5. FUNCTIONS OF SEVERAL VARIABLES

5.1. \mathbb{R}^n as a metric and linear space.

Definition. The set \mathbb{R}^n , $n \in \mathbb{N}$, is the set of all ordered n-tuples of real numbers.

Definition. Euclidean metric on \mathbb{R}^n is the function $\rho: \mathbb{R}^n \times \mathbb{R}^n \to [0, +\infty)$ defined by

$$\rho(\boldsymbol{x},\boldsymbol{y}) = \sqrt{\sum_{i=1}^{n} (x_i - y_i)^2}.$$

The number $\rho(x, y)$ is called distance of the point x from the point y.

Theorem 5.1 (properties of Euclidean metric). Euclidean metric ρ has the following properties:

- (i) $\forall x, y \in \mathbb{R}^n$: $\rho(x, y) = 0 \Leftrightarrow x = y$,
- (ii) $\forall x, y \in \mathbb{R}^n$: $\rho(x, y) = \rho(y, x)$,

(symmetry)

(iii) $\forall x, y, z \in \mathbb{R}^n$: $\rho(x, y) \leq \rho(x, z) + \rho(z, y)$,

(triangle inequality)

(iv) $\forall x, y \in \mathbb{R}^n, \forall \lambda \in \mathbb{R}: \rho(\lambda x, \lambda y) = |\lambda| \rho(x, y),$

(homogeneity)

(v) $\forall x, y, z \in \mathbb{R}^n$: $\rho(x+z, y+z) = \rho(x, y)$.

(translation invariance)

Definition. Let $x \in \mathbb{R}^n$, $r \in \mathbb{R}$, r > 0. The set B(x, r) defined by

$$B(x,r) = \{ y \in \mathbb{R}^n; \ \rho(x,y) < r \}$$

is called open ball with radius r centered at x.

Definition. Let $M \subset \mathbb{R}^n$. We say that $x \in \mathbb{R}^n$ is an *interior point of* M, if there exists r > 0 such that $B(x,r) \subset M$. The set $M \subset \mathbb{R}^n$ is *open in* \mathbb{R}^n , if each point of M is an interior point of M. We say that M is *closed in* \mathbb{R}^n , if its complement is closed.

Theorem 5.2 (properties of open sets).

- (i) The empty set and \mathbb{R}^n are open in \mathbb{R}^n .
- (ii) Let sets $G_{\alpha} \subset \mathbb{R}^n$, $\alpha \in A \neq \emptyset$, be open in \mathbb{R}^n . Then $\bigcup_{\alpha \in A} G_{\alpha}$ is open in \mathbb{R}^n .
- (iii) Let sets G_i , i = 1, ..., m, be open in \mathbb{R}^n . Then $\bigcap_{i=1}^m G_i$ is open in \mathbb{R}^n .

Theorem 5.3 (properties of closed sets).

- (i) The empty set and \mathbb{R}^n are closed in \mathbb{R}^n .
- (ii) Let sets $F_{\alpha} \subset \mathbb{R}^n$, $\alpha \in A \neq \emptyset$, be closed in \mathbb{R}^n . Then $\bigcap_{\alpha \in A} F_{\alpha}$ is closed in \mathbb{R}^n .
- (iii) Let sets F_i , i = 1, ..., m, are closed in \mathbb{R}^n . Then $\bigcup_{i=1}^m F_i$ is closed in \mathbb{R}^n .

Definition. Let $M \subset \mathbb{R}^n$ and $x \in \mathbb{R}^n$. We say that x is a *boundary point of* M, if for each r > 0 we have $B(x,r) \cap M \neq \emptyset$ and $B(x,r) \cap (\mathbb{R}^n \setminus M) \neq \emptyset$.

Boundary of M is the set of all boundary points of M (notation $\operatorname{bd} M$).

Closure of M is the set $M \cup \operatorname{bd} M$ (notation \overline{M}).

Interior of M is the set of all interior points of M (notation int M).

5.2. Continuous functions of several variables.

Definition. Let $x^j \in \mathbb{R}^n$ for each $j \in \mathbb{N}$ and $x \in \mathbb{R}^n$. We say that a sequence $\{x^j\}_{j=1}^{\infty}$ converges to x, if $\lim_{j\to\infty} \rho(x,x^j)=0$. The vector x is called *limit of the sequence* $\{x^j\}_{j=1}^{\infty}$.

Theorem 5.4. Let $x^j \in \mathbb{R}^n$ for each $j \in \mathbb{N}$ and $x \in \mathbb{R}^n$. The sequence $\{x^j\}_{j=1}^{\infty}$ converges to x^j if and only if for each $i \in \{1, ..., n\}$ the sequence of real numbers $\{x_i^j\}_{j=1}^{\infty}$ converges to the real number x_i .

Definition. Let $M \subset \mathbb{R}^n$, $x \in M$, and $f: M \to \mathbb{R}$. We say that f is continuous at x with respect to M, if we have

$$\forall \varepsilon \in \mathbb{R}, \varepsilon > 0 \ \exists \delta \in \mathbb{R}, \delta > 0 \ \forall y \in B(x, \delta) \cap M \colon f(y) \in B(f(x), \varepsilon).$$

We say that f is continuous at the point x, it it is continuous at x with respect to a neighborhood of x, i.e.,

$$\forall \varepsilon \in \mathbf{R}, \varepsilon > 0 \ \exists \delta \in \mathbf{R}, \delta > 0 \ \forall y \in B(x, \delta): f(y) \in B(f(x), \varepsilon).$$

Remark. Let $M \subset \mathbb{R}^n$, $x \in M$, $f: M \to \mathbb{R}$, $g: M \to \mathbb{R}$, and $c \in \mathbb{R}$. If f and g are continuous at the point x with respect to M, then the functions cf, f+g a fg are continuous at x with respect to M. If the function g is nonzero at each point of M, then also the function f/g is continuous at x with respect to M.

Theorem 5.5 (Heine). Let $M \subset \mathbb{R}^n$, $x \in M$, and $f: M \to \mathbb{R}$. Then the following are equivalent.

- (i) The function f is continuous at x with respect to M.
- (ii) For each sequence $\{x^j\}_{j=1}^{\infty}$ such that $x^j \in M$ pro $j \in \mathbb{N}$ a $\lim_{j \to \infty} x^j = x$, we have $\lim_{j \to \infty} f(x^j) = f(x)$.

Remark. Let $r, s \in \mathbb{N}$, $M \subset \mathbb{R}^s$, $L \subset \mathbb{R}^r$, and $y \in M$. Let $\varphi_1, \ldots, \varphi_r$ are functions defined on M, which are continuous at y with respect to M and $[\varphi_1(x), \ldots, \varphi_r(x)] \in L$ for each $x \in M$. Let $f: L \to \mathbb{R}$ be continuous at the point $[\varphi_1(y), \ldots, \varphi_r(y)]$ with respect to L. Then the composed function $F: M \to \mathbb{R}$ defined by

$$F(x) = f(\varphi_1(x), \dots, \varphi_r(x)), \quad x \in M,$$

is continuous at y with respect to M.

Definition. Let $M \subset \mathbb{R}^n$ a $f: M \to \mathbb{R}$. We say that f is *continuous on M*, if it is continuous at each point $x \in M$ with respect to M.

Remark. The projection $\pi_i: \mathbb{R}^n \to \mathbb{R}$, $\pi_i(x) = x_i$, $1 \le i \le n$, are continuous on \mathbb{R}^n .

Definition. We say that a set $M \subset \mathbb{R}^n$ is *compact*, if for each sequence of elements of M there exists a convergent subsequence with limit in M.

Theorem 5.6 (characterization of compact subsets of \mathbb{R}^n). The set $M \subset \mathbb{R}^n$ is compact if and only if M is bounded and closed.

Definition. Let $M \subset \mathbb{R}^n$, $x \in M$, and f be a function defined at least on M, i.e., $M \subset D_f$. We say that f attains at the point x

- maximum on M, if for every $y \in M$ we have $f(y) \leq f(x)$,
- *local maximum with respect to M*, if there exists $\delta > 0$ such that for every $y \in B(x, \delta) \cap M$ we have $f(y) \leq f(x)$,
- sharp local maximum with respect to M, if there exists $\delta > 0$ such that for every $y \in (B(x, \delta) \setminus \{x\}) \cap M$ we have f(y) < f(x).

