## 5. FUNCTIONS OF SEVERAL VARIABLES

## 5.1. $\mathrm{R}^{n}$ as a metric and linear space.

Definition. The set $\mathbf{R}^{n}, n \in \mathbf{N}$, is the set of all ordered $n$-tuples of real numbers.
Definition. Euclidean metric on $\mathbf{R}^{n}$ is the function $\rho$ : $\mathbf{R}^{n} \times \mathbf{R}^{n} \rightarrow[0,+\infty)$ defined by

$$
\rho(\boldsymbol{x}, \boldsymbol{y})=\sqrt{\sum_{i=1}^{n}\left(x_{i}-y_{i}\right)^{2}} .
$$

The number $\rho(\boldsymbol{x}, \boldsymbol{y})$ is called distance of the point $\boldsymbol{x}$ from the point $\boldsymbol{y}$.
Theorem 5.1 (properties of Euclidean metric). Euclidean metric $\rho$ has the following properties:
(i) $\forall \boldsymbol{x}, \boldsymbol{y} \in \mathrm{R}^{n}: \rho(\boldsymbol{x}, \boldsymbol{y})=0 \Leftrightarrow \boldsymbol{x}=\boldsymbol{y}$,
(ii) $\forall \boldsymbol{x}, \boldsymbol{y} \in \mathrm{R}^{n}: \rho(\boldsymbol{x}, \boldsymbol{y})=\rho(\boldsymbol{y}, \boldsymbol{x})$,
(symmetry)
(iii) $\forall \boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z} \in \mathrm{R}^{n}: \rho(\boldsymbol{x}, \boldsymbol{y}) \leq \rho(\boldsymbol{x}, \boldsymbol{z})+\rho(\boldsymbol{z}, \boldsymbol{y})$,
(iv) $\forall \boldsymbol{x}, \boldsymbol{y} \in \mathrm{R}^{n}, \forall \lambda \in \mathrm{R}: \rho(\lambda \boldsymbol{x}, \lambda \boldsymbol{y})=|\lambda| \rho(\boldsymbol{x}, \boldsymbol{y})$,
(v) $\forall \boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z} \in \mathrm{R}^{n}: \rho(\boldsymbol{x}+\boldsymbol{z}, \boldsymbol{y}+\boldsymbol{z})=\rho(\boldsymbol{x}, \boldsymbol{y})$.
(triangle inequality)
(homogeneity)
(translation invariance)

Definition. Let $\boldsymbol{x} \in \mathbf{R}^{n}, r \in \mathbf{R}, r>0$. The set $B(\boldsymbol{x}, r)$ defined by

$$
B(\boldsymbol{x}, r)=\left\{\boldsymbol{y} \in \mathbf{R}^{n} ; \rho(\boldsymbol{x}, \boldsymbol{y})<r\right\}
$$

is called open ball with radius $r$ centered at $\boldsymbol{x}$.
Definition. Let $M \subset \mathbf{R}^{n}$. We say that $\boldsymbol{x} \in \mathbf{R}^{n}$ is an interior point of $M$, if there exists $r>0$ such that $B(\boldsymbol{x}, r) \subset M$. The set $M \subset \mathbf{R}^{n}$ is open in $\mathbf{R}^{n}$, if each point of $M$ is an interior point of $M$. We say that $M$ is closed in $\mathbf{R}^{n}$, if its complement is closed.

Theorem 5.2 (properties of open sets).
(i) The empty set and $\mathbf{R}^{n}$ are open in $\mathbf{R}^{n}$.
(ii) Let sets $G_{\alpha} \subset \mathbf{R}^{n}, \alpha \in A \neq \emptyset$, be open in $\mathbf{R}^{n}$. Then $\bigcup_{\alpha \in A} G_{\alpha}$ is open in $\mathbf{R}^{n}$.
(iii) Let sets $G_{i}, i=1, \ldots, m$, be open in $\mathbf{R}^{n}$. Then $\bigcap_{i=1}^{m} G_{i}$ is open in $\mathbf{R}^{n}$.

Theorem 5.3 (properties of closed sets).
(i) The empty set and $\mathbf{R}^{n}$ are closed in $\mathbf{R}^{n}$.
(ii) Let sets $F_{\alpha} \subset \mathbf{R}^{n}, \alpha \in A \neq \emptyset$, be closed in $\mathbf{R}^{n}$. Then $\bigcap_{\alpha \in A} F_{\alpha}$ is closed in $\mathbf{R}^{n}$.
(iii) Let sets $F_{i}, i=1, \ldots, m$, are closed in $\mathbf{R}^{n}$. Then $\bigcup_{i=1}^{m} F_{i}$ is closed in $\mathbf{R}^{n}$.

Definition. Let $M \subset \mathbf{R}^{n}$ and $\boldsymbol{x} \in \mathbf{R}^{n}$. We say that $\boldsymbol{x}$ is a boundary point of $M$, if for each $r>0$ we have $B(\boldsymbol{x}, r) \cap M \neq \emptyset$ and $B(\boldsymbol{x}, r) \cap\left(\mathbf{R}^{n} \backslash M\right) \neq \emptyset$.

Boundary of $M$ is the set of all boundary points of $M$ (notation bd $M$ ).
Closure of $M$ is the set $M \cup \mathrm{bd} M$ (notation $\bar{M})$.
Interior of $M$ is the set of all interior points of $M$ (notation int $M$ ).

### 5.2. Continuous functions of several variables.

Definition. Let $\boldsymbol{x}^{j} \in \mathbf{R}^{n}$ for each $j \in \mathbf{N}$ and $\boldsymbol{x} \in \mathbf{R}^{n}$. We say that a sequence $\left\{\boldsymbol{x}^{j}\right\}_{j=1}^{\infty}$ converges to $\boldsymbol{x}$, if $\lim _{j \rightarrow \infty} \rho\left(\boldsymbol{x}, \boldsymbol{x}^{j}\right)=0$. The vector $\boldsymbol{x}$ is called limit of the sequence $\left\{\boldsymbol{x}^{j}\right\}_{j=1}^{\infty}$.
Theorem 5.4. Let $\boldsymbol{x}^{j} \in \mathbf{R}^{n}$ for each $j \in \mathbf{N}$ and $\boldsymbol{x} \in \mathbf{R}^{n}$. The sequence $\left\{\boldsymbol{x}^{j}\right\}_{j=1}^{\infty}$ converges to $\boldsymbol{x}$ if and only iffor each $i \in\{1, \ldots, n\}$ the sequence of real numbers $\left\{x_{i}^{j}\right\}_{j=1}^{\infty}$ converges to the real number $x_{i}$.

Definition. Let $M \subset \mathbf{R}^{n}, \boldsymbol{x} \in M$, and $f: M \rightarrow \mathbf{R}$. We say that $f$ is continuous at $\boldsymbol{x}$ with respect to $M$, if we have

$$
\forall \varepsilon \in \mathbf{R}, \varepsilon>0 \exists \delta \in \mathbf{R}, \delta>0 \forall \boldsymbol{y} \in B(\boldsymbol{x}, \delta) \cap M: f(\boldsymbol{y}) \in B(f(\boldsymbol{x}), \varepsilon) .
$$

We say that $f$ is continuous at the point $\boldsymbol{x}$, it it is continuous at $\boldsymbol{x}$ with respect to a neighborhood of $\boldsymbol{x}$, i.e.,

$$
\forall \varepsilon \in \mathbf{R}, \varepsilon>0 \exists \delta \in \mathbf{R}, \delta>0 \forall \boldsymbol{y} \in B(\boldsymbol{x}, \delta): f(\boldsymbol{y}) \in B(f(\boldsymbol{x}), \varepsilon) .
$$

Remark. Let $M \subset \mathbf{R}^{n}, \boldsymbol{x} \in M, f: M \rightarrow \mathbf{R}, g: M \rightarrow \mathbf{R}$, and $c \in \mathbf{R}$. If $f$ and $g$ are continuous at the point $\boldsymbol{x}$ with respect to $M$, then the functions $c f, f+g$ a $f g$ are continuous at $\boldsymbol{x}$ with respect to $M$. If the function $g$ is nonzero at each point of $M$, then also the function $f / g$ is continuous at $\boldsymbol{x}$ with respect to $M$.

Theorem 5.5 (Heine). Let $M \subset \mathbf{R}^{n}, \boldsymbol{x} \in M$, and $f: M \rightarrow \mathbf{R}$. Then the following are equivalent.
(i) The function $f$ is continuous at $\boldsymbol{x}$ with respect to $M$.
(ii) For each sequence $\left\{\boldsymbol{x}^{j}\right\}_{j=1}^{\infty}$ such that $\boldsymbol{x}^{j} \in M$ pro $j \in \mathrm{~N} a \lim _{j \rightarrow \infty} \boldsymbol{x}^{j}=\boldsymbol{x}$, we have $\lim _{j \rightarrow \infty} f\left(\boldsymbol{x}^{j}\right)=f(\boldsymbol{x})$.

Remark. Let $r, s \in \mathbf{N}, M \subset \mathbf{R}^{s}, L \subset \mathbf{R}^{r}$, and $\boldsymbol{y} \in M$. Let $\varphi_{1}, \ldots, \varphi_{r}$ are functions defined on $M$, which are continuous at $\boldsymbol{y}$ with respect to $M$ and $\left[\varphi_{1}(\boldsymbol{x}), \ldots, \varphi_{r}(\boldsymbol{x})\right] \in L$ for each $\boldsymbol{x} \in$ $M$. Let $f: L \rightarrow \mathbf{R}$ be continuous at the point $\left[\varphi_{1}(\boldsymbol{y}), \ldots, \varphi_{r}(\boldsymbol{y})\right]$ with respect to $L$. Then the composed function $F: M \rightarrow \mathbf{R}$ defined by

$$
F(\boldsymbol{x})=f\left(\varphi_{1}(\boldsymbol{x}), \ldots, \varphi_{r}(\boldsymbol{x})\right), \quad \boldsymbol{x} \in M,
$$

is continuous at $y$ with respect to $M$.
Definition. Let $M \subset \mathbf{R}^{n}$ a $f: M \rightarrow \mathbf{R}$. We say that $f$ is continuous on $M$, if it is continuous at each point $\boldsymbol{x} \in M$ with respect to $M$.

