbb{A}, \mathbb{A}^{\prime} \in M(n \times n)$ and \mathbb{A}^{\prime} be created from \mathbb{A} applying a transformation. Then $\operatorname{det} \mathbb{A}^{\prime} \neq 0$ if and only if $\operatorname{det} \mathbb{A} \neq 0$.

Corollary 6.11

Let $\mathbb{A}, \mathbb{A}^{\prime} \in M(n \times n)$ and \mathbb{A}^{\prime} be created from \mathbb{A} applying a transformation. Then $\operatorname{det} \mathbb{A}^{\prime} \neq 0$ if and only if $\operatorname{det} \mathbb{A} \neq 0$.

Theorem 6.12 (determinant and transposition) Let $\mathbb{A} \in M(n \times n)$. Then we have $\operatorname{det} \mathbb{A}^{T}=\operatorname{det} \mathbb{A}$.

Corollary 6.11

Let $\mathbb{A}, \mathbb{A}^{\prime} \in M(n \times n)$ and \mathbb{A}^{\prime} be created from \mathbb{A} applying a transformation. Then $\operatorname{det} \mathbb{A}^{\prime} \neq 0$ if and only if $\operatorname{det} \mathbb{A} \neq 0$.

Theorem 6.12 (determinant and transposition) Let $\mathbb{A} \in M(n \times n)$. Then we have $\operatorname{det} \mathbb{A}^{T}=\operatorname{det} \mathbb{A}$.

Theorem 6.13 (determinant of product)
Let $\mathbb{A}, \mathbb{B} \in M(n \times n)$. Then we have

$$
\operatorname{det} \mathbb{A} \mathbb{B}=\operatorname{det} \mathbb{A} \cdot \operatorname{det} \mathbb{B}
$$

Theorem 6.14
Let $\mathbb{A}=\left(a_{i j}\right)_{i, j=1 . . n}, k \in\{1, \ldots, n\}$. Then

$$
\begin{aligned}
& \operatorname{det} \mathbb{A}=\sum_{i=1}^{n}(-1)^{i+k} a_{i k} \operatorname{det} \mathbb{A}_{i k}, \\
& \operatorname{det} \mathbb{A}=\sum_{j=1}^{n}(-1)^{k+j} a_{k j} \operatorname{det} \mathbb{A}_{k j} .
\end{aligned}
$$

Definition
Let $\mathbb{A}=\left(a_{i j}\right)_{i, j=1 . . n}$. We say that \mathbb{A} is upper triangular matrix if we have $a_{i j}=0$ for $i>j, i, j \in\{1, \ldots, n\}$.

Definition

Let $\mathbb{A}=\left(a_{i j}\right)_{i, j=1 . . n}$. We say that \mathbb{A} is upper triangular matrix if we have $a_{i j}=0$ for $i>j, i, j \in\{1, \ldots, n\}$. We say that \mathbb{A} is lower triangular matrix, if we have $a_{i j}=0$ for $i<j, i, j \in\{1, \ldots, n\}$.

Definition

Let $\mathbb{A}=\left(a_{i j}\right)_{i, j=1 . . n}$. We say that \mathbb{A} is upper triangular matrix if we have $a_{i j}=0$ for $i>j, i, j \in\{1, \ldots, n\}$. We say that \mathbb{A} is lower triangular matrix, if we have $a_{i j}=0$ for $i<j, i, j \in\{1, \ldots, n\}$.

Theorem 6.15
Let $\mathbb{A}=\left(a_{i j}\right)_{i, j=1 . . n}$ is upper (lower, respectively) triangular matrix. Then we have

$$
\operatorname{det} \mathbb{A}=a_{11} \cdot a_{22} \cdots \cdots a_{n n}
$$

Theorem 6.16
Let $\mathbb{A} \in M(n \times n)$. Then \mathbb{A} is regular if and only if $\operatorname{det} \mathbb{A} \neq 0$.

The system of n equations with n unknowns:

$$
\begin{align*}
& a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 n} x_{n}=b_{1} \\
& a_{21} x_{1}+a_{22} x_{2}+\cdots+a_{2 n} x_{n}=b_{2} \tag{S}
\end{align*}
$$

$$
a_{n 1} x_{1}+a_{n 2} x_{2}+\cdots+a_{n n} x_{n}=b_{n}
$$

Matrix form

$$
\mathbb{A} \boldsymbol{x}=\boldsymbol{b}
$$

where $\mathbb{A}=\left(\begin{array}{ccc}a_{11} & \cdots & a_{1 n} \\ \vdots & \ddots & \vdots \\ a_{n 1} & \cdots & a_{n n}\end{array}\right)$ is called matrix of the system,
$\boldsymbol{b}=\left(\begin{array}{c}b_{1} \\ \vdots \\ b_{n}\end{array}\right)$ vector of the right side and $\boldsymbol{x}=\left(\begin{array}{c}x_{1} \\ \vdots \\ x_{n}\end{array}\right)$ vectors of unknowns.

Theorem 6.17
Let $\mathbb{A} \in M(n \times n)$. Then the following are equivalent.
(i) The matrix \mathbb{A} is regular.

Theorem 6.17
Let $\mathbb{A} \in M(n \times n)$. Then the following are equivalent.
(i) The matrix \mathbb{A} is regular.
(ii) The system (S) have for each \boldsymbol{b} a unique solution.

Theorem 6.17
Let $\mathbb{A} \in M(n \times n)$. Then the following are equivalent.
(i) The matrix \mathbb{A} is regular.
(ii) The system (S) have for each \boldsymbol{b} a unique solution.
(iii) The system (S) have for each \boldsymbol{b} at least one solution.