The notions minimum, local minimum, and sharp local minimum with respect to M are defined analogically.

Definition. We say that a function f attains at the point $x \in \mathbb{R}^n$ local maximum, if x is a local maximum with respect to some ball centered at the point x. Similarly one can define local minimum, sharp local maximum and sharp local minimum.

Theorem 5.7 (attaining extrema). Let $M \subset \mathbb{R}^n$ be a nonempty compact set and $f: M \to \mathbb{R}$ be continuous on M. Then f attains on M its maximum and minimum.

Corollary 5.8. Let $M \subset \mathbb{R}^n$ be a nonempty compact set and $f: M \to \mathbb{R}$ be continuous on M. Then f is bounded on M.

Definition. We say that function $f: \mathbb{R}^n \to \mathbb{R}$ has at a point $a \in \mathbb{R}^n$ limit equal $A \in \mathbb{R}^*$, if we have

$$\forall \varepsilon \in \mathbf{R}, \varepsilon > 0 \ \exists \delta \in \mathbf{R}, \delta > 0 \ \forall \mathbf{x} \in B(\mathbf{a}, \delta) \setminus \{\mathbf{a}\}: f(\mathbf{x}) \in B(A, \varepsilon).$$

Remark.

- Each function has at a given point at most one limit. We write $\lim_{x\to a} f(x) = A$.
- The function f is continuous at a if and only if $\lim_{x\to a} f(x) = f(a)$.
- For functions of several variables one can prove similar theorems as for functions of one variable (arithmetics, sandwich theorem, ...).

Theorem 5.9. Let $r, s \in \mathbb{N}$, $a \in M \subset \mathbb{R}^s$, $L \subset \mathbb{R}^r$, $\varphi_1, \ldots, \varphi_r$ be functions defined on M such that $\lim_{x\to a} \varphi_j(x) = b_j$, $j = 1, \ldots, r$, and $b = [b_1, \ldots, b_r] \in L$. Let $f: L \to \mathbb{R}$ be continuous at the point b. We define a function $F: M \to \mathbb{R}$ by

$$F(\mathbf{x}) = f(\varphi_1(\mathbf{x}), \varphi_2(\mathbf{x}), \dots, \varphi_r(\mathbf{x})), \qquad \mathbf{x} \in M.$$

Then $\lim_{x\to a} F(x) = f(b)$.

5.3. Partial derivatives.

Definition. Let f be a function of n variables, $j \in \{1, ..., n\}$, $a \in \mathbb{R}^n$. Then the number

$$\frac{\partial f}{\partial x_j}(\mathbf{a}) = \lim_{t \to 0} \frac{f(\mathbf{a} + t\mathbf{e}^j) - f(\mathbf{a})}{t}$$

$$= \lim_{t \to 0} \frac{f(a_1, \dots, a_{j-1}, a_j + t, a_{j+1}, \dots, a_n) - f(a_1, \dots, a_n)}{t}$$

is called partial derivatives (of first order) of function f according to j-th variable at the point a (if it exists).

Theorem 5.10 (necessary condition of existence of local extremum). Let $G \subset \mathbb{R}^n$ be an open set, $a \in G$, and a function $f: G \to \mathbb{R}$ have at the point a local extremum. Then for each $j \in \{1, ..., n\}$ we have:

The partial derivative $\frac{\partial f}{\partial x_i}(\mathbf{a})$ either does not exit or is zero.

Definition. Let $G \subset \mathbb{R}^n$ be a nonempty open set. Let a function $f: G \to \mathbb{R}$ have at each point of the set G all partial derivatives continuous (i.e., function $x \mapsto \frac{\partial f}{\partial x_j}(x)$ are continuous on G for each $j \in \{1, \ldots, n\}$). Then we say that f is of the class C^1 on G. The set of all these functions is denoted by $C^1(G)$.

Remark. If $G \subset \mathbb{R}^n$ is a nonempty open set and and $f, g \in \mathcal{C}^1(G)$, then $f + g \in \mathcal{C}^1(G)$, $f - g \in \mathcal{C}^1(G)$, and $fg \in \mathcal{C}^1(G)$. If moreover for each $\mathbf{x} \in G$ we have $g(\mathbf{x}) \neq 0$, then $f/g \in \mathcal{C}^1(G)$.

Proposition 5.11 (Lagrange). Let $n \in \mathbb{N}$, $I_1, \ldots, I_n \subset \mathbb{R}$ be open intervals, $I = I_1 \times I_2 \times \cdots \times I_n$, $f \in \mathcal{C}^1(I)$, $a, b \in I$. Then there exist points $\boldsymbol{\xi}^1, \ldots, \boldsymbol{\xi}^n \in I$ with $\xi_j^i \in \langle a_j, b_j \rangle$ for each $i, j \in \{1, \ldots, n\}$, such that

$$f(\boldsymbol{b}) - f(\boldsymbol{a}) = \sum_{i=1}^{n} \frac{\partial f}{\partial x_i} (\boldsymbol{\xi}^i) (b_i - a_i).$$

Definition. Let $G \subset \mathbb{R}^n$ be an open set, $a \in G$, and $f \in \mathcal{C}^1(G)$. Then the graph of the function

$$T: \mathbf{x} \mapsto f(\mathbf{a}) + \frac{\partial f}{\partial x_1}(\mathbf{a})(x_1 - a_1) + \frac{\partial f}{\partial x_2}(\mathbf{a})(x_2 - a_2) + \dots + \frac{\partial f}{\partial x_n}(\mathbf{a})(x_n - a_n), \quad \mathbf{x} \in \mathbf{R}^n,$$

is called tangent hyperplane to the graph of the function f at the point [a, f(a)].

Theorem 5.12. Let $G \subset \mathbb{R}^n$ be an open set, $\mathbf{a} \in G$, $f \in \mathcal{C}^1(G)$, and T be a function, such that its graph is the tangent hyperplane of the function f at the point $[\mathbf{a}, f(\mathbf{a})]$. Then

$$\lim_{x \to a} \frac{f(x) - T(x)}{\rho(x, a)} = 0.$$

Theorem 5.13. Let $G \subset \mathbb{R}^n$ be an open nonempty set and $f \in C^1(G)$. Then f is continuous on G.

Theorem 5.14. Let $r, s \in \mathbb{N}$, $G \subset \mathbb{R}^s$, $H \subset \mathbb{R}^r$ be open sets. Let $\varphi_1, \ldots, \varphi_r \in \mathcal{C}^1(G)$, $f \in \mathcal{C}^1(H)$ and $[\varphi_1(\mathbf{x}), \ldots, \varphi_r(\mathbf{x})] \in H$ for each $\mathbf{x} \in G$. Then the composed function $F: G \to \mathbb{R}$ defined by

$$F(\mathbf{x}) = f(\varphi_1(\mathbf{x}), \varphi_2(\mathbf{x}), \dots, \varphi_r(\mathbf{x})), \quad \mathbf{x} \in G,$$

is of the class C^1 on G. Let $\mathbf{a} \in G$ and $\mathbf{b} = [\varphi_1(\mathbf{a}), \dots, \varphi_r(\mathbf{a})]$. Then for each $j \in \{1, \dots, s\}$ we have

$$\frac{\partial F}{\partial x_j}(\boldsymbol{a}) = \sum_{i=1}^r \frac{\partial f}{\partial y_i}(\boldsymbol{b}) \frac{\partial \varphi_i}{\partial x_j}(\boldsymbol{a}).$$

Definition. Let $G \subset \mathbb{R}^n$ be an open set, $\mathbf{a} \in G$, and $f \in \mathcal{C}^1(G)$. Gradient of f at the point \mathbf{a} is defined as the vector

$$\nabla f(\boldsymbol{a}) = \left[\frac{\partial f}{\partial x_1}(\boldsymbol{a}), \frac{\partial f}{\partial x_2}(\boldsymbol{a}), \dots, \frac{\partial f}{\partial x_n}(\boldsymbol{a}) \right].$$

Definition. Let $G \subset \mathbb{R}^n$ be an open set, $a \in G$, $f \in \mathcal{C}^1(G)$, and $\nabla f(a) = o$. Then the point a is called *stationary* (or also *critical*) *point* of the function f.