Remark. The projection $\pi_{j}: \mathbf{R}^{n} \rightarrow \mathbf{R}, \pi_{j}(\boldsymbol{x})=x_{j}, 1 \leq j \leq n$, are continuous on $\mathbf{R}^{n}$.
Definition. We say that a set $M \subset \mathbf{R}^{n}$ is compact, if for each sequence of elements of $M$ there exists a convergent subsequence with limit in $M$.

Theorem 5.6 (characterization of compact subsets of $\mathbf{R}^{n}$ ). The set $M \subset \mathbf{R}^{n}$ is compact if and only if $M$ is bounded and closed.

Definition. Let $M \subset \mathbf{R}^{n}, \boldsymbol{x} \in M$, and $f$ be a function defined at least on $M$, i.e., $M \subset D_{f}$. We say that $f$ attains at the point $\boldsymbol{x}$

- maximum on $M$, if for every $\boldsymbol{y} \in M$ we have $f(\boldsymbol{y}) \leq f(\boldsymbol{x})$,
- local maximum with respect to $M$, if there exists $\delta>0$ such that for every $\boldsymbol{y} \in B(\boldsymbol{x}, \delta) \cap$ $M$ we have $f(\boldsymbol{y}) \leq f(\boldsymbol{x})$,
- sharp local maximum with respect to $M$, if there exists $\delta>0$ such that for every $\boldsymbol{y} \in$ $(B(\boldsymbol{x}, \delta) \backslash\{x\}) \cap M$ we have $f(\boldsymbol{y})<f(\boldsymbol{x})$.
The notions minimum, local minimum, and sharp local minimum with respect to $M$ are defined analogically.
Definition. We say that a function $f$ attains at the point $\boldsymbol{x} \in \mathbf{R}^{n}$ local maximum, if $\boldsymbol{x}$ is a local maximum with respect to some ball centered at the point $\boldsymbol{x}$. Similarly one can define local minimum, sharp local maximum and sharp local minimum.

Theorem 5.7 (attaining extrema). Let $M \subset \mathbf{R}^{n}$ be a nonempty compact set and $f: M \rightarrow \mathbf{R}$ be continuous on $M$. Then $f$ attains on $M$ its maximum and minimum.

Corollary 5.8. Let $M \subset \mathbf{R}^{n}$ be a nonempty compact set and $f: M \rightarrow \mathbf{R}$ be continuous on $M$. Then $f$ is bounded on $M$.
Definition. We say that function $f: \mathbf{R}^{n} \rightarrow \mathbf{R}$ has at a point $\boldsymbol{a} \in \mathbf{R}^{n}$ limit equal $A \in \mathbb{R}^{*}$, if we have

$$
\forall \varepsilon \in \mathbf{R}, \varepsilon>0 \exists \delta \in \mathbf{R}, \delta>0 \forall \boldsymbol{x} \in B(\boldsymbol{a}, \delta) \backslash\{\boldsymbol{a}\}: f(\boldsymbol{x}) \in B(A, \varepsilon) .
$$

Remark.

- Each function has at a given point at most one limit. We write $\lim _{\boldsymbol{x} \rightarrow \boldsymbol{a}} f(\boldsymbol{x})=A$.
- The function $f$ is continuous at $\boldsymbol{a}$ if and only if $\lim _{\boldsymbol{x} \rightarrow \boldsymbol{a}} f(\boldsymbol{x})=f(\boldsymbol{a})$.
- For functions of several variables one can prove similar theorems as for functions of one variable (arithmetics, sandwich theorem, ...).
Theorem 5.9. Let $r, s \in \mathbf{N}, \boldsymbol{a} \in M \subset \mathbf{R}^{s}, L \subset \mathbf{R}^{r}, \varphi_{1}, \ldots, \varphi_{r}$ be functions defined on $M$ such that $\lim _{\boldsymbol{x} \rightarrow \boldsymbol{a}} \varphi_{j}(\boldsymbol{x})=b_{j}, j=1, \ldots, r$, and $\boldsymbol{b}=\left[b_{1}, \ldots, b_{r}\right] \in L$. Let $f: L \rightarrow \mathbf{R}$ be continuous at the point $\boldsymbol{b}$. We define a function $F: M \rightarrow \mathbf{R}$ by

$$
F(\boldsymbol{x})=f\left(\varphi_{1}(\boldsymbol{x}), \varphi_{2}(\boldsymbol{x}), \ldots, \varphi_{r}(\boldsymbol{x})\right), \quad \boldsymbol{x} \in M .
$$

Then $\lim _{\boldsymbol{x} \rightarrow \boldsymbol{a}} F(\boldsymbol{x})=f(\boldsymbol{b})$.

### 5.3. Partial derivatives.

Definition. Let $f$ be a function of $n$ variables, $j \in\{1, \ldots, n\}, \boldsymbol{a} \in \mathbf{R}^{n}$. Then the number

$$
\begin{aligned}
\frac{\partial f}{\partial x_{j}}(\boldsymbol{a}) & =\lim _{t \rightarrow 0} \frac{f\left(\boldsymbol{a}+t \boldsymbol{e}^{j}\right)-f(\boldsymbol{a})}{t} \\
& =\lim _{t \rightarrow 0} \frac{f\left(a_{1}, \ldots, a_{j-1}, a_{j}+t, a_{j+1}, \ldots, a_{n}\right)-f\left(a_{1}, \ldots, a_{n}\right)}{t}
\end{aligned}
$$

is called partial derivatives (of first order) of function $f$ according to $j$-th variable at the point $\boldsymbol{a}$ (if it exists).

Theorem 5.10 (necessary condition of existence of local extremum). Let $G \subset \mathbf{R}^{n}$ be an open set, $\boldsymbol{a} \in G$, and a function $f: G \rightarrow \mathbf{R}$ have at the point a local extremum. Then for each $j \in\{1, \ldots, n\}$ we have:
The partial derivative $\frac{\partial f}{\partial x_{j}}(\boldsymbol{a})$ either does not exit or is zero.
Definition. Let $G \subset \mathbf{R}^{n}$ be a nonempty open set. Let a function $f: G \rightarrow \mathbf{R}$ have at each point of the set $G$ all partial derivatives continuous (i.e., function $\boldsymbol{x} \mapsto \frac{\partial f}{\partial x_{j}}(\boldsymbol{x})$ are continuous on $G$ for each $j \in\{1, \ldots, n\}$ ). Then we say that $f$ is of the class $\mathcal{C}^{1}$ on $G$. The set of all these functions is denoted by $\mathcal{C}^{1}(G)$.

Remark. If $G \subset \mathbf{R}^{n}$ is a nonempty open set and and $f, g \in \mathcal{C}^{1}(G)$, then $f+g \in \mathcal{C}^{1}(G)$, $f-g \in \mathcal{C}^{1}(G)$, and $f g \in \mathcal{C}^{1}(G)$. If moreover for each $\boldsymbol{x} \in G$ we have $: g(\boldsymbol{x}) \neq 0$, then $f / g \in \mathcal{C}^{1}(G)$.

Proposition 5.11 (Lagrange). Let $n \in \mathbf{N}, I_{1}, \ldots, I_{n} \subset \mathbf{R}$ be open intervals, $I=I_{1} \times I_{2} \times \cdots \times I_{n}$, $f \in \mathcal{C}^{1}(I), \boldsymbol{a}, \boldsymbol{b} \in I$. Then there exist points $\boldsymbol{\xi}^{1}, \ldots, \boldsymbol{\xi}^{n} \in I$ with $\xi_{j}^{i} \in\left\langle a_{j}, b_{j}\right\rangle$ for each $i, j \in\{1, \ldots, n\}$, such that

$$
f(\boldsymbol{b})-f(\boldsymbol{a})=\sum_{i=1}^{n} \frac{\partial f}{\partial x_{i}}\left(\xi^{i}\right)\left(b_{i}-a_{i}\right) .
$$

Definition. Let $G \subset \mathbf{R}^{n}$ be an open set, $\boldsymbol{a} \in G$, and $f \in \mathcal{C}^{1}(G)$. Then the graph of the function

$$
T: \boldsymbol{x} \mapsto f(\boldsymbol{a})+\frac{\partial f}{\partial x_{1}}(\boldsymbol{a})\left(x_{1}-a_{1}\right)+\frac{\partial f}{\partial x_{2}}(\boldsymbol{a})\left(x_{2}-a_{2}\right)+\cdots+\frac{\partial f}{\partial x_{n}}(\boldsymbol{a})\left(x_{n}-a_{n}\right), \quad \boldsymbol{x} \in \mathbf{R}^{n},
$$

is called tangent hyperplane to the graph of the function $f$ at the point $[\boldsymbol{a}, f(\boldsymbol{a})]$.
Theorem 5.12. Let $G \subset \mathbf{R}^{n}$ be an open set, $\boldsymbol{a} \in G, f \in \mathcal{C}^{1}(G)$, and $T$ be a function, such that its graph is the tangent hyperplane of the function $f$ at the point $[\boldsymbol{a}, f(\boldsymbol{a})]$. Then

$$
\lim _{\boldsymbol{x} \rightarrow \boldsymbol{a}} \frac{f(\boldsymbol{x})-T(\boldsymbol{x})}{\rho(\boldsymbol{x}, \boldsymbol{a})}=0 .
$$

Theorem 5.13. Let $G \subset \mathbf{R}^{n}$ be an open nonempty set and $f \in \mathcal{C}^{1}(G)$. Then $f$ is continuous on $G$.