Theorem 6.18 (Cramer's rule)
Let $\mathbb{A} \in M(n \times n)$ be a regular matrix, $\boldsymbol{b} \in M(n \times 1)$, $\boldsymbol{x} \in M(n \times 1)$, and $\mathbb{A} \boldsymbol{x}=\boldsymbol{b}$. Then

$$
x_{j}=\frac{\left|\begin{array}{ccccccc}
a_{11} & \ldots & a_{1, j-1} & b_{1} & a_{1, j+1} & \ldots & a_{1 n} \\
\vdots & & & \vdots & & & \vdots \\
a_{n 1} & \ldots & a_{n, j-1} & b_{n} & a_{n, j+1} & \ldots & a_{n n}
\end{array}\right|}{\operatorname{det} \mathbb{A}}
$$

for $j=1, \ldots, n$.

System of m equations with n unknowns:

$$
\begin{gather*}
a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 n} x_{n}=b_{1} \\
a_{21} x_{1}+a_{22} x_{2}+\cdots+a_{2 n} x_{n}=b_{2} \tag{S'}\\
\vdots \\
a_{m 1} x_{1}+a_{m 2} x_{2}+\cdots+a_{m n} x_{n}=b_{m}
\end{gather*}
$$

Matrix notation

$$
\mathbb{A} \boldsymbol{x}=\boldsymbol{b},
$$

where $\mathbb{A}=\left(\begin{array}{ccc}a_{11} & \cdots & a_{1 n} \\ \vdots & \ddots & \vdots \\ a_{m 1} & . . & a_{m n}\end{array}\right) \in M(m \times n)$,
$\boldsymbol{b}=\left(\begin{array}{c}b_{1} \\ \vdots \\ b_{m}\end{array}\right) \in M(m \times 1)$ a $\boldsymbol{x}=\left(\begin{array}{c}x_{1} \\ \vdots \\ x_{n}\end{array}\right) \in M(n \times 1)$.

Definition
The matrix

$$
(\mathbb{A} \mid \boldsymbol{b})=\left(\begin{array}{ccc|c}
a_{11} & \ldots & a_{1 n} & b_{1} \\
\vdots & \ddots & \vdots & \vdots \\
a_{m 1} & \ldots & a_{m n} & b_{m}
\end{array}\right)
$$

is called extended matrix of the system (S^{\prime}).

Definition
The matrix

$$
(\mathbb{A} \mid \boldsymbol{b})=\left(\begin{array}{ccc|c}
a_{11} & \ldots & a_{1 n} & b_{1} \\
\vdots & \ddots & \vdots & \vdots \\
a_{m 1} & \ldots & a_{m n} & b_{m}
\end{array}\right)
$$

is called extended matrix of the system (S^{\prime}).
Theorem 6.19
The system (S') has a solution if and only if the matrix has the same rank as the extended matrix of the system.

Definition
We say that a mapping $f: \mathbf{R}^{n} \rightarrow \mathbf{R}^{m}$ is linear if
(i) $\forall \boldsymbol{u}, \boldsymbol{v} \in \mathbf{R}^{n}: f(\boldsymbol{u}+\boldsymbol{v})=f(\boldsymbol{u})+f(\boldsymbol{v})$,

Definition
We say that a mapping $f: \mathbf{R}^{n} \rightarrow \mathbf{R}^{m}$ is linear if
(i) $\forall \boldsymbol{u}, \boldsymbol{v} \in \mathbf{R}^{n}: f(\boldsymbol{u}+\boldsymbol{v})=f(\boldsymbol{u})+f(\boldsymbol{v})$,
(ii) $\forall \lambda \in \mathbf{R} \forall \boldsymbol{u} \in \mathbf{R}^{n}: f(\lambda \boldsymbol{u})=\lambda f(\boldsymbol{u})$.

Definition

Let $i \in\{1, \ldots, n\}$. The vector

is called i-th canonical vector of the space \mathbf{R}^{n}.

Definition

Let $i \in\{1, \ldots, n\}$. The vector

$$
\boldsymbol{e}^{i}=\left(\begin{array}{c}
0 \\
\vdots \\
0 \\
1 \\
0 \\
\vdots \\
0
\end{array}\right) \ldots \text { i-th coordinate }
$$

is called i-th canonical vector of the space \mathbf{R}^{n}. The set $\left\{\boldsymbol{e}^{1}, \ldots, \boldsymbol{e}^{n}\right\}$ of all canonical vectors in \mathbf{R}^{n} is called canonical basis of the space \mathbf{R}^{n}.

Definition

Let $i \in\{1, \ldots, n\}$. The vector

$$
\boldsymbol{e}^{i}=\left(\begin{array}{c}
0 \\
\vdots \\
0 \\
1 \\
0 \\
\vdots \\
0
\end{array}\right) \ldots i \text {-th coordinate }
$$

is called i-th canonical vector of the space \mathbf{R}^{n}. The set $\left\{\boldsymbol{e}^{1}, \ldots, \boldsymbol{e}^{n}\right\}$ of all canonical vectors in \mathbf{R}^{n} is called canonical basis of the space \mathbf{R}^{n}.
The properties of canonical vectors:
(i) $\forall \boldsymbol{x} \in \mathbf{R}^{n} \exists \lambda_{1}, \ldots, \lambda_{n} \in \mathbf{R}: \boldsymbol{x}=\lambda_{1} \mathbf{e}^{1}+\cdots+\lambda_{n} \boldsymbol{e}^{n}$,

Definition

Let $i \in\{1, \ldots, n\}$. The vector

$$
\boldsymbol{e}^{i}=\left(\begin{array}{c}
0 \\
\vdots \\
0 \\
1 \\
0 \\
\vdots \\
0
\end{array}\right) \ldots i \text {-th coordinate }
$$

is called i-th canonical vector of the space \mathbf{R}^{n}. The set $\left\{\boldsymbol{e}^{1}, \ldots, \boldsymbol{e}^{n}\right\}$ of all canonical vectors in \mathbf{R}^{n} is called canonical basis of the space \mathbf{R}^{n}.
The properties of canonical vectors:
(i) $\forall \boldsymbol{x} \in \mathbf{R}^{n} \exists \lambda_{1}, \ldots, \lambda_{n} \in \mathbf{R}: \boldsymbol{x}=\lambda_{1} \mathbf{e}^{1}+\cdots+\lambda_{n} \boldsymbol{e}^{n}$,
(ii) the vectors $\mathbf{e}^{1}, \ldots, \boldsymbol{e}^{n}$ are linearly independent.