Definition. Let $G \subset \mathbb{R}^n$ be an open set, $f: G \to \mathbb{R}$, $i, j \in \{1, ..., n\}$, and $\frac{\partial f}{\partial x_i}(x)$ exists for each $x \in G$. Then partial derivative of the second order of the function f according to i-th and j-th variable at the point $a \in G$ is defined by

$$\frac{\partial^2 f}{\partial x_i \partial x_i}(\boldsymbol{a}) = \frac{\partial}{\partial x_i} \left(\frac{\partial f}{\partial x_i} \right) (\boldsymbol{a}).$$

If i = j then we use the notation

$$\frac{\partial^2 f}{\partial x_i^2}(a)$$
.

Theorem 5.15. Let $i, j \in \{1, ..., n\}$ and let both partial derivatives $\frac{\partial^2 f}{\partial x_i \partial x_j}$ and $\frac{\partial^2 f}{\partial x_j \partial x_i}$ be continuous at a point $\mathbf{a} \in \mathbb{R}^n$. Then we have

$$\frac{\partial^2 f}{\partial x_i \partial x_j}(\boldsymbol{a}) = \frac{\partial^2 f}{\partial x_i \partial x_i}(\boldsymbol{a}).$$

Definition. Let $G \subset \mathbb{R}^n$ be an open set and $k \in \mathbb{N}$. We say that a function f is of the class C^k on G, if all partial derivatives of f till k-th order are continuous on G. The set of all these functions is denoted by $C^k(G)$. We say that a function f is of the class C^{∞} on G, if all partial derivatives of all orders of f are continuous on G. The set of all functions of the class C^{∞} on G is denoted by $C^{\infty}(G)$.

5.4. Implicit function theorem.

Theorem 5.16 (implicit function theorem). Let $G \subset \mathbb{R}^{n+1}$ be an open set, $F: G \to \mathbb{R}$, $\tilde{x} \in \mathbb{R}^n$, $\tilde{y} \in \mathbb{R}$, $[\tilde{x}, \tilde{y}] \in G$. Suppose that

- (1) $F \in C^1(G)$,
- $(2) \ F(\tilde{\mathbf{x}}, \tilde{\mathbf{y}}) = 0,$
- (3) $\frac{\partial F}{\partial y}(\tilde{x}, \tilde{y}) \neq 0.$

Then there exist a neighborhood $U \subset \mathbf{R}^n$ of the point $\tilde{\mathbf{x}}$ and a neighborhood $V \subset \mathbf{R}$ of the point $\tilde{\mathbf{y}}$ such that for each $\mathbf{x} \in U$ there exists unique $y \in V$ with the property $F(\mathbf{x}, y) = 0$. If we denote this y by $\varphi(\mathbf{x})$, then the resulting function φ is in $C^1(U)$ and

$$\frac{\partial \varphi}{\partial x_j}(\mathbf{x}) = -\frac{\frac{\partial F}{\partial x_j}(\mathbf{x}, \varphi(\mathbf{x}))}{\frac{\partial F}{\partial y}(\mathbf{x}, \varphi(\mathbf{x}))} \quad \text{for } \mathbf{x} \in U, \ j \in \{1, \dots, n\}.$$

Theorem 5.17 (implicit function theorem). Let $m, n \in \mathbb{N}$, $k \in \mathbb{N} \cup \{\infty\}$, $G \subset \mathbb{R}^{n+m}$ be an open set, $F_j: G \to \mathbb{R}$ for $j = 1, \dots, m$, $\tilde{x} \in \mathbb{R}^n$, $\tilde{y} \in \mathbb{R}^m$, $[\tilde{x}, \tilde{y}] \in G$. Suppose that

- (1) $F_j \in C^k(G)$ for each $j \in \{1, ..., m\}$,

(2)
$$F_{j}(\tilde{\mathbf{x}}, \tilde{\mathbf{y}}) = 0$$
 for each $j \in \{1, ..., m\}$,
(3)
$$\begin{vmatrix} \frac{\partial F_{1}}{\partial y_{1}}(\tilde{\mathbf{x}}, \tilde{\mathbf{y}}) & \dots & \frac{\partial F_{1}}{\partial y_{m}}(\tilde{\mathbf{x}}, \tilde{\mathbf{y}}) \\ \vdots & \ddots & \vdots \\ \frac{\partial F_{m}}{\partial y_{1}}(\tilde{\mathbf{x}}, \tilde{\mathbf{y}}) & \dots & \frac{\partial F_{m}}{\partial y_{m}}(\tilde{\mathbf{x}}, \tilde{\mathbf{y}}) \end{vmatrix} \neq 0.$$

Then there exist a neighborhood $U \subset \mathbf{R}^n$ of the point $\tilde{\mathbf{x}}$ and a neighborhood $V \subset \mathbf{R}^m$ of the point \tilde{y} such that for each $x \in U$ there exists unique $y \in V$ with the property $F_i(x,y) = 0$ for each $j \in \{1, ..., m\}$. If we denote coordinates of this y by $\varphi_i(x)$, j = 1, ..., m, then the resulting functions φ_i are in $C^k(U)$.

Remark. The symbol in the condition (3Summer semesterDoc-Start) of Theorem 5.17Summer semesterDoc-Start is called *determinant*. The definition will presented later on.

For
$$m = 1$$
 we have $\begin{vmatrix} a \\ a \end{vmatrix} = a, a \in \mathbf{R}$.
For $m = 2$ we have $\begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad - bc, a, b, c, d \in \mathbf{R}$.

5.5. Lagrange multiplier theorem.

Theorem 5.18 (Lagrange multiplier theorem). Let $G \subset \mathbb{R}^2$ be an open set, $f, g \in \mathcal{C}^1(G)$, $M = \{[x, y] \in G; g(x, y) = 0\}, and [\tilde{x}, \tilde{y}] \in M \text{ be a point of local extremum of } f \text{ with respect}$ to the set M. Then at least one of the following conditions holds:

- (1) $\nabla g(\tilde{x}, \tilde{y}) = \mathbf{0}$,
- (2) there exists $\lambda \in \mathbf{R}$ satisfying

$$\frac{\partial f}{\partial x}(\tilde{x}, \tilde{y}) + \lambda \frac{\partial g}{\partial x}(\tilde{x}, \tilde{y}) = 0,$$

$$\frac{\partial f}{\partial y}(\tilde{x}, \tilde{y}) + \lambda \frac{\partial g}{\partial y}(\tilde{x}, \tilde{y}) = 0.$$

Theorem 5.19 (Lagrange multiplier theorem). Let $m, n \in \mathbb{N}$, m < n, $G \subset \mathbb{R}^n$ be an open set, $f, g_1, \ldots, g_m \in \mathcal{C}^1(G),$

$$M = \{z \in G; g_1(z) = 0, g_2(z) = 0, \dots, g_m(z) = 0\}$$

and let $\tilde{z} \in M$ be a point of local extremum of f with respect to the set M. Then at least one of the following conditions holds:

(1) the vectors

$$\nabla g_1(\tilde{z}), \nabla g_2(\tilde{z}), \dots, \nabla g_m(\tilde{z})$$

are linearly dependent,

(2) there exist $\lambda_1, \lambda_2, \dots, \lambda_m \in \mathbb{R}$ satisfying

$$\nabla f(\tilde{z}) + \lambda_1 \nabla g_1(\tilde{z}) + \lambda_2 \nabla g_2(\tilde{z}) + \dots + \lambda_m \nabla g_m(\tilde{z}) = \mathbf{o}.$$

5.6. Concave and quasiconcave functions.

Definition. Let $M \subset \mathbb{R}^n$. We say that M is *convex*, if we have

$$\forall x, y \in M \ \forall t \in (0, 1): tx + (1 - t)y \in M.$$

Definition. Let $M \subset \mathbb{R}^n$ be a convex set and a function f be defined on M. We say that f is

 \bullet concave on M, if

$$\forall \boldsymbol{a}, \boldsymbol{b} \in M \ \forall t \in (0, 1): f(t\boldsymbol{a} + (1 - t)\boldsymbol{b}) \ge t f(\boldsymbol{a}) + (1 - t) f(\boldsymbol{b}),$$

• strictly concave on M, if

$$\forall a, b \in M, a \neq b \ \forall t \in (0, 1): f(ta + (1 - t)b) > tf(a) + (1 - t)f(b).$$

Theorem 5.20. Let a function f be concave on an open convex set $G \subset \mathbb{R}^n$. Then f is continuous on G.