Theorem 5.14. Let $r, s \in \mathbf{N}, G \subset \mathbf{R}^{s}, H \subset \mathbf{R}^{r}$ be open sets. Let $\varphi_{1}, \ldots, \varphi_{r} \in \mathcal{C}^{1}(G), f \in$ $\mathcal{C}^{1}(H)$ and $\left[\varphi_{1}(\boldsymbol{x}), \ldots, \varphi_{r}(\boldsymbol{x})\right] \in H$ for each $\boldsymbol{x} \in G$. Then the composed function $F: G \rightarrow \mathbf{R}$ defined by

$$
F(\boldsymbol{x})=f\left(\varphi_{1}(\boldsymbol{x}), \varphi_{2}(\boldsymbol{x}), \ldots, \varphi_{r}(\boldsymbol{x})\right), \quad \boldsymbol{x} \in G,
$$

is of the class $\mathcal{C}^{1}$ on $G$. Let $\boldsymbol{a} \in G$ and $\boldsymbol{b}=\left[\varphi_{1}(\boldsymbol{a}), \ldots, \varphi_{r}(\boldsymbol{a})\right]$. Then for each $j \in\{1, \ldots, s\}$ we have

$$
\frac{\partial F}{\partial x_{j}}(\boldsymbol{a})=\sum_{i=1}^{r} \frac{\partial f}{\partial y_{i}}(\boldsymbol{b}) \frac{\partial \varphi_{i}}{\partial x_{j}}(\boldsymbol{a}) .
$$

Definition. Let $G \subset \mathbf{R}^{n}$ be an open set, $\boldsymbol{a} \in G$, and $f \in \mathcal{C}^{1}(G)$. Gradient of $f$ at the point $\boldsymbol{a}$ is defined as the vector

$$
\nabla f(\boldsymbol{a})=\left[\frac{\partial f}{\partial x_{1}}(\boldsymbol{a}), \frac{\partial f}{\partial x_{2}}(\boldsymbol{a}), \ldots, \frac{\partial f}{\partial x_{n}}(\boldsymbol{a})\right] .
$$

Definition. Let $G \subset \mathbf{R}^{n}$ be an open set, $\boldsymbol{a} \in G, f \in \mathcal{C}^{1}(G)$, and $\nabla f(\boldsymbol{a})=\boldsymbol{o}$. Then the point $\boldsymbol{a}$ is called stationary (or also critical) point of the function $f$.
Definition. Let $G \subset \mathbf{R}^{n}$ be an open set, $f: G \rightarrow \mathbf{R}, i, j \in\{1, \ldots, n\}$, and $\frac{\partial f}{\partial x_{i}}(\boldsymbol{x})$ exists for each $\boldsymbol{x} \in G$. Then partial derivative of the second order of the function $f$ according to $i$-th and $j$-th variable at the point $\boldsymbol{a} \in G$ is defined by

$$
\frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}(\boldsymbol{a})=\frac{\partial}{\partial x_{j}}\left(\frac{\partial f}{\partial x_{i}}\right)(\boldsymbol{a}) .
$$

If $i=j$ then we use the notation

$$
\frac{\partial^{2} f}{\partial x_{i}^{2}}(\boldsymbol{a}) .
$$

Theorem 5.15. Let $i, j \in\{1, \ldots, n\}$ and let both partial derivatives $\frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}$ and $\frac{\partial^{2} f}{\partial x_{j} \partial x_{i}}$ be continuous at a point $\boldsymbol{a} \in \mathbf{R}^{n}$. Then we have

$$
\frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}(\boldsymbol{a})=\frac{\partial^{2} f}{\partial x_{j} \partial x_{i}}(\boldsymbol{a})
$$

Definition. Let $G \subset \mathbf{R}^{n}$ be an open set and $k \in \mathbf{N}$. We say that a function $f$ is of the class $\mathcal{C}^{k}$ on $G$, if all partial derivatives of $f$ till $k$-th order are continuous on $G$. The set of all these functions is denoted by $\mathcal{C}^{k}(G)$. We say that a function $f$ is of the class $\mathcal{C}^{\infty}$ on $G$, if all partial derivatives of all orders of $f$ are continuous on $G$. The set of all functions of the class $\mathcal{C}^{\infty}$ on $G$ is denoted by $\mathcal{C}^{\infty}(G)$.

### 5.4. Implicit function theorem.

Theorem 5.16 (implicit function theorem). Let $G \subset \mathbf{R}^{n+1}$ be an open set, $F: G \rightarrow \mathbf{R}, \tilde{\boldsymbol{x}} \in \mathbf{R}^{n}$, $\tilde{y} \in \mathbf{R},[\tilde{\boldsymbol{x}}, \tilde{y}] \in G$. Suppose that
(1) $F \in \mathcal{C}^{1}(G)$,
(2) $F(\tilde{\boldsymbol{x}}, \tilde{y})=0$,
(3) $\frac{\partial F}{\partial y}(\tilde{\boldsymbol{x}}, \tilde{y}) \neq 0$.

Then there exist a neighborhood $U \subset \mathbf{R}^{n}$ of the point $\tilde{\boldsymbol{x}}$ and a neighborhood $V \subset \mathbf{R}$ of the point $\tilde{y}$ such that for each $\boldsymbol{x} \in U$ there exists unique $y \in V$ with the property $F(\boldsymbol{x}, y)=0$. If we denote this $y$ by $\varphi(\boldsymbol{x})$, then the resulting function $\varphi$ is in $\mathcal{C}^{1}(U)$ and

$$
\frac{\partial \varphi}{\partial x_{j}}(\boldsymbol{x})=-\frac{\frac{\partial F}{\partial x_{j}}(\boldsymbol{x}, \varphi(\boldsymbol{x}))}{\frac{\partial F}{\partial y}(\boldsymbol{x}, \varphi(\boldsymbol{x}))} \quad \text { for } \boldsymbol{x} \in U, j \in\{1, \ldots, n\} \text {. }
$$

Theorem 5.17 (implicit function theorem). Let $m, n \in \mathbf{N}, k \in \mathbf{N} \cup\{\infty\}, G \subset \mathbf{R}^{n+m}$ be an open set, $F_{j}: G \rightarrow \mathbf{R}$ for $j=1, \ldots, m, \tilde{\boldsymbol{x}} \in \mathbf{R}^{n}, \tilde{\boldsymbol{y}} \in \mathbf{R}^{m},[\tilde{\boldsymbol{x}}, \tilde{\boldsymbol{y}}] \in G$. Suppose that
(1) $F_{j} \in \mathcal{C}^{k}(G)$ for each $j \in\{1, \ldots, m\}$,
(2) $F_{j}(\tilde{\boldsymbol{x}}, \tilde{\boldsymbol{y}})=0$ for each $j \in\{1, \ldots, m\}$,
(3) $\left|\begin{array}{ccc}\frac{\partial F_{1}}{\partial y_{1}}(\tilde{\boldsymbol{x}}, \tilde{\boldsymbol{y}}) & \ldots & \frac{\partial F_{1}}{\partial y_{m}}(\tilde{\boldsymbol{x}}, \tilde{\boldsymbol{y}}) \\ \vdots & \ddots & \vdots \\ \frac{\partial F_{m}}{\partial y_{1}}(\tilde{\boldsymbol{x}}, \tilde{\boldsymbol{y}}) & \ldots & \frac{\partial F_{m}}{\partial y_{m}}(\tilde{\boldsymbol{x}}, \tilde{\boldsymbol{y}})\end{array}\right| \neq 0$.

Then there exist a neighborhood $U \subset \mathbf{R}^{n}$ of the point $\tilde{\boldsymbol{x}}$ and a neighborhood $V \subset \mathbf{R}^{m}$ of the point $\tilde{\boldsymbol{y}}$ such that for each $\boldsymbol{x} \in U$ there exists unique $\boldsymbol{y} \in V$ with the property $F_{j}(\boldsymbol{x}, \boldsymbol{y})=0$ for each $j \in\{1, \ldots, m\}$. If we denote coordinates of this $\boldsymbol{y}$ by $\varphi_{j}(\boldsymbol{x}), j=1, \ldots, m$, then the resulting functions $\varphi_{j}$ are in $\mathcal{C}^{k}(U)$.
Remark. The symbol in the condition (3Summer semesterDoc-Start) of Theorem 5.17Summer semesterDoc-Start is called determinant. The definition will presented later on.

For $m=1$ we have $|a|=a, a \in \mathbf{R}$.
For $m=2$ we have $\left|\begin{array}{ll}a & b \\ c & d\end{array}\right|=a d-b c, a, b, c, d \in \mathbf{R}$.

### 5.5. Lagrange multiplier theorem.

Theorem 5.18 (Lagrange multiplier theorem). Let $G \subset \mathbf{R}^{2}$ be an open set, $f, g \in \mathcal{C}^{1}(G)$, $M=\{[x, y] \in G ; g(x, y)=0\}$, and $[\tilde{x}, \tilde{y}] \in M$ be a point of local extremum of $f$ with respect to the set $M$. Then at least one of the following conditions holds:
(1) $\nabla g(\tilde{x}, \tilde{y})=\boldsymbol{o}$,
(2) there exists $\lambda \in \mathbf{R}$ satisfying

$$
\begin{aligned}
& \frac{\partial f}{\partial x}(\tilde{x}, \tilde{y})+\lambda \frac{\partial g}{\partial x}(\tilde{x}, \tilde{y})=0 \\
& \frac{\partial f}{\partial y}(\tilde{x}, \tilde{y})+\lambda \frac{\partial g}{\partial y}(\tilde{x}, \tilde{y})=0
\end{aligned}
$$

Theorem 5.19 (Lagrange multiplier theorem). Let $m, n \in \mathbf{N}, m<n, G \subset \mathbf{R}^{n}$ be an open set, $f, g_{1}, \ldots, g_{m} \in \mathcal{C}^{1}(G)$,

$$
M=\left\{z \in G ; g_{1}(z)=0, g_{2}(z)=0, \ldots, g_{m}(z)=0\right\}
$$

and let $\tilde{\boldsymbol{z}} \in M$ be a point of local extremum of $f$ with respect to the set $M$. Then at least one of the following conditions holds:
(1) the vectors

$$
\nabla g_{1}(\tilde{z}), \nabla g_{2}(\tilde{z}), \ldots, \nabla g_{m}(\tilde{z})
$$

are linearly dependent,
(2) there exist $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{m} \in \mathbf{R}$ satisfying

$$
\nabla f(\tilde{\boldsymbol{z}})+\lambda_{1} \nabla g_{1}(\tilde{\mathbf{z}})+\lambda_{2} \nabla g_{2}(\tilde{\boldsymbol{z}})+\cdots+\lambda_{m} \nabla g_{m}(\tilde{\boldsymbol{z}})=\boldsymbol{o} .
$$