Theorem 6.20 (representation of linear mappings)
The mapping $f: \mathbf{R}^{n} \rightarrow \mathbf{R}^{m}$ is linear if and only if there exists a matrix $\mathbb{A} \in M(m \times n)$ such that

$$
\forall \boldsymbol{u} \in \mathbf{R}^{n}: f(\boldsymbol{u})=\mathbb{A} \boldsymbol{u}=\left(\begin{array}{ccc}
a_{11} & \ldots & a_{1 n} \\
\vdots & \ddots & \vdots \\
a_{m 1} & \ldots & a_{m n}
\end{array}\right)\left(\begin{array}{c}
u_{1} \\
\vdots \\
u_{n}
\end{array}\right) .
$$

Theorem 6.21

Let a mapping $f: \mathbf{R}^{n} \rightarrow \mathbf{R}^{n}$ be linear. Then the following are equivalent.
(i) The mapping f is a bijection (i.e., f is an injective mapping \mathbf{R}^{n} onto \mathbf{R}^{n}).

Theorem 6.21

Let a mapping $f: \mathbf{R}^{n} \rightarrow \mathbf{R}^{n}$ be linear. Then the following are equivalent.
(i) The mapping f is a bijection (i.e., f is an injective mapping \mathbf{R}^{n} onto \mathbf{R}^{n}).
(ii) The mapping f is an injective mapping.

Theorem 6.21

Let a mapping $f: \mathbf{R}^{n} \rightarrow \mathbf{R}^{n}$ be linear. Then the following are equivalent.
(i) The mapping f is a bijection (i.e., f is an injective mapping \mathbf{R}^{n} onto \mathbf{R}^{n}).
(ii) The mapping f is an injective mapping.
(iii) The mapping f is a mapping \mathbf{R}^{n} onto \mathbf{R}^{n}.

Theorem 6.21

Let a mapping $f: \mathbf{R}^{n} \rightarrow \mathbf{R}^{n}$ be linear. Then the following are equivalent.
(i) The mapping f is a bijection (i.e., f is an injective mapping \mathbf{R}^{n} onto \mathbf{R}^{n}).
(ii) The mapping f is an injective mapping.
(iii) The mapping f is a mapping \mathbf{R}^{n} onto \mathbf{R}^{n}.

Theorem 6.21

Let a mapping $f: \mathbf{R}^{n} \rightarrow \mathbf{R}^{n}$ be linear. Then the following are equivalent.
(i) The mapping f is a bijection (i.e., f is an injective mapping \mathbf{R}^{n} onto \mathbf{R}^{n}).
(ii) The mapping f is an injective mapping.
(iii) The mapping f is a mapping \mathbf{R}^{n} onto \mathbf{R}^{n}.

Theorem 6.22
Let $f: \mathbf{R}^{n} \rightarrow \mathbf{R}^{m}$ be a linear mapping represented by matrix
$\mathbb{A} \in M(m \times n)$ a $g: \mathbf{R}^{m} \rightarrow \mathbf{R}^{k}$ be a linear mapping represented by a matrix $\mathbb{B} \in M(k \times m)$. Then the composed mapping $g \circ f: \mathbf{R}^{n} \rightarrow \mathbf{R}^{k}$ is linear and is represented by the matrix $\mathbb{B} \mathbb{A}$.

Infinite series

Definition

Let $\left\{a_{n}\right\}$ be a sequence of real numbers. Symbol $\sum_{n=1}^{\infty} a_{n}$ is called an infinite series.

Infinite series

Definition

Let $\left\{a_{n}\right\}$ be a sequence of real numbers. Symbol $\sum_{n=1}^{\infty} a_{n}$ is called an infinite series. For $m \in \mathbf{N}$ we set

$$
s_{m}=a_{1}+a_{2}+\cdots+a_{m}
$$

The number s_{m} is called m-th partial sum of the series $\sum_{n=1}^{\infty} a_{n}$.

Infinite series

Definition

Let $\left\{a_{n}\right\}$ be a sequence of real numbers. Symbol $\sum_{n=1}^{\infty} a_{n}$ is called an infinite series. For $m \in \mathbf{N}$ we set

$$
s_{m}=a_{1}+a_{2}+\cdots+a_{m}
$$

The number s_{m} is called m-th partial sum of the series $\sum_{n=1}^{\infty} a_{n}$. The element a_{n} is called n-th member of the series $\sum_{n=1}^{\infty} a_{n}$.

Infinite series

Definition

Let $\left\{a_{n}\right\}$ be a sequence of real numbers. Symbol $\sum_{n=1}^{\infty} a_{n}$ is called an infinite series. For $m \in \mathbf{N}$ we set

$$
s_{m}=a_{1}+a_{2}+\cdots+a_{m} .
$$

The number s_{m} is called m-th partial sum of the series $\sum_{n=1}^{\infty} a_{n}$. The element a_{n} is called n-th member of the series $\sum_{n=1}^{\infty} a_{n}$. The sum of infinite series $\sum_{n=1}^{\infty} a_{n}$ is defined as the limit of the sequence $\left\{s_{m}\right\}$, if such a limit exists.

Infinite series

Definition

Let $\left\{a_{n}\right\}$ be a sequence of real numbers. Symbol $\sum_{n=1}^{\infty} a_{n}$ is called an infinite series. For $m \in \mathbf{N}$ we set

$$
s_{m}=a_{1}+a_{2}+\cdots+a_{m} .
$$

The number s_{m} is called m-th partial sum of the series $\sum_{n=1}^{\infty} a_{n}$. The element a_{n} is called n-th member of the series $\sum_{n=1}^{\infty} a_{n}$. The sum of infinite series $\sum_{n=1}^{\infty} a_{n}$ is defined as the limit of the sequence $\left\{s_{m}\right\}$, if such a limit exists. The sum of the series is denoted by the symbol $\sum_{n=1}^{\infty} a_{n}$.