Theorem 5.21. Let a function f be concave on a convex set $M \subset \mathbb{R}^n$. Then for each $\alpha \in \mathbb{R}$ the set $Q_{\alpha} = \{x \in M; f(x) \geq \alpha\}$ is convex.

Theorem 5.22 (characterization of concave functions of the class C^1). Let $G \subset \mathbb{R}^n$ be a convex open set and $f \in C^1(G)$. Then the function f is convex on G if and only if we have

$$\forall x, y \in G: f(y) \leq f(x) + \sum_{i=1}^{n} \frac{\partial f}{\partial x_i}(x)(y_i - x_i).$$

Corollary 5.23. Let $G \subset \mathbb{R}^n$ be a convex open set and $f \in C^1(G)$ be concave on G. If a point $a \in G$ is a stationary point of f, then a is a point of maximum of f with respect to G.

Theorem 5.24 (characterization of strictly concave functions of the class C^1). Let $G \subset \mathbb{R}^n$ be a convex open set and $f \in C^1(G)$. Then the function f is strictly concave on G if and only if we have

$$\forall x, y \in G, x \neq y : f(y) < f(x) + \sum_{i=1}^{n} \frac{\partial f}{\partial x_i}(x)(y_i - x_i).$$

Definition. Let $M \subset \mathbb{R}^n$ be a convex set and f be defined on M. We say that f is

 \bullet quasiconcave on M, if

$$\forall a, b \in M \ \forall t \in [0, 1]: f(ta + (1 - t)b) \ge \min\{f(a), f(b)\},\$$

• strictly quasiconcave on M, if

$$\forall a, b \in M, a \neq b, \ \forall t \in (0, 1): f(ta + (1 - t)b) > \min\{f(a), f(b)\}.$$

Remark. Let $M \subset \mathbb{R}^n$ be a convex set and f be a function defined on M.

- Let f be concave on M. Then f is quasiconcave on M.
- Let f be strictly concave on M. Then f is strictly quasiconcave on M.

Theorem 5.25 (on uniqueness of extremum). Let f be a strictly quasiconcave function on a convex set $M \subset \mathbb{R}^n$. Then there exists at most one point of maximum of f.

Corollary 5.26. Let $M \subset \mathbb{R}^n$ be a convex, bounded, closed and nonempty set. Let f be continuous and strictly quasiconcave function on M. Then f attains its maximum on M in a unique point.

Theorem 5.27 (characterization of quasiconcave functions via level sets). Let $M \subset \mathbb{R}^n$ be a convex set and f be defined on M. The function f is quasiconcave on M if and only if for each $\alpha \in \mathbb{R}$ the set $Q_{\alpha} = \{x \in M; \ f(x) \geq \alpha\}$ is convex.

6. MATRIX CALCULUS

6.1. Basic operations with matrices.

Definition. The scheme

$$\begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix},$$

where $a_{ij} \in \mathbb{R}$, i = 1, ..., m, j = 1, ..., n, is called a matrix of the type $m \times n$. We write $(a_{ij})_{\substack{i=1..m \ j=1..n}}$. A matrix of type $n \times n$ is called square matrix of the order n. The set of all matrices of the type $m \times n$ is denoted $M(m \times n)$.

Definition. Let

$$\mathbb{A} = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix}.$$

The *n*-tuple $(a_{i1}, a_{i2}, \ldots, a_{in})$, where

$$i \in \{1, 2, ..., m\}$$
, is called *i-th row* of the matrix \mathbb{A} . The *m*-tuple $\begin{pmatrix} a_{1j} \\ a_{2j} \\ \vdots \\ a_{mj} \end{pmatrix}$, where $j \in \{1, 2, ..., n\}$, is called *j-th column* matrix \mathbb{A} .

Definition. We say that two matrices are equal, if they are of the same type and the corresponding elements are equal, i.e., if $\mathbb{A} = (a_{ij})_{\substack{i=1..m \ j=1..m}}$ and $\mathbb{B} = (b_{uv})_{\substack{u=1..r \ v=1..s}}$, then $\mathbb{A} = \mathbb{B}$ if and only if m=r, n=s and $a_{ij}=b_{ij}$ for every $i\in\{1,\ldots,m\}, j\in\{1,\ldots,n\}$.

Definition. Let \mathbb{A} , $\mathbb{B} \in M(m \times n)$, $\mathbb{A} = (a_{ij})_{\substack{i=1..m \ j=1..n}}$, $\mathbb{B} = (b_{ij})_{\substack{i=1..m \ j=1..n}}$, $\lambda \in \mathbb{R}$. The sum of \mathbb{A} and \mathbb{B} is defined by

$$\mathbb{A} + \mathbb{B} = \begin{pmatrix} a_{11} + b_{11} & a_{12} + b_{12} & \dots & a_{1n} + b_{1n} \\ a_{21} + b_{21} & a_{22} + b_{22} & \dots & a_{2n} + b_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} + b_{m1} & a_{m2} + b_{m1} & \dots & a_{mn} + b_{mn} \end{pmatrix}.$$

Product of a real number λ *and the matrix* \mathbb{A} is defined by

$$\lambda \mathbb{A} = \begin{pmatrix} \lambda a_{11} & \lambda a_{12} & \dots & \lambda a_{1n} \\ \lambda a_{21} & \lambda a_{22} & \dots & \lambda a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ \lambda a_{m1} & \lambda a_{m2} & \dots & \lambda a_{mn} \end{pmatrix}.$$

Proposition 6.1 (basic properties).

- $\forall \mathbb{A}, \mathbb{B}, \mathbb{C} \in M(m \times n) : \mathbb{A} + (\mathbb{B} + \mathbb{C}) = (\mathbb{A} + \mathbb{B}) + \mathbb{C},$ (associativity)
- $\forall \mathbb{A}, \mathbb{B} \in M(m \times n) : \mathbb{A} + \mathbb{B} = \mathbb{B} + \mathbb{A}$,

(commutativity)

- $\exists ! \mathbb{O} \in M(m \times n) \ \forall \mathbb{A} \in M(m \times n) : \mathbb{A} + \mathbb{O} = \mathbb{A}$, (existence of the zero element)
- $\forall \mathbb{A} \in M(m \times n) \ \exists \mathbb{C}_{\mathbb{A}} \in M(m \times n) : \mathbb{A} + \mathbb{C}_{\mathbb{A}} = \mathbb{O},$
- $\forall \mathbb{A} \in M(m \times n) \ \forall \lambda, \mu \in \mathbb{R}: (\lambda \mu) \mathbb{A} = \lambda(\mu \mathbb{A}),$
- $\forall \mathbb{A} \in M(m \times n) : 1 \cdot \mathbb{A} = \mathbb{A}$,
- $\forall \mathbb{A} \in M(m \times n) \ \forall \lambda, \mu \in \mathbb{R} : (\lambda + \mu) \mathbb{A} = \lambda \mathbb{A} + \mu \mathbb{A}$,
- $\forall \mathbb{A}, \mathbb{B} \in M(m \times n) \ \forall \lambda \in \mathbb{R}: \lambda(\mathbb{A} + \mathbb{B}) = \lambda \mathbb{A} + \lambda \mathbb{B}.$