### 5.6. Concave and quasiconcave functions.

Definition. Let $M \subset \mathbf{R}^{n}$. We say that $M$ is convex, if we have

$$
\forall \boldsymbol{x}, \boldsymbol{y} \in M \forall t \in\langle 0,1\rangle: t \boldsymbol{x}+(1-t) \boldsymbol{y} \in M .
$$

Definition. Let $M \subset \mathbf{R}^{n}$ be a convex set and a function $f$ be defined on $M$. We say that $f$ is - concave on $M$, if

$$
\forall \boldsymbol{a}, \boldsymbol{b} \in M \forall t \in\langle 0,1\rangle: f(t \boldsymbol{a}+(1-t) \boldsymbol{b}) \geq t f(\boldsymbol{a})+(1-t) f(\boldsymbol{b}),
$$

- strictly concave on $M$, if

$$
\forall \boldsymbol{a}, \boldsymbol{b} \in M, \boldsymbol{a} \neq \boldsymbol{b} \forall t \in(0,1): f(t \boldsymbol{a}+(1-t) \boldsymbol{b})>t f(\boldsymbol{a})+(1-t) f(\boldsymbol{b}) .
$$

Theorem 5.20. Let a function $f$ be concave on an open convex set $G \subset \mathbf{R}^{n}$. Then $f$ is continuous on $G$.

Theorem 5.21. Let a function $f$ be concave on a convex set $M \subset \mathbf{R}^{n}$. Then for each $\alpha \in \mathbf{R}$ the set $Q_{\alpha}=\{\boldsymbol{x} \in M ; f(\boldsymbol{x}) \geq \alpha\}$ is convex.

Theorem 5.22 (characterization of concave functions of the class $\mathcal{C}^{1}$ ). Let $G \subset \mathbf{R}^{n}$ be a convex open set and $f \in \mathcal{C}^{1}(G)$. Then the function $f$ is convex on $G$ if and only if we have

$$
\forall \boldsymbol{x}, \boldsymbol{y} \in G: f(\boldsymbol{y}) \leq f(\boldsymbol{x})+\sum_{i=1}^{n} \frac{\partial f}{\partial x_{i}}(\boldsymbol{x})\left(y_{i}-x_{i}\right)
$$

Corollary 5.23. Let $G \subset \mathbf{R}^{n}$ be a convex open set and $f \in \mathcal{C}^{1}(G)$ be concave on $G$. If a point $\boldsymbol{a} \in G$ is a stationary point of $f$, then $\boldsymbol{a}$ is a point of maximum of $f$ with respect to $G$.

Theorem 5.24 (characterization of strictly concave functions of the class $\mathcal{C}^{1}$ ). Let $G \subset \mathbf{R}^{n}$ be a convex open set and $f \in \mathcal{C}^{1}(G)$. Then the function $f$ is strictly concave on $G$ if and only if we have

$$
\forall \boldsymbol{x}, \boldsymbol{y} \in G, \boldsymbol{x} \neq \boldsymbol{y}: f(\boldsymbol{y})<f(\boldsymbol{x})+\sum_{i=1}^{n} \frac{\partial f}{\partial x_{i}}(\boldsymbol{x})\left(y_{i}-x_{i}\right) .
$$

Definition. Let $M \subset \mathbf{R}^{n}$ be a convex set and $f$ be defined on $M$. We say that $f$ is

- quasiconcave on $M$, if

$$
\forall \boldsymbol{a}, \boldsymbol{b} \in M \forall t \in[0,1]: f(t \boldsymbol{a}+(1-t) \boldsymbol{b}) \geq \min \{f(\boldsymbol{a}), f(\boldsymbol{b})\},
$$

- strictly quasiconcave on $M$, if

$$
\forall \boldsymbol{a}, \boldsymbol{b} \in M, \boldsymbol{a} \neq \boldsymbol{b}, \forall t \in(0,1): f(t \boldsymbol{a}+(1-t) \boldsymbol{b})>\min \{f(\boldsymbol{a}), f(\boldsymbol{b})\} .
$$

Remark. Let $M \subset \mathbf{R}^{n}$ be a convex set and $f$ be a function defined on $M$.

- Let $f$ be concave on $M$. Then $f$ is quasiconcave on $M$.
- Let $f$ be strictly concave on $M$. Then $f$ is strictly quasiconcave on $M$.

Theorem 5.25 (on uniqueness of extremum). Let $f$ be a strictly quasiconcave function on a convex set $M \subset \mathbf{R}^{n}$. Then there exists at most one point of maximum of $f$.

Corollary 5.26. Let $M \subset \mathbf{R}^{n}$ be a convex, bounded, closed and nonempty set. Let $f$ be continuous and strictly quasiconcave function on $M$. Then $f$ attains its maximum on $M$ in a unique point.

Theorem 5.27 (characterization of quasiconcave functions via level sets). Let $M \subset \mathbf{R}^{n}$ be a convex set and $f$ be defined on $M$. The function $f$ is quasiconcave on $M$ if and only if for each $\alpha \in \mathbf{R}$ the set $Q_{\alpha}=\{\boldsymbol{x} \in M ; f(\boldsymbol{x}) \geq \alpha\}$ is convex.

## 6. MATRIX CALCULUS

### 6.1. Basic operations with matrices.

Definition. The scheme

$$
\left(\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 n} \\
a_{21} & a_{22} & \ldots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m 1} & a_{m 2} & \ldots & a_{m n}
\end{array}\right)
$$

where $a_{i j} \in \mathbf{R}, i=1, \ldots, m, j=1, \ldots, n$, is called a matrix of the type $m \times n$. We write $\left(a_{i j}\right)_{\substack{i=11 . m \\ j=1 . . n}}$. A matrix of type $n \times n$ is called square matrix of the order $n$. The set of all matrices of the type $m \times n$ is denoted $M(m \times n)$.

Definition. Let

$$
\mathbb{A}=\left(\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 n} \\
a_{21} & a_{22} & \ldots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m 1} & a_{m 2} & \ldots & a_{m n}
\end{array}\right) .
$$

The $n$-tuple $\left(a_{i 1}, a_{i 2}, \ldots, a_{i n}\right)$, where
$i \in\{1,2, \ldots, m\}$, is called $i$-th row of the matrix $\mathbb{A}$. The $m$-tuple $\left(\begin{array}{c}a_{1 j} \\ a_{2 j} \\ \vdots \\ a_{m j}\end{array}\right)$, where
$j \in\{1,2, \ldots, n\}$, is called $j$-th column matrix $\mathbb{A}$.
Definition. We say that two matrices are equal, if they are of the same type and the corresponding elements are equal, i.e., if $\mathbb{A}=\left(a_{i j}\right)_{\substack{i=1 . m \\ j=1 . . n}}$ and $\mathbb{B}=\left(b_{u v}\right)_{\substack{u=1 . . r \\ v=1 \ldots . s}}$, then $\mathbb{A}=\mathbb{B}$ if and only if $m=r, n=s$ and $a_{i j}=b_{i j}$ for every $i \in\{1, \ldots, m\}, j \in\{1, \ldots, n\}$.
Definition. Let $\mathbb{A}, \mathbb{B} \in M(m \times n), \mathbb{A}=\left(a_{i j}\right)_{\substack{i=1 . m \\ j=1 . . n}}, \mathbb{B}=\left(b_{i j}\right)_{\substack{i=1 . m \\ j=1 . . n}}, \lambda \in \mathbf{R}$. The sum of $\mathbb{A}$ and $\mathbb{B}$ is defined by

$$
\mathbb{A}+\mathbb{B}=\left(\begin{array}{cccc}
a_{11}+b_{11} & a_{12}+b_{12} & \ldots & a_{1 n}+b_{1 n} \\
a_{21}+b_{21} & a_{22}+b_{22} & \ldots & a_{2 n}+b_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m 1}+b_{m 1} & a_{m 2}+b_{m 1} & \ldots & a_{m n}+b_{m n}
\end{array}\right) .
$$

Product of a real number $\lambda$ and the matrix $\mathbb{A}$ is defined by

$$
\lambda \mathbb{A}=\left(\begin{array}{cccc}
\lambda a_{11} & \lambda a_{12} & \ldots & \lambda a_{1 n} \\
\lambda a_{21} & \lambda a_{22} & \ldots & \lambda a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
\lambda a_{m 1} & \lambda a_{m 2} & \ldots & \lambda a_{m n}
\end{array}\right) .
$$

Proposition 6.1 (basic properties).

- $\forall \mathbb{A}, \mathbb{B}, \mathbb{C} \in M(m \times n): \mathbb{A}+(\mathbb{B}+\mathbb{C})=(\mathbb{A}+\mathbb{B})+\mathbb{C}$,
(associativity)
- $\forall \mathbb{A}, \mathbb{B} \in M(m \times n): \mathbb{A}+\mathbb{B}=\mathbb{B}+\mathbb{A}$,
(commutativity)
- $\exists!\mathbb{O} \in M(m \times n) \forall \mathbb{A} \in M(m \times n): \mathbb{A}+\mathbb{O}=\mathbb{A}$,
(existence of the zero element)
- $\forall \mathbb{A} \in M(m \times n) \exists \mathbb{C}_{\mathbb{A}} \in M(m \times n): \mathbb{A}+\mathbb{C}_{\mathbb{A}}=\mathbb{O}$,
- $\forall \mathbb{A} \in M(m \times n) \forall \lambda, \mu \in \mathbf{R}:(\lambda \mu) \mathbb{A}=\lambda(\mu \mathbb{A})$,
- $\forall \mathbb{A} \in M(m \times n): 1 \cdot \mathbb{A}=\mathbb{A}$,
- $\forall \mathbb{A} \in M(m \times n) \forall \lambda, \mu \in \mathbf{R}:(\lambda+\mu) \mathbb{A}=\lambda \mathbb{A}+\mu \mathbb{A}$,
- $\forall \mathbb{A}, \mathbb{B} \in M(m \times n) \forall \lambda \in \mathbb{R}: \lambda(\mathbb{A}+\mathbb{B})=\lambda \mathbb{A}+\lambda \mathbb{B}$.