Infinite series

Definition

Let $\left\{a_{n}\right\}$ be a sequence of real numbers. Symbol $\sum_{n=1}^{\infty} a_{n}$ is called an infinite series. For $m \in \mathbf{N}$ we set

$$
s_{m}=a_{1}+a_{2}+\cdots+a_{m}
$$

The number s_{m} is called m-th partial sum of the series $\sum_{n=1}^{\infty} a_{n}$. The element a_{n} is called n-th member of the series $\sum_{n=1}^{\infty} a_{n}$. The sum of infinite series $\sum_{n=1}^{\infty} a_{n}$ is defined as the limit of the sequence $\left\{s_{m}\right\}$, if such a limit exists. The sum of the series is denoted by the symbol $\sum_{n=1}^{\infty} a_{n}$. We say that a series converges, if its sum is a real number. In the opposite case, we say that the series diverges.

Theorem 7.1 (necessary condition)
If a series $\sum_{n=1}^{\infty} a_{n}$ converges, then $\lim a_{n}=0$.

Theorem 7.1 (necessary condition)
If a series $\sum_{n=1}^{\infty} a_{n}$ converges, then $\lim a_{n}=0$.
Remark
Suppose that $\alpha \in \mathbf{R}$ and a series $\sum_{n=1}^{\infty} a_{n}$ converges. Then the series $\sum_{n=1}^{\infty} \alpha a_{n}$ converges and it holds $\sum_{n=1}^{\infty} \alpha a_{n}=\alpha \sum_{n=1}^{\infty} a_{n}$.

Theorem 7.1 (necessary condition)
If a series $\sum_{n=1}^{\infty} a_{n}$ converges, then lim $a_{n}=0$.
Remark
Suppose that $\alpha \in \mathbf{R}$ and a series $\sum_{n=1}^{\infty} a_{n}$ converges.
Then the series $\sum_{n=1}^{\infty} \alpha a_{n}$ converges and it holds $\sum_{n=1}^{\infty} \alpha a_{n}=\alpha \sum_{n=1}^{\infty} a_{n}$. If $\sum_{n=1}^{\infty} a_{n}$ and $\sum_{n=1}^{\infty} b_{n}$ converge, then the series $\sum_{n=1}^{\infty}\left(a_{n}+b_{n}\right)$ convergens and if holds $\sum_{n=1}^{\infty}\left(a_{n}+b_{n}\right)=\sum_{n=1}^{\infty} a_{n}+\sum_{n=1}^{\infty} b_{n}$.

Theorem 7.2
Let $\sum_{n=1}^{\infty} a_{n}$ and $\sum_{n=1}^{\infty} b_{n}$ be series satisfying $0 \leq a_{n} \leq b_{n}$ for each $n \in \mathbf{N}$.
(i) If $\sum_{n=1}^{\infty} b_{n}$ converges, then $\sum_{n=1}^{\infty} a_{n}$ converges.

Theorem 7.2
Let $\sum_{n=1}^{\infty} a_{n}$ and $\sum_{n=1}^{\infty} b_{n}$ be series satisfying $0 \leq a_{n} \leq b_{n}$ for each $n \in \mathbf{N}$.
(i) If $\sum_{n=1}^{\infty} b_{n}$ converges, then $\sum_{n=1}^{\infty} a_{n}$ converges.
(ii) If $\sum_{n=1}^{\infty} a_{n}$ diverges, then $\sum_{n=1}^{\infty} b_{n}$ diverges.

Theorem 7.3
Let $\left\{a_{n}\right\}$ be a sequence of real numbers. If $\sum_{n=1}^{\infty}\left|a_{n}\right|$ converges, then $\sum_{n=1}^{\infty} a_{n}$ converges.

Theorem 7.3
Let $\left\{a_{n}\right\}$ be a sequence of real numbers. If $\sum_{n=1}^{\infty}\left|a_{n}\right|$ converges, then $\sum_{n=1}^{\infty} a_{n}$ converges.
Definition
We say that $\sum_{n=1}^{\infty} a_{n}$ is absolute convergent, if $\sum_{n=1}^{\infty}\left|a_{n}\right|$ converges.

Theorem 7.3
Let $\left\{a_{n}\right\}$ be a sequence of real numbers. If $\sum_{n=1}^{\infty}\left|a_{n}\right|$ converges, then $\sum_{n=1}^{\infty} a_{n}$ converges.
Definition
We say that $\sum_{n=1}^{\infty} a_{n}$ is absolute convergent, if $\sum_{n=1}^{\infty}\left|a_{n}\right|$ converges. If $\sum_{n=1}^{\infty} a_{n}$ converges but not absolutely, then $\sum_{n=1}^{\infty} a_{n}$ converges nonabsolutely.

Theorem 7.3
Let $\left\{a_{n}\right\}$ be a sequence of real numbers. If $\sum_{n=1}^{\infty}\left|a_{n}\right|$ converges, then $\sum_{n=1}^{\infty} a_{n}$ converges.
Definition
We say that $\sum_{n=1}^{\infty} a_{n}$ is absolute convergent, if $\sum_{n=1}^{\infty}\left|a_{n}\right|$ converges. If $\sum_{n=1}^{\infty} a_{n}$ converges but not absolutely, then $\sum_{n=1}^{\infty} a_{n}$ converges nonabsolutely.

Remark
Let $\left|a_{n}\right| \leq b_{n}$ for each $n \in \mathbf{N}$. If the series $\sum_{n=1}^{\infty} b_{n}$ converges, then $\sum_{n=1}^{\infty} a_{n}$ converges.

Theorem 7.4 (limit test)

Let $\sum_{n=1}^{\infty} a_{n}$ and $\sum_{n=1}^{\infty} b_{n}$ be series with nonnegative members.
(i) Let

$$
\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}
$$

exists proper. If $\sum_{n=1}^{\infty} b_{n}$ converges, then $\sum_{n=1}^{\infty} a_{n}$ converges.