Definition. Let $\mathbb{A} \in M(m \times n)$, $\mathbb{A} = (a_{is})_{\substack{i=1..m \ s=1..n}}$, $\mathbb{B} \in M(n \times k)$, $\mathbb{B} = (b_{sj})_{\substack{s=1..n \ j=1..k}}$. Then the product of matrices \mathbb{A} and \mathbb{B} is defined as $\mathbb{AB} \in M(m \times k)$, $\mathbb{AB} = (c_{ij})_{\substack{i=1..m \ j=1..k}}$, where

$$c_{ij} = \sum_{s=1}^{n} a_{is} b_{sj}.$$

Theorem 6.2 (properties of matrix multiplication). Let $m, n, k, l \in \mathbb{N}$. Then we have:

- (i) $\forall \mathbb{A} \in M(m \times n) \ \forall \mathbb{B} \in M(n \times k) \ \forall \mathbb{C} \in M(k \times l) : \mathbb{A}(\mathbb{BC}) = (\mathbb{AB})\mathbb{C}$, (associativity)
- (ii) $\forall \mathbb{A} \in M(m \times n) \ \forall \mathbb{B}, \mathbb{C} \in M(n \times k) : \mathbb{A}(\mathbb{B} + \mathbb{C}) = \mathbb{AB} + \mathbb{AC},$ (left distributivity)
- (iii) $\forall \mathbb{A}, \mathbb{B} \in M(m \times n) \ \forall \mathbb{C} \in M(n \times k) : (\mathbb{A} + \mathbb{B})\mathbb{C} = \mathbb{A}\mathbb{C} + \mathbb{B}\mathbb{C},$ (right distributivity)
- (iv) $\exists ! \mathbb{I} \in M(n \times n) \ \forall \mathbb{A} \in M(n \times n) : \mathbb{I} \mathbb{A} = \mathbb{A} \mathbb{I} = \mathbb{A}$. (identity matrix \mathbb{I})

Remark. Warning! Matrix multiplication is not commutative.

Definition. *Transpose matrix* for a matrix

$$\mathbb{A} = \begin{pmatrix} a_{11} & a_{12} & a_{13} & \dots & a_{1n} \\ a_{21} & a_{22} & a_{23} & \dots & a_{2n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & a_{m3} & \dots & a_{mn} \end{pmatrix}$$

is defined by

$$\mathbb{A}^{T} = \begin{pmatrix} a_{11} & a_{21} & \dots & a_{m1} \\ a_{12} & a_{22} & \dots & a_{m2} \\ a_{13} & a_{23} & \dots & a_{m3} \\ \vdots & \vdots & \ddots & \vdots \\ a_{1n} & a_{2n} & \dots & a_{mn} \end{pmatrix},$$

i.e., if $\mathbb{A} = (a_{ij})_{\substack{i=1..m\\j=1..n}}$, then $\mathbb{A}^T = (b_{uv})_{\substack{u=1..n\\v=1..m}}$, where $b_{uv} = a_{vu}$ for each $u \in \{1, \ldots, n\}$, $v \in \{1, 2, \ldots, m\}$.

Theorem 6.3 (properties of transpose matrix). We have

- (i) $\forall \mathbb{A} \in M(m \times n) : (\mathbb{A}^T)^T = \mathbb{A}$,
- (ii) $\forall \mathbb{A}, \mathbb{B} \in M(m \times n) : (\mathbb{A} + \mathbb{B})^T = \mathbb{A}^T + \mathbb{B}^T$,
- (iii) $\forall \mathbb{A} \in M(m \times n) \ \forall \mathbb{B} \in M(n \times k) : (\mathbb{AB})^T = \mathbb{B}^T \mathbb{A}^T$.

6.2. Regular matrices.

Definition. Let $\mathbb{A} \in M(n \times n)$. We say that \mathbb{A} is regular matrix, if there exists $\mathbb{B} \in M(n \times n)$ such that

$$AB = BA = I$$
.

Definition. We say that $\mathbb{B} \in M(n \times n)$ is inverse to a matrix $\mathbb{A} \in M(n \times n)$, if $\mathbb{AB} = \mathbb{BA} = \mathbb{I}$. *Remark.* A matrix $\mathbb{A} \in M(n \times n)$ is regular, if and only if \mathbb{A} has its inverse matrix.

Theorem 6.4 (regularity and matrix operations). Let \mathbb{A} , $\mathbb{B} \in M(n \times n)$ be regular. Then we have:

- (i) \mathbb{A}^{-1} is regular and $(\mathbb{A}^{-1})^{-1} = \mathbb{A}$,
- (ii) \mathbb{A}^T is regular and $(\mathbb{A}^T)^{-1} = (\mathbb{A}^{-1})^T$, (iii) $\mathbb{A}\mathbb{B}$ is regular and $(\mathbb{A}\mathbb{B})^{-1} = \mathbb{B}^{-1}\mathbb{A}^{-1}$.

Definition. Let $v^1, \ldots, v^k \in \mathbb{R}^n$ be vectors. Linear combination of vectors v^1, \ldots, v^k is an expression $\lambda_1 v^1 + \cdots + \lambda_k v^k$, where $\lambda_1, \dots, \lambda_k \in \mathbb{R}$. Trivial linear combination of vectors v^1, \ldots, v^k we mean the linear combination $0 \cdot v^1 + \cdots + 0 \cdot v^k$. Linear combination, which is not trivial, is called *nontrivial*.

Definition. We say that vectors v^1, \ldots, v^k are *linearly dependent*, if there exists their nontrivial linear combination, which is equal to the zero vector.

We say that vectors v^1, \ldots, v^k are linearly independent, if they are not linearly dependent, i.e., if $\lambda_1, \ldots, \lambda_k \in \mathbb{R}$ satisfy $\lambda_1 v^1 + \cdots + \lambda_k v^k = 0$, then $\lambda_1 = \lambda_2 = \cdots = \lambda_k = 0$.

Definition. Let $A \in M(m \times n)$. Rank of the matrix A is the maximal number of linearly independent row vectors of \mathbb{A} . Rank of \mathbb{A} is denoted by $rk(\mathbb{A})$.

Definition. We say that $A \in M(m \times n)$ is in the row echelon form, if for each $i \in \{2, ..., m\}$ we have, that i-th row of \mathbb{A} is a zero vector or the number of zeros at the beginning of the row is bigger than the number of zeros at the beginning of (i-1)-st row.

Remark. The rank of row echelon matrix \mathbb{A} is equal to the number of nonzero rows of \mathbb{A} .

Definition. *Elementary row transformations* of the matrix \mathbb{A} are defined as:

- (i) interchange of two rows,
- (ii) multiplication of a row by a nonzero real number,
- (iii) addition of a row to another row.

Definition. Transformation is defined as a finite sequence of elementary row transformation. If the matrix $\mathbb{B} \in M(m \times n)$ was created from $\mathbb{A} \in M(m \times n)$ applying a transformation T to \mathbb{A} , then this fact is denoted by $\mathbb{A} \stackrel{T}{\leadsto} \mathbb{B}$.

Theorem 6.5 (properties of transformation).

- (i) Let $A \in M(m \times n)$. Then there exists a transformation transforming A to a row echelon matrix.
- (ii) Let T_1 be a transformation applicable to matrices of the type $m \times n$. Then there exists a transformation T_2 applicable to matrices of the type $m \times n$ such that if $\mathbb{A} \stackrel{T_1}{\leadsto} \mathbb{B}$ for some $\mathbb{A}, \mathbb{B} \in M(m \times n)$, then $\mathbb{B} \stackrel{T_2}{\leadsto} \mathbb{A}$.
- (iii) Let \mathbb{A} , $\mathbb{B} \in M(m \times n)$ and there exist a transformation T such that $\mathbb{A} \stackrel{T}{\leadsto} \mathbb{B}$. Then $\mathrm{rk}(\mathbb{A}) = \mathrm{rk}(\mathbb{B})$.

Theorem 6.6 (multiplication and transformation). Let $A \in M(m \times k)$, $B \in M(k \times n)$, $C \in M(m \times n)$ and we have AB = C. Let T be a transformation and $A \xrightarrow{T} A'$ and $C \xrightarrow{T} C'$. Then we have A'B = C'.