Definition. Let $\mathbb{A} \in M(m \times n), \mathbb{A}=\left(a_{i s}\right)_{\substack{i=1 . m \\ s=1 . . n}}, \mathbb{B} \in M(n \times k), \mathbb{B}=\left(b_{s j}\right)_{\substack{s=1 . n \\ j=1 . . k}}^{\substack{\text {. }}}$. Then the product of matrices $\mathbb{A}$ and $\mathbb{B}$ is defined as $\mathbb{A} \mathbb{B} \in M(m \times k), \mathbb{A} \mathbb{B}=\left(c_{i j}\right)_{\substack{i=1 . m \\ j=1 . . k}}^{\substack{\text {, }}}$, where

$$
c_{i j}=\sum_{s=1}^{n} a_{i s} b_{s j} .
$$

Theorem 6.2 (properties of matrix multiplication). Let $m, n, k, l \in \mathbf{N}$. Then we have:
(i) $\forall \mathbb{A} \in M(m \times n) \forall \mathbb{B} \in M(n \times k) \forall \mathbb{C} \in M(k \times l): \mathbb{A}(\mathbb{B} \mathbb{C})=(\mathbb{A} \mathbb{B}) \mathbb{C}, \quad$ (associativity)
(ii) $\forall \mathbb{A} \in M(m \times n) \forall \mathbb{B}, \mathbb{C} \in M(n \times k): \mathbb{A}(\mathbb{B}+\mathbb{C})=\mathbb{A} \mathbb{B}+\mathbb{A} \mathbb{C}$, (left distributivity)
(iii) $\forall \mathbb{A}, \mathbb{B} \in M(m \times n) \forall \mathbb{C} \in M(n \times k):(\mathbb{A}+\mathbb{B}) \mathbb{C}=\mathbb{A} \mathbb{C}+\mathbb{B} \mathbb{C}, \quad$ (right distributivity)
(iv) $\exists!\mathbb{I} \in M(n \times n) \forall \mathbb{A} \in M(n \times n): \mathbb{I} \mathbb{A}=\mathbb{A} \mathbb{I}=\mathbb{A}$. (identity matrix $\mathbb{I}$ )

Remark. Warning! Matrix multiplication is not commutative.
Definition. Transpose matrix for a matrix

$$
\mathbb{A}=\left(\begin{array}{ccccc}
a_{11} & a_{12} & a_{13} & \ldots & a_{1 n} \\
a_{21} & a_{22} & a_{23} & \ldots & a_{2 n} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
a_{m 1} & a_{m 2} & a_{m 3} & \ldots & a_{m n}
\end{array}\right)
$$

is defined by

$$
\mathbb{A}^{T}=\left(\begin{array}{cccc}
a_{11} & a_{21} & \ldots & a_{m 1} \\
a_{12} & a_{22} & \ldots & a_{m 2} \\
a_{13} & a_{23} & \ldots & a_{m 3} \\
\vdots & \vdots & \ddots & \vdots \\
a_{1 n} & a_{2 n} & \ldots & a_{m n}
\end{array}\right),
$$

i.e., if $\mathbb{A}=\left(a_{i j}\right)_{\substack{i=1 . . m \\ j=1 . . n}}$, then $\mathbb{A}^{T}=\left(b_{u v}\right)_{\substack{u=1 . . n \\ v=1 . . m}}^{\substack{\text {, }}}$, where $b_{u v}=a_{v u}$ for each $u \in\{1, \ldots, n\}$, $v \in\{1,2, \ldots, m\}$.

Theorem 6.3 (properties of transpose matrix). We have
(i) $\forall \mathbb{A} \in M(m \times n):\left(\mathbb{A}^{T}\right)^{T}=\mathbb{A}$,
(ii) $\forall \mathbb{A}, \mathbb{B} \in M(m \times n):(\mathbb{A}+\mathbb{B})^{T}=\mathbb{A}^{T}+\mathbb{B}^{T}$,
(iii) $\forall \mathbb{A} \in M(m \times n) \forall \mathbb{B} \in M(n \times k):(\mathbb{A} \mathbb{B})^{T}=\mathbb{B}^{T} \mathbb{A}^{T}$.

### 6.2. Regular matrices.

Definition. Let $\mathbb{A} \in M(n \times n)$. We say that $\mathbb{A}$ is regular matrix, if there exists $\mathbb{B} \in M(n \times n)$ such that

$$
\mathbb{A} \mathbb{B}=\mathbb{B} \mathbb{A}=\mathbb{I}
$$

Definition. We say that $\mathbb{B} \in M(n \times n)$ is inverse to a matrix $\mathbb{A} \in M(n \times n)$, if $\mathbb{A} \mathbb{B}=\mathbb{B} \mathbb{A}=\mathbb{I}$.
Remark. A matrix $\mathbb{A} \in M(n \times n)$ is regular, if and only if $\mathbb{A}$ has its inverse matrix.
Theorem 6.4 (regularity and matrix operations). Let $\mathbb{A}, \mathbb{B} \in M(n \times n)$ be regular. Then we have:
(i) $\mathbb{A}^{-1}$ is regular and $\left(\mathbb{A}^{-1}\right)^{-1}=\mathbb{A}$,
(ii) $\mathbb{A}^{T}$ is regular and $\left(\mathbb{A}^{T}\right)^{-1}=\left(\mathbb{A}^{-1}\right)^{T}$,
(iii) $\mathbb{A} \mathbb{B}$ is regular and $(\mathbb{A} \mathbb{B})^{-1}=\mathbb{B}^{-1} \mathbb{A}^{-1}$.

Definition. Let $\boldsymbol{v}^{1}, \ldots, \boldsymbol{v}^{k} \in \mathbf{R}^{n}$ be vectors. Linear combination of vectors $\boldsymbol{v}^{1}, \ldots, \boldsymbol{v}^{k}$ is an expression $\lambda_{1} \boldsymbol{v}^{1}+\cdots+\lambda_{k} \boldsymbol{v}^{k}$, where $\lambda_{1}, \ldots, \lambda_{k} \in \mathbf{R}$. Trivial linear combination of vectors $\boldsymbol{v}^{1}, \ldots, \boldsymbol{v}^{k}$ we mean the linear combination $0 \cdot \boldsymbol{v}^{1}+\cdots+0 \cdot \boldsymbol{v}^{k}$. Linear combination, which is not trivial, is called nontrivial.
Definition. We say that vectors $\boldsymbol{v}^{1}, \ldots, \boldsymbol{v}^{k}$ are linearly dependent, if there exists their nontrivial linear combination, which is equal to the zero vector.

We say that vectors $\boldsymbol{v}^{1}, \ldots, \boldsymbol{v}^{k}$ are linearly independent, if they are not linearly dependent, i.e., if $\lambda_{1}, \ldots, \lambda_{k} \in \mathbf{R}$ satisfy $\lambda_{1} \boldsymbol{v}^{1}+\cdots+\lambda_{k} \boldsymbol{v}^{k}=\boldsymbol{o}$, then $\lambda_{1}=\lambda_{2}=\cdots=\lambda_{k}=0$.

Definition. Let $\mathbb{A} \in M(m \times n)$. Rank of the matrix $\mathbb{A}$ is the maximal number of linearly independent row vectors of $\mathbb{A}$. Rank of $\mathbb{A}$ is denoted by $\operatorname{rk}(\mathbb{A})$.
Definition. We say that $\mathbb{A} \in M(m \times n)$ is in the row echelon form, if for each $i \in\{2, \ldots, m\}$ we have, that $i$-th row of $\mathbb{A}$ is a zero vector or the number of zeros at the beginning of the row is bigger than the number of zeros at the beginning of $(i-1)$-st row.

Remark. The rank of row echelon matrix $\mathbb{A}$ is equal to the number of nonzero rows of $\mathbb{A}$.
Definition. Elementary row transformations of the matrix $\mathbb{A}$ are defined as:
(i) interchange of two rows,
(ii) multiplication of a row by a nonzero real number,
(iii) addition of a row to another row.

Definition. Transformation is defined as a finite sequence of elementary row transformation. If the matrix $\mathbb{B} \in M(m \times n)$ was created from $\mathbb{A} \in M(m \times n)$ applying a transformation $T$ to $\mathbb{A}$, then this fact is denoted by $\mathbb{A} \stackrel{T}{\sim} \mathbb{B}$.

Theorem 6.5 (properties of transformation).
(i) Let $\mathbb{A} \in M(m \times n)$. Then there exists a transformation transforming $\mathbb{A}$ to a row echelon matrix.
(ii) Let $T_{1}$ be a transformation applicable to matrices of the type $m \times n$. Then there exists a transformation $T_{2}$ applicable to matrices of the type $m \times n$ such that if $\mathbb{A} \xrightarrow{T_{1}} \mathbb{B}$ for some $\mathbb{A}, \mathbb{B} \in M(m \times n)$, then $\mathbb{B} \xrightarrow{T_{2}} \mathbb{A}$.
(iii) Let $\mathbb{A}, \mathbb{B} \in M(m \times n)$ and there exist a transformation $T$ such that $\mathbb{A} \stackrel{T}{\rightarrow} \mathbb{B}$. Then $\operatorname{rk}(\mathbb{A})=$ $\operatorname{rk}(\mathbb{B})$.

Theorem 6.6 (multiplication and transformation). Let $\mathbb{A} \in M(m \times k)$, $\mathbb{B} \in M(k \times n), \mathbb{C} \in$ $M(m \times n)$ and we have $\mathbb{A} \mathbb{B}=\mathbb{C}$. Let $T$ be a transformation and $\mathbb{A} \stackrel{T}{\sim} \mathbb{A}^{\prime}$ and $\mathbb{C} \stackrel{T}{\sim} \mathbb{C}^{\prime}$. Then we have $\mathbb{A}^{\prime} \mathbb{B}=\mathbb{C}^{\prime}$.