Theorem 7.4 (limit test)

Let $\sum_{n=1}^{\infty} a_{n}$ and $\sum_{n=1}^{\infty} b_{n}$ be series with nonnegative members.
(i) Let

$$
\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}
$$

exists proper. If $\sum_{n=1}^{\infty} b_{n}$ converges, then $\sum_{n=1}^{\infty} a_{n}$ converges.
(ii) Let

$$
\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=c \in(0,+\infty) .
$$

Then $\sum_{n=1}^{\infty} a_{n}$ converges if and only if $\sum_{n=1}^{\infty} b_{n}$ converges.

Theorem 7.5 (Cauchy test)
Let $\sum_{n=1}^{\infty} a_{n}$ be a series. The we have
(i) If $\lim \sqrt[n]{\left|a_{n}\right|}<1$, then $\sum_{n=1}^{\infty} a_{n}$ is absolutely convergent.

Theorem 7.5 (Cauchy test)

Let $\sum_{n=1}^{\infty} a_{n}$ be a series. The we have
(i) If $\lim \sqrt[n]{\left|a_{n}\right|}<1$, then $\sum_{n=1}^{\infty} a_{n}$ is absolutely convergent.
(ii) If $\lim \sqrt[n]{\left|a_{n}\right|}>1$, then $\sum_{n=1}^{\infty} a_{n}$ diverges.

Theorem 7.6 (d'Alembert test)
Let $\sum_{n=1}^{\infty} a_{n}$ be a series with nonzero members. Then we have
(i) If $\lim \left|a_{n+1} / a_{n}\right|<1$, then $\sum_{n=1}^{\infty} a_{n}$ absolutely convergent.

Theorem 7.6 (d'Alembert test)
Let $\sum_{n=1}^{\infty} a_{n}$ be a series with nonzero members. Then we have
(i) If $\lim \left|a_{n+1} / a_{n}\right|<1$, then $\sum_{n=1}^{\infty} a_{n}$ absolutely convergent.
(ii) If $\lim \left|a_{n+1} / a_{n}\right|>1$, then $\sum_{n=1}^{\infty} a_{n}$ diverges.

Theorem 7.7
Let $\alpha \in \mathbf{R}$. The series $\sum_{n=1}^{\infty} 1 / n^{\alpha}$ converges if and only if $\alpha>1$.

Theorem 7.8 (Leibniz)
Let $\sum_{n=1}^{\infty}(-1)^{n} a_{n}$ be a series. Assume

- $a_{n} \geq a_{n+1} \geq 0$ for every $n \in \mathbf{N}$,
- $\lim _{n \rightarrow \infty} a_{n}=0$.

Then $\sum_{n=1}^{\infty}(-1)^{n} a_{n}$ converges.

Integrals - Riemann integral

$$
\Gamma
$$

$$
\Gamma
$$

Definition

A finite sequence $\left\{x_{j}\right\}_{j=0}^{n}$ is called a partition of the interval [$a, b]$, if we have

$$
a=x_{0}<x_{1}<\cdots<x_{n}=b .
$$

The points x_{0}, \ldots, x_{n} are called partition points.

Definition

A finite sequence $\left\{x_{j}\right\}_{j=0}^{n}$ is called a partition of the interval [$a, b]$, if we have

$$
a=x_{0}<x_{1}<\cdots<x_{n}=b .
$$

The points x_{0}, \ldots, x_{n} are called partition points. By a norm of partition $D=\left\{x_{j}\right\}_{j=0}^{n}$ we mean

$$
v(D)=\max \left\{x_{j}-x_{j-1} ; j=1, \ldots, n\right\} .
$$

Definition

A finite sequence $\left\{x_{j}\right\}_{j=0}^{n}$ is called a partition of the interval [a, b], if we have

$$
a=x_{0}<x_{1}<\cdots<x_{n}=b .
$$

The points x_{0}, \ldots, x_{n} are called partition points. By a norm of partition $D=\left\{x_{j}\right\}_{j=0}^{n}$ we mean

$$
v(D)=\max \left\{x_{j}-x_{j-1} ; j=1, \ldots, n\right\} .
$$

We say that a partition D^{\prime} of an interval $[a, b]$ is a refinement of the partition D of the interval $[a, b]$, if each point of D is a partition point of D^{\prime}.

Definition

Let f be a bounded function on an interval $[a, b]$ and $D=\left\{x_{j}\right\}_{j=0}^{n}$ be a partition of $[a, b]$. We denote

$$
\bar{S}(f, D)=\sum_{j=1}^{n} M_{j}\left(x_{j}-x_{j-1}\right), \text { where } M_{j}=\sup \left\{f(x) ; x \in\left[x_{j-1}, x_{j}\right]\right\},
$$

Definition

Let f be a bounded function on an interval $[a, b]$ and $D=\left\{x_{j}\right\}_{j=0}^{n}$ be a partition of $[a, b]$. We denote

$$
\begin{aligned}
& \bar{S}(f, D)=\sum_{j=1}^{n} M_{j}\left(x_{j}-x_{j-1}\right), \text { where } M_{j}=\sup \left\{f(x) ; x \in\left[x_{j-1}, x_{j}\right]\right\}, \\
& \underline{S}(f, D)=\sum_{j=1}^{n} m_{j}\left(x_{j}-x_{j-1}\right), \text { where } m_{j}=\inf \left\{f(x) ; x \in\left[x_{j-1}, x_{j}\right]\right\},
\end{aligned}
$$

Definition

Let f be a bounded function on an interval $[a, b]$ and $D=\left\{x_{j}\right\}_{j=0}^{n}$ be a partition of $[a, b]$. We denote

$$
\begin{aligned}
& \bar{S}(f, D)=\sum_{j=1}^{n} M_{j}\left(x_{j}-x_{j-1}\right), \text { where } M_{j}=\sup \left\{f(x) ; x \in\left[x_{j-1}, x_{j}\right]\right\}, \\
& \underline{S}(f, D)=\sum_{j=1}^{n} m_{j}\left(x_{j}-x_{j-1}\right), \text { where } m_{j}=\inf \left\{f(x) ; x \in\left[x_{j-1}, x_{j}\right]\right\},
\end{aligned}
$$

$\overline{\int_{a}^{b}} f(x) \mathrm{d} x=\inf \{\bar{S}(f, D) ; D$ is a partition of the interval $[a, b]\}$, $\underline{\int_{a}^{b}} f(x) \mathrm{d} x=\sup \{\underline{S}(f, D) ; D$ is a partition of the interval $[a, b]\}$.