Lemma 6.7. Let $\mathbb{A} \in M(n \times n)$ and $\operatorname{rk}(\mathbb{A}) = n$. Then there exists a transformation transforming \mathbb{A} to \mathbb{I} .

Theorem 6.8. Let $\mathbb{A} \in M(n \times n)$. Then \mathbb{A} is regular if and only if $\operatorname{rk}(\mathbb{A}) = n$.

6.3. Determinants.

Definition. Let $A \in M(n \times n)$. The symbol A_{ij} denotes the matrix of the type $(n-1) \times (n-1)$, which is created from A omitting i-th row and j-th column.

Definition. Let $\mathbb{A} = (a_{ij})_{i,j=1..n}$. Determinant of the matrix \mathbb{A} is defined by

$$\det \mathbb{A} = \begin{cases} a_{11} & \text{then } n = 1, \\ \sum_{i=1}^{n} (-1)^{i+1} a_{i1} \det \mathbb{A}_{i1} & \text{then } n > 1. \end{cases}$$

For $\det \mathbb{A}$ we will use also the symbol

$$\begin{vmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{vmatrix}$$

Theorem 6.9. Let $j, n \in \mathbb{N}$, $j \leq n$, and matrices $\mathbb{A}, \mathbb{B}, \mathbb{C} \in M(n \times n)$ coincide at each row except j-th row. Let j-th row of \mathbb{A} be equal to the sum of j-th rows of \mathbb{B} and \mathbb{C} . Then we have $\det \mathbb{A} = \det \mathbb{B} + \det \mathbb{C}$.

$$\begin{vmatrix} a_{11} & \dots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{j-1,1} & \dots & a_{j-1,n} \\ u_1+v_1 & \dots & u_n+v_n \\ a_{j+1,1} & \dots & a_{j+1,n} \\ \vdots & \ddots & \vdots \\ a_{n1} & \dots & a_{nn} \end{vmatrix} = \begin{vmatrix} a_{11} & \dots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{j-1,1} & \dots & a_{j-1,n} \\ u_1 & \dots & u_n \\ a_{j+1,1} & \dots & a_{j+1,n} \\ \vdots & \ddots & \vdots \\ a_{n1} & \dots & a_{nn} \end{vmatrix} + \begin{vmatrix} a_{11} & \dots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{j-1,1} & \dots & a_{j-1,n} \\ a_{j-1,1} & \dots & a_{j-1,n} \\ u_1 & \dots & u_n \\ a_{j+1,1} & \dots & a_{j+1,n} \end{vmatrix}$$

Theorem 6.10 (determinant and transformation). Let \mathbb{A} , $\mathbb{A}' \in M(n \times n)$.

- (i) Let \mathbb{A}' be created from \mathbb{A} such that we interchanged two rows in \mathbb{A} (i.e., we applied an elementary row transformation of the first kind). Then we have $\det \mathbb{A}' = -\det \mathbb{A}$.
- (ii) Let \mathbb{A}' be created from \mathbb{A} such that a row in \mathbb{A} is multiplied by $\lambda \in \mathbb{R}$. Then we have $\det \mathbb{A}' = \lambda \det \mathbb{A}$.
- (iii) Let \mathbb{A}' be created from \mathbb{A} such that we added a row of \mathbb{A} to another row of \mathbb{A} (i.e., we applied an elementary row transformation of the third kind). Then we have $\det \mathbb{A}' = \det \mathbb{A}$.

Corollary 6.11. Let \mathbb{A} , $\mathbb{A}' \in M(n \times n)$ and \mathbb{A}' be created from \mathbb{A} applying a transformation. Then $\det \mathbb{A}' \neq 0$ if and only if $\det \mathbb{A} \neq 0$.

Theorem 6.12 (determinant and transposition). Let $A \in M(n \times n)$. Then we have $\det A^T = \det A$.

Theorem 6.13 (determinant of product). *Let* \mathbb{A} , $\mathbb{B} \in M(n \times n)$. *Then we have*

$$\det \mathbb{AB} = \det \mathbb{A} \cdot \det \mathbb{B}.$$

Theorem 6.14. Let $A = (a_{ij})_{i,j=1..n}, k \in \{1,\ldots,n\}$. Then

$$\det \mathbb{A} = \sum_{i=1}^{n} (-1)^{i+k} a_{ik} \det \mathbb{A}_{ik},$$
$$\det \mathbb{A} = \sum_{j=1}^{n} (-1)^{k+j} a_{kj} \det \mathbb{A}_{kj}.$$

Definition. Let $\mathbb{A} = (a_{ij})_{i,j=1..n}$. We say that \mathbb{A} is upper triangular matrix if we have $a_{ij} = 0$ for $i > j, i, j \in \{1, ..., n\}$. We say that \mathbb{A} is lower triangular matrix, if we have $a_{ij} = 0$ for $i < j, i, j \in \{1, ..., n\}$.

Theorem 6.15. Let $\mathbb{A} = (a_{ij})_{i,j=1..n}$ is upper (lower, respectively) triangular matrix. Then we have

$$\det \mathbb{A} = a_{11} \cdot a_{22} \cdot \cdots \cdot a_{nn}.$$

Theorem 6.16. Let $\mathbb{A} \in M(n \times n)$. Then \mathbb{A} is regular if and only if $\det \mathbb{A} \neq 0$.

6.4. Systems of linear equations. The system of n equations with n unknowns:

(S)

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1$$

$$a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2$$

$$\vdots$$

$$a_{n1}x_1 + a_{n2}x_2 + \dots + a_{nn}x_n = b_n$$

Matrix form

$$Ax = b$$
,

where
$$\mathbb{A} = \begin{pmatrix} a_{11} & \dots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{n1} & \dots & a_{nn} \end{pmatrix}$$
 is called *matrix of the system*, $\boldsymbol{b} = \begin{pmatrix} b_1 \\ \vdots \\ b_n \end{pmatrix}$ vector of the right side and $\boldsymbol{x} = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$ vectors of unknowns.

Theorem 6.17. Let $A \in M(n \times n)$. Then the following are equivalent.

- (i) The matrix \mathbb{A} is regular.
- (ii) The system (SSystems of linear equationsDoc-Start) have for each **b** a unique solution.
- (iii) The system (SSystems of linear equationsDoc-Start) have for each **b** at least one solution.

Theorem 6.18 (Cramer's rule). Let $A \in M(n \times n)$ be a regular matrix, $b \in M(n \times 1)$, $x \in M(n \times 1)$, and Ax = b. Then

$$x_{j} = \frac{\begin{vmatrix} a_{11} & \dots & a_{1,j-1} & b_{1} & a_{1,j+1} & \dots & a_{1n} \\ \vdots & & \vdots & & \vdots \\ a_{n1} & \dots & a_{n,j-1} & b_{n} & a_{n,j+1} & \dots & a_{nn} \end{vmatrix}}{\det \mathbb{A}}$$

for j = 1, ..., n.

System of m equations with n unknowns:

(S')
$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1$$

$$a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2$$

$$\vdots$$

$$a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m$$

Matrix notation

$$Ax = b$$

where
$$\mathbb{A} = \begin{pmatrix} a_{11} & \dots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \dots & a_{mn} \end{pmatrix} \in M(m \times n), \, \boldsymbol{b} = \begin{pmatrix} b_1 \\ \vdots \\ b_m \end{pmatrix} \in M(m \times 1) \text{ a } \boldsymbol{x} = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \in M(n \times 1).$$

Definition. The matrix

$$(\mathbb{A}|\boldsymbol{b}) = \begin{pmatrix} a_{11} & \dots & a_{1n} & b_1 \\ \vdots & \ddots & \vdots & \vdots \\ a_{m1} & \dots & a_{mn} & b_m \end{pmatrix}$$

is called extended matrix of the system (S'Systems of linear equationsDoc-Start).

Theorem 6.19. The system (S'Systems of linear equationsDoc-Start) has a solution if and only if the matrix has the same rank as the extended matrix of the system.