Lemma 6.7. Let $\mathbb{A} \in M(n \times n)$ and $\operatorname{rk}(\mathbb{A})=n$. Then there exists a transformation transforming A to $\mathbb{I}$.

Theorem 6.8. Let $\mathbb{A} \in M(n \times n)$. Then $\mathbb{A}$ is regular if and only if $\operatorname{rk}(\mathbb{A})=n$.

### 6.3. Determinants.

Definition. Let $\mathbb{A} \in M(n \times n)$. The symbol $\mathbb{A}_{i j}$ denotes the matrix of the type $(n-1) \times(n-1)$, which is created from $\mathbb{A}$ omitting $i$-th row and $j$-th column.
Definition. Let $\mathbb{A}=\left(a_{i j}\right)_{i, j=1 . . n}$. Determinant of the matrix $\mathbb{A}$ is defined by

$$
\operatorname{det} \mathbb{A}= \begin{cases}a_{11} & \text { then } n=1 \\ \sum_{i=1}^{n}(-1)^{i+1} a_{i 1} \operatorname{det} \mathbb{A}_{i 1} & \text { then } n>1\end{cases}
$$

For $\operatorname{det} \mathbb{A}$ we will use also the symbol

$$
\left|\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 n} \\
a_{21} & a_{22} & \ldots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{n 1} & a_{n 2} & \ldots & a_{n n}
\end{array}\right| .
$$

Theorem 6.9. Let $j, n \in \mathbf{N}, j \leq n$, and matrices $\mathbb{A}, \mathbb{B}, \mathbb{C} \in M(n \times n)$ coincide at each row except $j$-th row. Let $j$-th row of $\mathbb{A}$ be equal to the sum of $j$-th rows of $\mathbb{B}$ and $\mathbb{C}$. Then we have $\operatorname{det} \mathbb{A}=\operatorname{det} \mathbb{B}+\operatorname{det} \mathbb{C}$.

$$
\left|\begin{array}{ccc}
a_{11} & \ldots & a_{1 n} \\
\vdots & \ddots & \vdots \\
a_{j-1,1} & \ldots & a_{j-1, n} \\
u_{1}+v_{1} & \ldots & u_{n}+v_{n} \\
a_{j+1,1} & \ldots & a_{j+1, n} \\
\vdots & \ddots & \vdots \\
a_{n 1} & \ldots & a_{n n}
\end{array}\right|=\left|\begin{array}{ccc}
a_{11} & \ldots & a_{1 n} \\
\vdots & \ddots & \vdots \\
a_{j-1,1} & \ldots & a_{j-1, n} \\
u_{1} & \ldots & u_{n} \\
a_{j+1,1} & \ldots & a_{j+1, n} \\
\vdots & \ddots & \vdots \\
a_{n 1} & \ldots & a_{n n}
\end{array}\right|+\left|\begin{array}{ccc}
a_{11} & \ldots & a_{1 n} \\
\vdots & \ddots & \vdots \\
a_{j-1,1} & \ldots & a_{j} \\
v_{n}-1, n \\
a_{j+1,1} & \ldots & a_{j+1, n} \\
\vdots & \ddots & \vdots \\
a_{n 1} & \ldots & a_{n n}
\end{array}\right|
$$

Theorem 6.10 (determinant and transformation). Let $\mathbb{A}, \mathbb{A}^{\prime} \in M(n \times n)$.
(i) Let $\mathbb{A}^{\prime}$ be created from $\mathbb{A}$ such that we interchanged two rows in $\mathbb{A}$ (i.e., we applied an elementary row transformation of the first kind). Then we have $\operatorname{det} \mathbb{A}^{\prime}=-\operatorname{det} \mathbb{A}$.
(ii) Let $\mathbb{A}^{\prime}$ be created from $\mathbb{A}$ such that a row in $\mathbb{A}$ is multiplied by $\lambda \in \mathbf{R}$. Then we have $\operatorname{det} \mathbb{A}^{\prime}=\lambda \operatorname{det} \mathbb{A}$.
(iii) Let $\mathbb{A}^{\prime}$ be created from $\mathbb{A}$ such that we added a row of $\mathbb{A}$ to another row of $\mathbb{A}$ (i.e., we applied an elementary row transformation of the third kind). Then we have $\operatorname{det} \mathbb{A}^{\prime}=\operatorname{det} \mathbb{A}$.

Corollary 6.11. Let $\mathbb{A}, \mathbb{A}^{\prime} \in M(n \times n)$ and $\mathbb{A}^{\prime}$ be created from $\mathbb{A}$ applying a transformation. Then $\operatorname{det} \mathbb{A}^{\prime} \neq 0$ if and only if $\operatorname{det} \mathbb{A} \neq 0$.
Theorem 6.12 (determinant and transposition). Let $\mathbb{A} \in M(n \times n)$. Then we have $\operatorname{det} \mathbb{A}^{T}=$ $\operatorname{det} \mathbb{A}$.

Theorem 6.13 (determinant of product). Let $\mathbb{A}, \mathbb{B} \in M(n \times n)$. Then we have

$$
\operatorname{det} \mathbb{A} \mathbb{B}=\operatorname{det} \mathbb{A} \cdot \operatorname{det} \mathbb{B}
$$

Theorem 6.14. Let $\mathbb{A}=\left(a_{i j}\right)_{i, j=1 . . n}, k \in\{1, \ldots, n\}$. Then

$$
\begin{aligned}
& \operatorname{det} \mathbb{A}=\sum_{i=1}^{n}(-1)^{i+k} a_{i k} \operatorname{det} \mathbb{A}_{i k} \\
& \operatorname{det} \mathbb{A}=\sum_{j=1}^{n}(-1)^{k+j} a_{k j} \operatorname{det} \mathbb{A}_{k j}
\end{aligned}
$$

Definition. Let $\mathbb{A}=\left(a_{i j}\right)_{i, j=1 . . n}$. We say that $\mathbb{A}$ is upper triangular matrix if we have $a_{i j}=0$ for $i>j, i, j \in\{1, \ldots, n\}$. We say that $\mathbb{A}$ is lower triangular matrix, if we have $a_{i j}=0$ for $i<j, i, j \in\{1, \ldots, n\}$.

Theorem 6.15. Let $\mathbb{A}=\left(a_{i j}\right)_{i, j=1 . . n}$ is upper (lower, respectively) triangular matrix. Then we have

$$
\operatorname{det} \mathbb{A}=a_{11} \cdot a_{22} \cdots \cdots a_{n n}
$$

Theorem 6.16. Let $\mathbb{A} \in M(n \times n)$. Then $\mathbb{A}$ is regular if and only if $\operatorname{det} \mathbb{A} \neq 0$.
6.4. Systems of linear equations. The system of $n$ equations with $n$ unknowns:

$$
\begin{align*}
& a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 n} x_{n}=b_{1} \\
& a_{21} x_{1}+a_{22} x_{2}+\cdots+a_{2 n} x_{n}=b_{2} \tag{S}
\end{align*}
$$

$$
a_{n 1} x_{1}+a_{n 2} x_{2}+\cdots+a_{n n} x_{n}=b_{n}
$$

Matrix form

$$
\mathbb{A} \boldsymbol{x}=\boldsymbol{b}
$$

where $\mathbb{A}=\left(\begin{array}{ccc}a_{11} & \ldots & a_{1 n} \\ \vdots & \ddots & \vdots \\ a_{n 1} & \ldots & a_{n n}\end{array}\right)$ is called matrix of the system, $\boldsymbol{b}=\left(\begin{array}{c}b_{1} \\ \vdots \\ b_{n}\end{array}\right)$ vector of the right side and $\boldsymbol{x}=\left(\begin{array}{c}x_{1} \\ \vdots \\ x_{n}\end{array}\right)$ vectors of unknowns.
Theorem 6.17. Let $\mathbb{A} \in M(n \times n)$. Then the following are equivalent.
(i) The matrix $\mathbb{A}$ is regular.
(ii) The system (SSystems of linear equationsDoc-Start) have for each $\boldsymbol{b}$ a unique solution.
(iii) The system (SSystems of linear equationsDoc-Start) have for each $\boldsymbol{b}$ at least one solution.

Theorem 6.18 (Cramer's rule). Let $\mathbb{A} \in M(n \times n)$ be a regular matrix, $\boldsymbol{b} \in M(n \times 1)$, $\boldsymbol{x} \in$ $M(n \times 1)$, and $\mathbb{A} \boldsymbol{x}=\boldsymbol{b}$. Then

$$
x_{j}=\frac{\left|\begin{array}{ccccccc}
a_{11} & \ldots & a_{1, j-1} & b_{1} & a_{1, j+1} & \ldots & a_{1 n} \\
\vdots & & & \vdots & & & \vdots \\
a_{n 1} & \ldots & a_{n, j-1} & b_{n} & a_{n, j+1} & \ldots & a_{n n}
\end{array}\right|}{\operatorname{det} \mathbb{A}}
$$

for $j=1, \ldots, n$.
System of $m$ equations with $n$ unknowns:

$$
\begin{align*}
& a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 n} x_{n}=b_{1} \\
& a_{21} x_{1}+a_{22} x_{2}+\cdots+a_{2 n} x_{n}=b_{2} \tag{S’}
\end{align*}
$$

$$
a_{m 1} x_{1}+a_{m 2} x_{2}+\cdots+a_{m n} x_{n}=b_{m}
$$

Matrix notation

$$
\mathbb{A} \boldsymbol{x}=\boldsymbol{b}
$$

where $\mathbb{A}=\left(\begin{array}{ccc}a_{11} & \cdots & a_{1 n} \\ \vdots & \ddots & \vdots \\ a_{m 1} & \cdots & a_{m n}\end{array}\right) \in M(m \times n), \boldsymbol{b}=\left(\begin{array}{c}b_{1} \\ \vdots \\ b_{m}\end{array}\right) \in M(m \times 1)$ a $\boldsymbol{x}=\left(\begin{array}{c}x_{1} \\ \vdots \\ x_{n}\end{array}\right) \in M(n \times 1)$.
Definition. The matrix

$$
(\mathbb{A} \mid \boldsymbol{b})=\left(\begin{array}{ccc|c}
a_{11} & \ldots & a_{1 n} & b_{1} \\
\vdots & \ddots & \vdots & \vdots \\
a_{m 1} & \ldots & a_{m n} & b_{m}
\end{array}\right)
$$

is called extended matrix of the system (S'Systems of linear equationsDoc-Start).
Theorem 6.19. The system (S'Systems of linear equationsDoc-Start) has a solution if and only if the matrix has the same rank as the extended matrix of the system.