Definition
We say that a bounded function f has Riemann integral over the interval $[a, b]$, if $\overline{\int_{a}^{b}} f(x) \mathrm{d} x=\underline{\int_{a}^{b}} f(x) \mathrm{d} x$.

Definition

We say that a bounded function f has Riemann integral over the interval $[a, b]$, if $\overline{\int_{a}^{b}} f(x) \mathrm{d} x=\underline{\int_{a}^{b} f(x) \mathrm{d} x \text {. Then the }}$ value of the integral of f over the interval $[a, b]$ is equal to $\int_{a}^{b} f(x) \mathrm{d} x$ and is denoted by $\int_{a}^{b} f(x) \mathrm{d} x$.

Definition
We say that a bounded function f has Riemann integral over the interval $[a, b]$, if $\overline{\int_{a}^{b}} f(x) \mathrm{d} x=\underline{\int_{a}^{b} f(x) \mathrm{d} x \text {. Then the }}$ value of the integral of f over the interval $[a, b]$ is equal to $\int_{a}^{b} f(x) \mathrm{d} x$ and is denoted by $\int_{a}^{b} f(x) \mathrm{d} x$. If $a>b$, we define $\int_{a}^{b} f(x) \mathrm{d} x=-\int_{b}^{a} f(x) \mathrm{d} x$. If $a=b$, we define $\int_{a}^{b} f(x) \mathrm{d} x=0$.

Remark
Let D, D^{\prime} be partitions of the interval $[a, b], D^{\prime}$ refine D, and let f be a bounded function on the interval $[a, b]$. Then we have

$$
\underline{S}(f, D) \leq \underline{S}\left(f, D^{\prime}\right) \leq \bar{S}\left(f, D^{\prime}\right) \leq \bar{S}(f, D) .
$$

$\underline{S}(f, D) \leq \underline{S}\left(f, D^{\prime}\right) \leq \bar{S}\left(f, D^{\prime}\right) \leq \bar{S}(f, D)$.

$\underline{S}(f, D) \leq \underline{S}\left(f, D^{\prime}\right) \leq \bar{S}\left(f, D^{\prime}\right) \leq \bar{S}(f, D)$.

$\underline{S}(f, D) \leq \underline{S}\left(f, D^{\prime}\right) \leq \bar{S}\left(f, D^{\prime}\right) \leq \bar{S}(f, D)$.

$\underline{S}(f, D) \leq \underline{S}\left(f, D^{\prime}\right) \leq \bar{S}\left(f, D^{\prime}\right) \leq \bar{S}(f, D)$.

$\underline{S}(f, D) \leq \underline{S}\left(f, D^{\prime}\right) \leq \bar{S}\left(f, D^{\prime}\right) \leq \bar{S}(f, D)$.

Theorem 8.1

(i) Let a function f have Riemann integral over $[a, b]$ and let $[c, d] \subset[a, b]$. Then f has Riemann integral over $[c, d]$.

Theorem 8.1

(i) Let a function f have Riemann integral over $[a, b]$ and let $[c, d] \subset[a, b]$. Then f has Riemann integral over $[c, d]$.
(ii) Let $c \in(a, b)$ and a function f have Riemann integral over $[a, c]$ and $[c, b]$. Then f has Riemann integral over $[a, b]$ and we have

$$
\int_{a}^{b} f(x) \mathrm{d} x=\int_{a}^{c} f(x) \mathrm{d} x+\int_{c}^{b} f(x) \mathrm{d} x .
$$

Theorem 8.2

Let f and g be functions with Riemann integral over $[a, b]$ and let $\alpha \in \mathbf{R}$. Then
(i) the function αf has Riemann integral over $[a, b]$ and it holds

$$
\int_{a}^{b} \alpha f(x) \mathrm{d} x=\alpha \int_{a}^{b} f(x) \mathrm{d} x,
$$

Theorem 8.2

Let f and g be functions with Riemann integral over $[a, b]$ and let $\alpha \in \mathbf{R}$. Then
(i) the function αf has Riemann integral over $[a, b]$ and it holds

$$
\int_{a}^{b} \alpha f(x) \mathrm{d} x=\alpha \int_{a}^{b} f(x) \mathrm{d} x,
$$

(ii) the function $f+g$ has Riemann integral over $[a, b]$ and it holds

$$
\int_{a}^{b}(f(x)+g(x)) \mathrm{d} x=\int_{a}^{b} f(x) \mathrm{d} x+\int_{a}^{b} g(x) \mathrm{d} x .
$$

Theorem 8.3
Let $a, b \in \mathbf{R}, a<b$, and let f and g be functions with Riemann integral over $[a, b]$.
(i) If $f(x) \geq 0$ for each $x \in[a, b]$, then

$$
\int_{a}^{b} f(x) \mathrm{d} x \geq 0
$$

Theorem 8.3
Let $a, b \in \mathbf{R}, a<b$, and let f and g be functions with Riemann integral over $[a, b]$.
(i) If $f(x) \geq 0$ for each $x \in[a, b]$, then

$$
\int_{a}^{b} f(x) \mathrm{d} x \geq 0
$$

(ii) If $f(x) \leq g(x)$ for each $x \in[a, b]$, then

$$
\int_{a}^{b} f(x) \mathrm{d} x \leq \int_{a}^{b} g(x) \mathrm{d} x .
$$

Theorem 8.3
Let $a, b \in \mathbf{R}, a<b$, and let f and g be functions with Riemann integral over $[a, b]$.
(i) If $f(x) \geq 0$ for each $x \in[a, b]$, then

$$
\int_{a}^{b} f(x) \mathrm{d} x \geq 0
$$

(ii) If $f(x) \leq g(x)$ for each $x \in[a, b]$, then

$$
\int_{a}^{b} f(x) \mathrm{d} x \leq \int_{a}^{b} g(x) \mathrm{d} x .
$$

(iii) The function $|f|$ has Riemann integral over $[a, b]$ and it holds

$$
\left|\int_{a}^{b} f(x) \mathrm{d} x\right| \leq \int_{a}^{b}|f(x)| \mathrm{d} x .
$$

Theorem 8.4
Let a function f be continuous on the interval $[a, b]$, $a, b \in \mathbf{R}$. Then f has Riemann integral over $[a, b]$.