6.5. Matrix and linear mappings.

Definition. We say that a mapping $f: \mathbb{R}^n \to \mathbb{R}^m$ is *linear* if

- (i) $\forall u, v \in \mathbb{R}^n$: f(u+v) = f(u) + f(v),
- (ii) $\forall \lambda \in \mathbf{R} \ \forall \mathbf{u} \in \mathbf{R}^n : f(\lambda \mathbf{u}) = \lambda f(\mathbf{u}).$

Definition. Let $i \in \{1, ..., n\}$. The vector

$$e^{i} = \begin{pmatrix} 0 \\ \vdots \\ 0 \\ 1 \\ 0 \\ \vdots \end{pmatrix} \dots i$$
-th coordinate

is called i-th canonical vector of the space \mathbb{R}^n . The set $\{e^1, \dots, e^n\}$ of all canonical vectors in \mathbb{R}^n is called *canonical basis of the space* \mathbb{R}^n .

The properties of canonical vectors:

- (i) $\forall x \in \mathbb{R}^n \; \exists \lambda_1, \dots, \lambda_n \in \mathbb{R} : x = \lambda_1 e^1 + \dots + \lambda_n e^n$, (ii) the vectors e^1, \dots, e^n are linearly independent.

Theorem 6.20 (representation of linear mappings). The mapping $f: \mathbb{R}^n \to \mathbb{R}^m$ is linear if and only if there exists a matrix $A \in M(m \times n)$ such that

$$\forall \mathbf{u} \in \mathbf{R}^n : f(\mathbf{u}) = \mathbb{A}\mathbf{u} = \begin{pmatrix} a_{11} & \dots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \dots & a_{mn} \end{pmatrix} \begin{pmatrix} u_1 \\ \vdots \\ u_n \end{pmatrix}.$$

Theorem 6.21. Let a mapping $f: \mathbb{R}^n \to \mathbb{R}^n$ be linear. Then the following are equivalent.

- (i) The mapping f is a bijection (i.e., f is an injective mapping \mathbb{R}^n onto \mathbb{R}^n).
- (ii) The mapping f is an injective mapping.
- (iii) The mapping f is a mapping \mathbb{R}^n onto \mathbb{R}^n .

Theorem 6.22. Let $f: \mathbb{R}^n \to \mathbb{R}^m$ be a linear mapping represented by matrix $\mathbb{A} \in M(m \times n)$ a $g: \mathbb{R}^m \to \mathbb{R}^k$ be a linear mapping represented by a matrix $\mathbb{B} \in M(k \times m)$. Then the composed mapping $g \circ f: \mathbb{R}^n \to \mathbb{R}^k$ is linear and is represented by the matrix $\mathbb{B}\mathbb{A}$.

7. Infinite series

7.1. Basic notions.

Definition. Let $\{a_n\}$ be a sequence of real numbers. Symbol $\sum_{n=1}^{\infty} a_n$ is called an *infinite series*. For $m \in \mathbb{N}$ we set

$$s_m = a_1 + a_2 + \dots + a_m.$$

The number s_m is called *m-th partial sum* of the series $\sum_{n=1}^{\infty} a_n$. The element a_n is called *n-th member* of the series $\sum_{n=1}^{\infty} a_n$. The sum of infinite series $\sum_{n=1}^{\infty} a_n$ is defined as the limit of the sequence $\{s_m\}$, if such a limit exists. The sum of the series is denoted by the symbol $\sum_{n=1}^{\infty} a_n$. We say that a series *converges*, if its sum is a real number. In the opposite case, we say that the series diverges.

Theorem 7.1 (necessary condition). If a series $\sum_{n=1}^{\infty} a_n$ converges, then $\lim a_n = 0$.

Remark. Suppose that $\alpha \in \mathbf{R}$ and a series $\sum_{n=1}^{\infty} a_n$ converges. Then the series $\sum_{n=1}^{\infty} \alpha a_n$ converges and it holds $\sum_{n=1}^{\infty} \alpha a_n = \alpha \sum_{n=1}^{\infty} a_n$. If $\sum_{n=1}^{\infty} a_n$ and $\sum_{n=1}^{\infty} b_n$ converge, then the series $\sum_{n=1}^{\infty} (a_n + b_n)$ convergens and if holds $\sum_{n=1}^{\infty} (a_n + b_n) = \sum_{n=1}^{\infty} a_n + \sum_{n=1}^{\infty} b_n$.

7.2. Series with nonnegative members and absolute convergence.

Theorem 7.2. Let $\sum_{n=1}^{\infty} a_n$ and $\sum_{n=1}^{\infty} b_n$ be series satisfying $0 \le a_n \le b_n$ for each $n \in \mathbb{N}$. (i) If $\sum_{n=1}^{\infty} b_n$ converges, then $\sum_{n=1}^{\infty} a_n$ converges. (ii) If $\sum_{n=1}^{\infty} a_n$ diverges, then $\sum_{n=1}^{\infty} b_n$ diverges.

Theorem 7.3. Let $\{a_n\}$ be a sequence of real numbers. If $\sum_{n=1}^{\infty} |a_n|$ converges, then $\sum_{n=1}^{\infty} a_n$ converges.

Definition. We say that $\sum_{n=1}^{\infty} a_n$ is absolute convergent, if $\sum_{n=1}^{\infty} |a_n|$ converges. If $\sum_{n=1}^{\infty} a_n$ converges but not absolutely, then $\sum_{n=1}^{\infty} a_n$ converges nonabsolutely.

Remark. Let $|a_n| \le b_n$ for each $n \in \mathbb{N}$. If the series $\sum_{n=1}^{\infty} b_n$ converges, then $\sum_{n=1}^{\infty} a_n$ converges.

Theorem 7.4 (limit test). Let $\sum_{n=1}^{\infty} a_n$ and $\sum_{n=1}^{\infty} b_n$ be series with nonnegative members.

$$\lim_{n\to\infty}\frac{a_n}{b_n}$$

exists proper. If $\sum_{n=1}^{\infty} b_n$ converges, then $\sum_{n=1}^{\infty} a_n$ converges.

(ii) Let

$$\lim_{n \to \infty} \frac{a_n}{b_n} = c \in (0, +\infty).$$

 $\lim_{n\to\infty}\frac{a_n}{b_n}=c\in(0,+\infty).$ Then $\sum_{n=1}^\infty a_n$ converges if and only if $\sum_{n=1}^\infty b_n$ converges.

Theorem 7.5 (Cauchy test). Let $\sum_{n=1}^{\infty} a_n$ be a series. The we have

- (i) If $\lim_{n \to \infty} \sqrt[n]{|a_n|} < 1$, then $\sum_{n=1}^{\infty} a_n$ is absolutely convergent. (ii) If $\lim_{n \to \infty} \sqrt[n]{|a_n|} > 1$, then $\sum_{n=1}^{\infty} a_n$ diverges.

Theorem 7.6 (d'Alembert test). Let $\sum_{n=1}^{\infty} a_n$ be a series with nonzero members. Then we have (i) If $\lim |a_{n+1}/a_n| < 1$, then $\sum_{n=1}^{\infty} a_n$ absolutely convergent. (ii) If $\lim |a_{n+1}/a_n| > 1$, then $\sum_{n=1}^{\infty} a_n$ diverges.

Theorem 7.7. Let $\alpha \in \mathbb{R}$. The series $\sum_{n=1}^{\infty} 1/n^{\alpha}$ converges if and only if $\alpha > 1$.

7.3. Alternating series.

Theorem 7.8 (Leibniz). Let $\sum_{n=1}^{\infty} (-1)^n a_n$ be a series. Assume

- $a_n \ge a_{n+1} \ge 0$ for every $n \in \mathbb{N}$,
- $\bullet \ \lim_{n\to\infty} a_n = 0.$

Then $\sum_{n=1}^{\infty} (-1)^n a_n$ converges.

8. Integrals

8.1. Riemann integral.

Definition. A finite sequence $\{x_j\}_{j=0}^n$ is called a partition of the interval [a,b], if we have

$$a = x_0 < x_1 < \dots < x_n = b.$$

The points x_0, \ldots, x_n are called *partition points*.