### 6.5. Matrix and linear mappings.

Definition. We say that a mapping $f: \mathbf{R}^{n} \rightarrow \mathbf{R}^{m}$ is linear if
(i) $\forall \boldsymbol{u}, \boldsymbol{v} \in \mathbf{R}^{n}: f(\boldsymbol{u}+\boldsymbol{v})=f(\boldsymbol{u})+f(\boldsymbol{v})$,
(ii) $\forall \lambda \in \mathbf{R} \forall \boldsymbol{u} \in \mathbf{R}^{n}: f(\lambda \boldsymbol{u})=\lambda f(\boldsymbol{u})$.

Definition. Let $i \in\{1, \ldots, n\}$. The vector

$$
\boldsymbol{e}^{i}=\left(\begin{array}{c}
0 \\
\vdots \\
0 \\
1 \\
0 \\
\vdots \\
\vdots
\end{array}\right) \ldots i \text {-th coordinate }
$$

is called $i$-th canonical vector of the space $\mathbf{R}^{n}$. The set $\left\{\boldsymbol{e}^{1}, \ldots, \boldsymbol{e}^{n}\right\}$ of all canonical vectors in $\mathbf{R}^{n}$ is called canonical basis of the space $\mathbf{R}^{n}$.
The properties of canonical vectors:
(i) $\forall \boldsymbol{x} \in \mathrm{R}^{n} \exists \lambda_{1}, \ldots, \lambda_{n} \in \mathrm{R}: \boldsymbol{x}=\lambda_{1} \boldsymbol{e}^{1}+\cdots+\lambda_{n} \boldsymbol{e}^{n}$,
(ii) the vectors $\boldsymbol{e}^{1}, \ldots, \boldsymbol{e}^{n}$ are linearly independent.

Theorem $\mathbf{6 . 2 0}$ (representation of linear mappings). The mapping $f: \mathbf{R}^{n} \rightarrow \mathbf{R}^{m}$ is linear if and only if there exists a matrix $\mathbb{A} \in M(m \times n)$ such that

$$
\forall \boldsymbol{u} \in \mathbf{R}^{n}: f(\boldsymbol{u})=\mathbb{A} \boldsymbol{u}=\left(\begin{array}{ccc}
a_{11} & \ldots & a_{1 n} \\
\vdots & \ddots & \vdots \\
a_{m 1} & \ldots & a_{m n}
\end{array}\right)\left(\begin{array}{c}
u_{1} \\
\vdots \\
u_{n}
\end{array}\right) .
$$

Theorem 6.21. Let a mapping $f: \mathbf{R}^{n} \rightarrow \mathbf{R}^{n}$ be linear. Then the following are equivalent.
(i) The mapping $f$ is a bijection (i.e., $f$ is an injective mapping $\mathbf{R}^{n}$ onto $\mathbf{R}^{n}$ ).
(ii) The mapping $f$ is an injective mapping.
(iii) The mapping $f$ is a mapping $\mathbf{R}^{n}$ onto $\mathbf{R}^{n}$.

Theorem 6.22. Let $f: \mathbf{R}^{n} \rightarrow \mathbf{R}^{m}$ be a linear mapping represented by matrix $\mathbb{A} \in M(m \times n) a$ $g: \mathbf{R}^{m} \rightarrow \mathbf{R}^{k}$ be a linear mapping represented by a matrix $\mathbb{B} \in M(k \times m)$. Then the composed mapping $g \circ f: \mathbf{R}^{n} \rightarrow \mathbf{R}^{k}$ is linear and is represented by the matrix $\mathbb{B} \mathbb{A}$.

## 7. INFINITE SERIES

### 7.1. Basic notions.

Definition. Let $\left\{a_{n}\right\}$ be a sequence of real numbers. Symbol $\sum_{n=1}^{\infty} a_{n}$ is called an infinite series. For $m \in \mathbf{N}$ we set

$$
s_{m}=a_{1}+a_{2}+\cdots+a_{m} .
$$

The number $s_{m}$ is called $m$-th partial sum of the series $\sum_{n=1}^{\infty} a_{n}$. The element $a_{n}$ is called $n$-th member of the series $\sum_{n=1}^{\infty} a_{n}$. The sum of infinite series $\sum_{n=1}^{\infty} a_{n}$ is defined as the limit of the sequence $\left\{s_{m}\right\}$, if such a limit exists. The sum of the series is denoted by the symbol $\sum_{n=1}^{\infty} a_{n}$. We say that a series converges, if its sum is a real number. In the opposite case, we say that the series diverges.

Theorem 7.1 (necessary condition). If a series $\sum_{n=1}^{\infty} a_{n}$ converges, then $\lim a_{n}=0$.
Remark. Suppose that $\alpha \in \mathbf{R}$ and a series $\sum_{n=1}^{\infty} a_{n}$ converges. Then the series $\sum_{n=1}^{\infty} \alpha a_{n}$ converges and it holds $\sum_{n=1}^{\infty} \alpha a_{n}=\alpha \sum_{n=1}^{\infty} a_{n}$. If $\sum_{n=1}^{\infty} a_{n}$ and $\sum_{n=1}^{\infty} b_{n}$ converge, then the series $\sum_{n=1}^{\infty}\left(a_{n}+b_{n}\right)$ convergens and if holds $\sum_{n=1}^{\infty}\left(a_{n}+b_{n}\right)=\sum_{n=1}^{\infty} a_{n}+\sum_{n=1}^{\infty} b_{n}$.

### 7.2. Series with nonnegative members and absolute convergence.

Theorem 7.2. Let $\sum_{n=1}^{\infty} a_{n}$ and $\sum_{n=1}^{\infty} b_{n}$ be series satisfying $0 \leq a_{n} \leq b_{n}$ for each $n \in \mathbf{N}$.
(i) If $\sum_{n=1}^{\infty} b_{n}$ converges, then $\sum_{n=1}^{\infty} a_{n}$ converges.
(ii) If $\sum_{n=1}^{\infty} a_{n}$ diverges, then $\sum_{n=1}^{\infty} b_{n}$ diverges.

Theorem 7.3. Let $\left\{a_{n}\right\}$ be a sequence of real numbers. If $\sum_{n=1}^{\infty}\left|a_{n}\right|$ converges, then $\sum_{n=1}^{\infty} a_{n}$ converges.
Definition. We say that $\sum_{n=1}^{\infty} a_{n}$ is absolute convergent, if $\sum_{n=1}^{\infty}\left|a_{n}\right|$ converges. If $\sum_{n=1}^{\infty} a_{n}$ converges but not absolutely, then $\sum_{n=1}^{\infty} a_{n}$ converges nonabsolutely.
Remark. Let $\left|a_{n}\right| \leq b_{n}$ for each $n \in \mathbf{N}$. If the series $\sum_{n=1}^{\infty} b_{n}$ converges, then $\sum_{n=1}^{\infty} a_{n}$ converges.
Theorem 7.4 (limit test). Let $\sum_{n=1}^{\infty} a_{n}$ and $\sum_{n=1}^{\infty} b_{n}$ be series with nonnegative members.
(i) Let

$$
\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}
$$

exists proper. If $\sum_{n=1}^{\infty} b_{n}$ converges, then $\sum_{n=1}^{\infty} a_{n}$ converges.
(ii) Let

$$
\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=c \in(0,+\infty)
$$

Then $\sum_{n=1}^{\infty} a_{n}$ converges if and only if $\sum_{n=1}^{\infty} b_{n}$ converges.

Theorem 7.5 (Cauchy test). Let $\sum_{n=1}^{\infty} a_{n}$ be a series. The we have
(i) If $\lim \sqrt[n]{\left|a_{n}\right|}<1$, then $\sum_{n=1}^{\infty} a_{n}$ is absolutely convergent.
(ii) If $\lim \sqrt[n]{\left|a_{n}\right|}>1$, then $\sum_{n=1}^{\infty} a_{n}$ diverges.

Theorem 7.6 (d'Alembert test). Let $\sum_{n=1}^{\infty} a_{n}$ be a series with nonzero members. Then we have
(i) If $\lim \left|a_{n+1} / a_{n}\right|<1$, then $\sum_{n=1}^{\infty} a_{n}$ absolutely convergent.
(ii) If $\lim \left|a_{n+1} / a_{n}\right|>1$, then $\sum_{n=1}^{\infty} a_{n}$ diverges.

Theorem 7.7. Let $\alpha \in \mathbf{R}$. The series $\sum_{n=1}^{\infty} 1 / n^{\alpha}$ converges if and only if $\alpha>1$.

### 7.3. Alternating series.

Theorem 7.8 (Leibniz). Let $\sum_{n=1}^{\infty}(-1)^{n} a_{n}$ be a series. Assume

- $a_{n} \geq a_{n+1} \geq 0$ for every $n \in \mathbf{N}$,
- $\lim _{n \rightarrow \infty} a_{n}=0$.

Then $\sum_{n=1}^{\infty}(-1)^{n} a_{n}$ converges.