Theorem 8.5
Let f be a continuous function on $[a, b]$ and let $c \in[a, b]$. If we denote $F(x)=\int_{c}^{x} f(t) \mathrm{d} t$ for $x \in(a, b)$, then
$F^{\prime}(x)=f(x)$ for each $x \in(a, b)$.

Primitive function

Definition

Let a function f be defined on an open interval I. We say that a function F is a primitive function of f on I, if for each $x \in I$ there exists $F^{\prime}(x)$ and $F^{\prime}(x)=f(x)$.
Theorem 8.6
Let F and G be primitive functions of f on an open interval I. Then there exists $c \in \mathbb{R}$ such that $F(x)=G(x)+c$ for each $x \in I$.

Theorem 8.7
Let f be a continuous function on an open interval I. Then f has on I a primitive function.

Theorem 8.7
Let f be a continuous function on an open interval I. Then f has on I a primitive function.

Theorem 8.8
Let f have on an open interval I a primitive function F, let a function g have on I a primitive function G, and $\alpha, \beta \in \mathbf{R}$. Then the function $\alpha F+\beta G$ is a primitive function of $\alpha f+\beta g$ on .

Theorem 8.9 (substitution)

(i) Let F be a primitive function of f on (a, b). Let φ be a function defined on an interval (α, β) with values in (a, b) and φ has at each point $t \in(\alpha, \beta)$ proper derivative. Then we have

$$
\int f(\varphi(t)) \varphi^{\prime}(t) d t \stackrel{c}{=} F(\varphi(t)) \text { on }(\alpha, \beta) .
$$

Theorem 8.9 (substitution)

(i) Let F be a primitive function of f on (a, b). Let φ be a function defined on an interval (α, β) with values in (a, b) and φ has at each point $t \in(\alpha, \beta)$ proper derivative. Then we have

$$
\int f(\varphi(t)) \varphi^{\prime}(t) d t \stackrel{c}{=} F(\varphi(t)) \text { on }(\alpha, \beta) .
$$

(ii) Let a function φ have at each point of an interval (α, β) nonzero proper derivative and $\varphi((\alpha, \beta))=(a, b)$. Let f be defined on an interval (a, b) and we have

$$
\int f(\varphi(t)) \varphi^{\prime}(t) d t \stackrel{c}{=} G(t) \text { on }(\alpha, \beta) .
$$

Then we have

$$
\int f(x) d x \stackrel{c}{=} G\left(\varphi^{-1}(x)\right) \text { on }(a, b)
$$

Theorem 8.10 (integration per partes)

Let I be an open interval and let functions f and g be continuous on I. Let F be a primitive function of f on I and G be a primitive function of g on I. Then we have

$$
\int g(x) F(x) d x=G(x) F(x)-\int G(x) f(x) d x \text { na l. }
$$

Definition
Rational function is a ratio of two polynomials, where the polynomial in denominator is not identically zero.

Definition
Rational function is a ratio of two polynomials, where the polynomial in denominator is not identically zero.

Theorem 8.11
Let P, Q be polynomial functions with real coefficients such that
(i) degree of P is strictly smaller than degree of Q,

Theorem 8.11
Let P, Q be polynomial functions with real coefficients such that
(i) degree of P is strictly smaller than degree of Q,
(ii) $Q(x)=a_{n}\left(x-x_{1}\right)^{p_{1}} \ldots\left(x-x_{k}\right)^{p_{k}}\left(x^{2}+\alpha_{1} x+\right.$

$$
\left.\beta_{1}\right)^{q_{1}} \ldots\left(x^{2}+\alpha_{I} x+\beta_{I}\right)^{q_{1}} \text {, }
$$

Theorem 8.11

Let P, Q be polynomial functions with real coefficients such that
(i) degree of P is strictly smaller than degree of Q,
(ii) $Q(x)=a_{n}\left(x-x_{1}\right)^{p_{1}} \ldots\left(x-x_{k}\right)^{p_{k}}\left(x^{2}+\alpha_{1} x+\right.$ $\left.\beta_{1}\right)^{q_{1}} \ldots\left(x^{2}+\alpha_{l} x+\beta_{l}\right)^{q_{1}}$,
(iii) $a_{n}, x_{1}, \ldots x_{k}, \alpha_{1}, \ldots, \alpha_{l}, \beta_{1}, \ldots, \beta_{l} \in \mathbf{R}, a_{n} \neq 0$,

Theorem 8.11

Let P, Q be polynomial functions with real coefficients such that
(i) degree of P is strictly smaller than degree of Q,
(ii) $Q(x)=a_{n}\left(x-x_{1}\right)^{p_{1}} \ldots\left(x-x_{k}\right)^{p_{k}}\left(x^{2}+\alpha_{1} x+\right.$ $\left.\beta_{1}\right)^{q_{1}} \ldots\left(x^{2}+\alpha_{l} x+\beta_{l}\right)^{q_{1}}$,
(iii) $a_{n}, x_{1}, \ldots x_{k}, \alpha_{1}, \ldots, \alpha_{l}, \beta_{1}, \ldots, \beta_{l} \in \mathbf{R}, a_{n} \neq 0$,
(iv) $p_{1}, \ldots, p_{k}, q_{1}, \ldots, q_{l} \in \mathbf{N}$,