By a norm of partition $D = \{x_j\}_{j=0}^n$ we mean

$$\nu(D) = \max\{x_i - x_{i-1}; \ j = 1, \dots, n\}.$$

We say that a partition D' of an interval [a, b] is a refinement of the partition D of the interval [a, b], if each point of D is a partition point of D'.

Definition. Let f be a bounded function on an interval [a, b] and $D = \{x_j\}_{j=0}^n$ be a partition of [a, b]. We denote

$$\overline{S}(f,D) = \sum_{j=1}^{n} M_j(x_j - x_{j-1}), \text{ where } M_j = \sup\{f(x); x \in [x_{j-1}, x_j]\},$$

$$\underline{S}(f,D) = \sum_{j=1}^{n} m_j(x_j - x_{j-1}), \text{ where } m_j = \inf\{f(x); x \in [x_{j-1}, x_j]\},$$

$$\overline{\int_a^b f(x) \, \mathrm{d}x = \inf\{\overline{S}(f,D); D \text{ is a partition of the interval } [a,b]\},$$

$$\int_a^b f(x) \, \mathrm{d}x = \sup\{\underline{S}(f,D); D \text{ is a partition of the interval } [a,b]\}.$$

Definition. We say that a bounded function f has *Riemann integral* over the interval [a,b], if $\underline{\int_a^b} f(x) dx = \underline{\int_a^b} f(x) dx$. Then the value of the integral of f over the interval [a,b] is equal to $\underline{\int_a^b} f(x) dx$ and is denoted by $\underline{\int_a^b} f(x) dx$. If a > b, we define $\underline{\int_a^b} f(x) dx = -\underline{\int_b^a} f(x) dx$. If a = b, we define $\underline{\int_a^b} f(x) dx = 0$.

Theorem 8.1. (i) Let a function f have Riemann integral over [a,b] and let $[c,d] \subset [a,b]$. Then f has Riemann integral over [c,d].

(ii) Let $c \in (a,b)$ and a function f have Riemann integral over [a,c] and [c,b]. Then f has Riemann integral over [a,b] and we have

$$\int_a^b f(x) dx = \int_a^c f(x) dx + \int_c^b f(x) dx.$$

Theorem 8.2. Let f and g be functions with Riemann integral over [a,b] and let $\alpha \in \mathbb{R}$. Then (i) the function αf has Riemann integral over [a,b] and it holds

$$\int_{a}^{b} \alpha f(x) \, \mathrm{d}x = \alpha \int_{a}^{b} f(x) \, \mathrm{d}x,$$

(ii) the function f + g has Riemann integral over [a, b] and it holds

$$\int_a^b \left(f(x) + g(x) \right) \mathrm{d}x = \int_a^b f(x) \, \mathrm{d}x + \int_a^b g(x) \, \mathrm{d}x.$$

Theorem 8.3. Let $a, b \in \mathbb{R}$, a < b, and let f and g be functions with Riemann integral over [a, b].

(i) If $f(x) \ge 0$ for each $x \in [a, b]$, then

$$\int_{a}^{b} f(x) \, \mathrm{d}x \ge 0.$$

(ii) If $f(x) \le g(x)$ for each $x \in [a, b]$, then

$$\int_{a}^{b} f(x) \, \mathrm{d}x \le \int_{a}^{b} g(x) \, \mathrm{d}x.$$

(iii) The function |f| has Riemann integral over [a,b] and it holds

$$\left| \int_a^b f(x) \, \mathrm{d}x \right| \le \int_a^b |f(x)| \, \mathrm{d}x.$$

Theorem 8.4. Let a function f be continuous on the interval [a,b], $a,b \in \mathbb{R}$. Then f has Riemann integral over [a,b].

Theorem 8.5. Let f be a continuous function on [a,b] and let $c \in [a,b]$. If we denote $F(x) = \int_{c}^{x} f(t) dt$ for $x \in (a,b)$, then F'(x) = f(x) for each $x \in (a,b)$.

8.3. Primitive functions.

Definition. Let a function f be defined on an open interval I. We say that a function F is a primitive function of f on I, if for each $x \in I$ there exists F'(x) and F'(x) = f(x).

Theorem 8.6. Let F and G be primitive functions of f on an open interval I. Then there exists $c \in \mathbb{R}$ such that F(x) = G(x) + c for each $x \in I$.

Theorem 8.7. Let f be a continuous function on an open interval I. Then f has on I a primitive function.

Theorem 8.8. Let f have on an open interval I a primitive function F, let a function g have on I a primitive function G, and $\alpha, \beta \in \mathbf{R}$. Then the function $\alpha F + \beta G$ is a primitive function of $\alpha f + \beta g$ on I.

Theorem 8.9 (substitution). (i) Let F be a primitive function of f on (a,b). Let φ be a function defined on an interval (α,β) with values in (a,b) and φ has at each point $t \in (\alpha,\beta)$ proper derivative. Then we have

$$\int f(\varphi(t))\varphi'(t) dt \stackrel{c}{=} F(\varphi(t)) \ on \ (\alpha, \beta).$$

(ii) Let a function φ have at each point of an interval (α, β) nonzero proper derivative and $\varphi((\alpha, \beta)) = (a, b)$. Let f be defined on an interval (a, b) and we have

$$\int f(\varphi(t))\varphi'(t) dt \stackrel{c}{=} G(t) on (\alpha, \beta).$$

Then we have

$$\int f(x) dx \stackrel{c}{=} G(\varphi^{-1}(x)) \ on \ (a,b).$$

Theorem 8.10 (integration per partes). Let I be an open interval and let functions f and g be continuous on I. Let F be a primitive function of f on I and G be a primitive function of g on I. Then we have

$$\int g(x)F(x) dx = G(x)F(x) - \int G(x)f(x) dx \text{ na } I.$$

Definition. *Rational function* is a ratio of two polynomials, where the polynomial in denominator is not identically zero.

Theorem 8.11. Let P, Q be polynomial functions with real coefficients such that

- (i) degree of P is strictly smaller than degree of Q,
- (ii) $Q(x) = a_n(x x_1)^{p_1} \dots (x x_k)^{p_k} (x^2 + \alpha_1 x + \beta_1)^{q_1} \dots (x^2 + \alpha_l x + \beta_l)^{q_l}$
- (iii) $a_n, x_1, \ldots, x_k, \alpha_1, \ldots, \alpha_l, \beta_1, \ldots, \beta_l \in \mathbb{R}, a_n \neq 0$,
- (iv) $p_1, ..., p_k, q_1, ..., q_l \in \mathbb{N}$,
- (v) the polynomials $x x_1$, $x x_2$, ..., $x x_k$, $x^2 + \alpha_1 x + \beta_1$, ..., $x^2 + \alpha_l x + \beta_l$ have no common root,
- (vi) the polynomials $x^2 + \alpha_1 x + \beta_1, \dots, x^2 + \alpha_l x + \beta_l$ have no real root.

Then there exist unique real numbers $A_1^1, \ldots, A_{p_1}^1, \ldots, A_{p_k}^1, B_1^1, C_1^1, \ldots, B_{q_1}^1, C_{q_1}^1, \ldots, B_l^1, C_1^1, \ldots, B_{q_l}^1, C_{q_l}^1$ such that we have

$$\frac{P(x)}{Q(x)} = \frac{A_1^1}{(x - x_1)^{p_1}} + \dots + \frac{A_{p_1}^1}{(x - x_1)} + \dots + \frac{A_{p_k}^1}{(x - x_k)^{p_k}} + \dots + \frac{A_{p_k}^k}{x - x_k} + \frac{B_1^1 x + C_1^1}{(x^2 + \alpha_1 x + \beta_1)^{q_1}} + \dots + \frac{B_{q_1}^1 x + C_{q_1}^1}{x^2 + \alpha_1 x + \beta_1} + \dots + \frac{B_{q_l}^1 x + C_{q_l}^1}{(x^2 + \alpha_l x + \beta_l)^{q_l}} + \dots + \frac{B_{q_l}^l x + C_{q_l}^l}{x^2 + \alpha_l x + \beta_l}.$$