## 8. Integrals

### 8.1. Riemann integral.

Definition. A finite sequence $\left\{x_{j}\right\}_{j=0}^{n}$ is called a partition of the interval [a,b], if we have

$$
a=x_{0}<x_{1}<\cdots<x_{n}=b .
$$

The points $x_{0}, \ldots, x_{n}$ are called partition points.
By a norm of partition $D=\left\{x_{j}\right\}_{j=0}^{n}$ we mean

$$
v(D)=\max \left\{x_{j}-x_{j-1} ; j=1, \ldots, n\right\} .
$$

We say that a partition $D^{\prime}$ of an interval $[a, b]$ is a refinement of the partition $D$ of the interval $[a, b]$, if each point of $D$ is a partition point of $D^{\prime}$.
Definition. Let $f$ be a bounded function on an interval $[a, b]$ and $D=\left\{x_{j}\right\}_{j=0}^{n}$ be a partition of $[a, b]$. We denote

$$
\begin{aligned}
& \bar{S}(f, D)=\sum_{j=1}^{n} M_{j}\left(x_{j}-x_{j-1}\right), \text { where } M_{j}=\sup \left\{f(x) ; x \in\left[x_{j-1}, x_{j}\right]\right\}, \\
& \underline{S}(f, D)=\sum_{j=1}^{n} m_{j}\left(x_{j}-x_{j-1}\right), \text { where } m_{j}=\inf \left\{f(x) ; x \in\left[x_{j-1}, x_{j}\right]\right\}, \\
& \quad \overline{\int_{a}^{b}} f(x) \mathrm{d} x=\inf \{\bar{S}(f, D) ; D \text { is a partition of the interval }[a, b]\}, \\
& \quad \underline{\int_{a}^{b}} f(x) \mathrm{d} x=\sup \{\underline{S}(f, D) ; D \text { is a partition of the interval }[a, b]\} .
\end{aligned}
$$

Definition. We say that a bounded function $f$ has Riemann integral over the interval $[a, b]$, if $\overline{\int_{a}^{b}} f(x) \mathrm{d} x=\underline{\int_{a}^{b}} f(x) \mathrm{d} x$. Then the value of the integral of $f$ over the interval $[a, b]$ is equal to $\overline{\int_{a}^{b}} f(x) \mathrm{d} x$ and is denoted by $\int_{a}^{b} f(x) \mathrm{d} x$. If $a>b$, we define $\int_{a}^{b} f(x) \mathrm{d} x=-\int_{b}^{a} f(x) \mathrm{d} x$. If $a=b$, we define $\int_{a}^{b} f(x) \mathrm{d} x=0$.
Theorem 8.1. (i) Let a function $f$ have Riemann integral over $[a, b]$ and let $[c, d] \subset[a, b]$. Then $f$ has Riemann integral over $[c, d]$.
(ii) Let $c \in(a, b)$ and a function $f$ have Riemann integral over $[a, c]$ and $[c, b]$. Then $f$ has Riemann integral over $[a, b]$ and we have

$$
\int_{a}^{b} f(x) \mathrm{d} x=\int_{a}^{c} f(x) \mathrm{d} x+\int_{c}^{b} f(x) \mathrm{d} x
$$

Theorem 8.2. Let $f$ and $g$ be functions with Riemann integral over $[a, b]$ and let $\alpha \in \mathbf{R}$. Then
(i) the function $\alpha f$ has Riemann integral over $[a, b]$ and it holds

$$
\int_{a}^{b} \alpha f(x) \mathrm{d} x=\alpha \int_{a}^{b} f(x) \mathrm{d} x
$$

(ii) the function $f+g$ has Riemann integral over $[a, b]$ and it holds

$$
\int_{a}^{b}(f(x)+g(x)) \mathrm{d} x=\int_{a}^{b} f(x) \mathrm{d} x+\int_{a}^{b} g(x) \mathrm{d} x
$$

Theorem 8.3. Let $a, b \in \mathbf{R}, a<b$, and let $f$ and $g$ be functions with Riemann integral over $[a, b]$.
(i) If $f(x) \geq 0$ for each $x \in[a, b]$, then

$$
\int_{a}^{b} f(x) \mathrm{d} x \geq 0
$$

(ii) If $f(x) \leq g(x)$ for each $x \in[a, b]$, then

$$
\int_{a}^{b} f(x) \mathrm{d} x \leq \int_{a}^{b} g(x) \mathrm{d} x
$$

(iii) The function $|f|$ has Riemann integral over $[a, b]$ and it holds

$$
\left|\int_{a}^{b} f(x) \mathrm{d} x\right| \leq \int_{a}^{b}|f(x)| \mathrm{d} x
$$

Theorem 8.4. Let a function $f$ be continuous on the interval $[a, b], a, b \in \mathbf{R}$. Then $f$ has Riemann integral over $[a, b]$.

Theorem 8.5. Let $f$ be a continuous function on $[a, b]$ and let $c \in[a, b]$. If we denote $F(x)=$ $\int_{c}^{x} f(t) \mathrm{d} t$ for $x \in(a, b)$, then $F^{\prime}(x)=f(x)$ for each $x \in(a, b)$.

### 8.3. Primitive functions.

Definition. Let a function $f$ be defined on an open interval $I$. We say that a function $F$ is a primitive function of $f$ on $I$, if for each $x \in I$ there exists $F^{\prime}(x)$ and $F^{\prime}(x)=f(x)$.
Theorem 8.6. Let $F$ and $G$ be primitive functions of $f$ on an open interval $I$. Then there exists $c \in \mathbb{R}$ such that $F(x)=G(x)+c$ for each $x \in I$.

Theorem 8.7. Let $f$ be a continuous function on an open interval $I$. Then $f$ has on I a primitive function.

Theorem 8.8. Let $f$ have on an open interval I a primitive function $F$, let a function $g$ have on $I$ a primitive function $G$, and $\alpha, \beta \in \mathbf{R}$. Then the function $\alpha F+\beta G$ is a primitive function of $\alpha f+\beta g$ on $I$.

Theorem 8.9 (substitution). (i) Let $F$ be a primitive function of $f$ on $(a, b)$. Let $\varphi$ be a function defined on an interval $(\alpha, \beta)$ with values in $(a, b)$ and $\varphi$ has at each point $t \in(\alpha, \beta)$ proper derivative. Then we have

$$
\int f(\varphi(t)) \varphi^{\prime}(t) d t \stackrel{c}{=} F(\varphi(t)) \text { on }(\alpha, \beta) .
$$

(ii) Let a function $\varphi$ have at each point of an interval $(\alpha, \beta)$ nonzero proper derivative and $\varphi((\alpha, \beta))=(a, b)$. Let $f$ be defined on an interval $(a, b)$ and we have

$$
\int f(\varphi(t)) \varphi^{\prime}(t) d t \stackrel{c}{=} G(t) \text { on }(\alpha, \beta) \text {. }
$$

Then we have

$$
\int f(x) d x \stackrel{c}{=} G\left(\varphi^{-1}(x)\right) \text { on }(a, b)
$$

Theorem 8.10 (integration per partes). Let $I$ be an open interval and let functions $f$ and $g$ be continuous on $I$. Let $F$ be a primitive function of $f$ on $I$ and $G$ be a primitive function of $g$ on I. Then we have

$$
\int g(x) F(x) d x=G(x) F(x)-\int G(x) f(x) d x \text { na } I .
$$

Definition. Rational function is a ratio of two polynomials, where the polynomial in denominator is not identically zero.
Theorem 8.11. Let $P, Q$ be polynomial functions with real coefficients such that
(i) degree of $P$ is strictly smaller than degree of $Q$,
(ii) $Q(x)=a_{n}\left(x-x_{1}\right)^{p_{1}} \ldots\left(x-x_{k}\right)^{p_{k}}\left(x^{2}+\alpha_{1} x+\beta_{1}\right)^{q_{1}} \ldots\left(x^{2}+\alpha_{l} x+\beta_{l}\right)^{q_{l}}$,
(iii) $a_{n}, x_{1}, \ldots x_{k}, \alpha_{1}, \ldots, \alpha_{l}, \beta_{1}, \ldots, \beta_{l} \in \mathbf{R}, a_{n} \neq 0$,
(iv) $p_{1}, \ldots, p_{k}, q_{1}, \ldots, q_{l} \in \mathbf{N}$,
(v) the polynomials $x-x_{1}, x-x_{2}, \ldots, x-x_{k}, x^{2}+\alpha_{1} x+\beta_{1}, \ldots, x^{2}+\alpha_{l} x+\beta_{l}$ have no common root,
(vi) the polynomials $x^{2}+\alpha_{1} x+\beta_{1}, \ldots, x^{2}+\alpha_{l} x+\beta_{l}$ have no real root.

Then there exist unique real numbers $A_{1}^{1}, \ldots, A_{p_{1}}^{1}, \ldots, A_{1}^{k}, \ldots, A_{p_{k}}^{k}, B_{1}^{1}, C_{1}^{1}, \ldots, B_{q_{1}}^{1}, C_{q_{1}}^{1}, \ldots, B_{1}^{l}$, $C_{1}^{l}, \ldots, B_{q_{l}}^{l}, C_{q_{l}}^{l}$ such that we have

$$
\begin{aligned}
\frac{P(x)}{Q(x)} & =\frac{A_{1}^{1}}{\left(x-x_{1}\right)^{p_{1}}}+\cdots+\frac{A_{p_{1}}^{1}}{\left(x-x_{1}\right)} \\
& +\cdots+\frac{A_{1}^{k}}{\left(x-x_{k}\right)^{p_{k}}}+\cdots+\frac{A_{p_{k}}^{k}}{x-x_{k}} \\
& +\frac{B_{1}^{1} x+C_{1}^{1}}{\left(x^{2}+\alpha_{1} x+\beta_{1}\right)^{q_{1}}}+\cdots+\frac{B_{q_{1}}^{1} x+C_{q_{1}}^{1}}{x^{2}+\alpha_{1} x+\beta_{1}}+\cdots \\
& +\frac{B_{1}^{l} x+C_{1}^{l}}{\left(x^{2}+\alpha_{l} x+\beta_{l}\right)^{q_{l}}}+\cdots+\frac{B_{q_{l}}^{l} x+C_{q_{l}}^{l}}{x^{2}+\alpha_{l} x+\beta_{l}} .
\end{aligned}
$$