Theorem 8.11

Let P, Q be polynomial functions with real coefficients such that
(i) degree of P is strictly smaller than degree of Q,
(ii) $Q(x)=a_{n}\left(x-x_{1}\right)^{p_{1}} \ldots\left(x-x_{k}\right)^{p_{k}}\left(x^{2}+\alpha_{1} x+\right.$ $\left.\beta_{1}\right)^{q_{1}} \ldots\left(x^{2}+\alpha_{l} x+\beta_{l}\right)^{q_{1}}$,
(iii) $a_{n}, x_{1}, \ldots x_{k}, \alpha_{1}, \ldots, \alpha_{l}, \beta_{1}, \ldots, \beta_{l} \in \mathbf{R}, a_{n} \neq 0$,
(iv) $p_{1}, \ldots, p_{k}, q_{1}, \ldots, q_{l} \in \mathbf{N}$,
(v) the polynomials
$x-x_{1}, x-x_{2}, \ldots, x-x_{k}, x^{2}+\alpha_{1} x+\beta_{1}, \ldots, x^{2}+\alpha_{l} x+\beta_{l}$
have no common root,

Theorem 8.11

Let P, Q be polynomial functions with real coefficients such that
(i) degree of P is strictly smaller than degree of Q,
(ii) $Q(x)=a_{n}\left(x-x_{1}\right)^{p_{1}} \ldots\left(x-x_{k}\right)^{p_{k}}\left(x^{2}+\alpha_{1} x+\right.$ $\left.\beta_{1}\right)^{q_{1}} \ldots\left(x^{2}+\alpha_{l} x+\beta_{l}\right)^{q_{1}}$,
(iii) $a_{n}, x_{1}, \ldots x_{k}, \alpha_{1}, \ldots, \alpha_{l}, \beta_{1}, \ldots, \beta_{l} \in \mathbf{R}, a_{n} \neq 0$,
(iv) $p_{1}, \ldots, p_{k}, q_{1}, \ldots, q_{l} \in \mathbf{N}$,
(v) the polynomials
$x-x_{1}, x-x_{2}, \ldots, x-x_{k}, x^{2}+\alpha_{1} x+\beta_{1}, \ldots, x^{2}+\alpha_{l} x+\beta_{l}$
have no common root,
(vi) the polynomials $x^{2}+\alpha_{1} x+\beta_{1}, \ldots, x^{2}+\alpha_{l} x+\beta_{I}$ have no real root.

Then there exist unique real numbers $A_{1}^{1}, \ldots, A_{p_{1}}^{1}$,
$\ldots, A_{1}^{k}, \ldots, A_{\rho_{k}}^{k}, B_{1}^{1}, C_{1}^{1}, \ldots, B_{q_{1}}^{1}, C_{q_{1}}^{1}, \ldots, B_{1}^{\prime}$,
$C_{1}^{\prime}, \ldots, B_{q_{l}}^{\prime}, C_{q_{l}}^{\prime}$ such that we have

$$
\begin{aligned}
\frac{P(x)}{Q(x)} & =\frac{A_{1}^{1}}{\left(x-x_{1}\right)^{p_{1}}}+\cdots+\frac{A_{p_{1}}^{1}}{\left(x-x_{1}\right)} \\
& +\cdots+\frac{A_{1}^{k}}{\left(x-x_{k}\right)^{p_{k}}}+\cdots+\frac{A_{p_{k}}^{k}}{x-x_{k}} \\
& +\frac{B_{1}^{1} x+C_{1}^{1}}{\left(x^{2}+\alpha_{1} x+\beta_{1}\right)^{q_{1}}}+\cdots+\frac{B_{q_{1}}^{1} x+C_{q_{1}}^{1}}{x^{2}+\alpha_{1} x+\beta_{1}}+\cdots \\
& +\frac{B_{1}^{1} x+C_{1}^{\prime}}{\left(x^{2}+\alpha_{l} x+\beta_{1}\right)^{q_{1}}}+\cdots+\frac{B_{q_{1}}^{1} x+C_{q_{1}}^{\prime}}{x^{2}+\alpha_{l} x+\beta_{1}} .
\end{aligned}
$$

Then there exist unique real numbers $A_{1}^{1}, \ldots, A_{p_{1}}^{1}$,
$\ldots, A_{1}^{k}, \ldots, A_{\rho_{k}}^{k}, B_{1}^{1}, C_{1}^{1}, \ldots, B_{q_{1}}^{1}, C_{q_{1}}^{1}, \ldots, B_{1}^{\prime}$,
$C_{1}^{\prime}, \ldots, B_{q_{l}}^{\prime}, C_{q_{l}}^{\prime}$ such that we have

$$
\begin{aligned}
\frac{P(x)}{Q(x)} & =\frac{A_{1}^{1}}{\left(x-x_{1}\right)^{p_{1}}}+\cdots+\frac{A_{p_{1}}^{1}}{\left(x-x_{1}\right)} \\
& +\cdots+\frac{A_{1}^{k}}{\left(x-x_{k}\right)^{p_{k}}}+\cdots+\frac{A_{p_{k}}^{k}}{x-x_{k}} \\
& +\frac{B_{1}^{1} x+C_{1}^{1}}{\left(x^{2}+\alpha_{1} x+\beta_{1}\right)^{q_{1}}}+\cdots+\frac{B_{q_{1}}^{1} x+C_{q_{1}}^{1}}{x^{2}+\alpha_{1} x+\beta_{1}}+\cdots \\
& +\frac{B_{1}^{1} x+C_{1}^{\prime}}{\left(x^{2}+\alpha_{l} x+\beta_{1}\right)^{q_{1}}}+\cdots+\frac{B_{q_{1}}^{1} x+C_{q_{1}}^{\prime}}{x^{2}+\alpha_{l} x+\beta_{1}} .
\end{aligned}
$$

