5. FUNCTIONS OF SEVERAL VARIABLES

5.1. R as a metric and linear space.
Definition. The set R”, n € N, is the set of all ordered n-tuples of real numbers.

Definition. Euclidean metric on R" is the function p: R* x R" — [0, 400) defined by

p(x,y) =

The number p(x, y) is called distance of the point x from the point y.

Theorem 5.1 (properties of Euclidean metric). Euclidean metric p has the following properties:
(i) Vx,y e R p(x,y) =0& x =y,

(it) Vx,y € R":p(x,y) = p(y,x), (symmetry)
(iii) Vx,y,z e R": p(x,y) < p(x,z) + p(z, y), (triangle inequality)
(iv) Vx,y €e R", VA € R:p(Ax,Ay) = |A| p(x,y), (homogeneity)
(v) Vx,y,ze R":p(x +z,y +z) = p(x,y). (translation invariance)

Definition. Let x € R", r € R, r > 0. The set B(x, r) defined by
B(x,r)={y e R"; p(x,y) <r}
is called open ball with radius r centered at x .

Definition. Let M C R”. We say that x € R” is an interior point of M, if there exists r > 0
such that B(x,r) C M. The set M C R” is open in R", if each point of M is an interior point
of M. We say that M is closed in R", if its complement is closed.

Theorem 5.2 (properties of open sets).

(i) The empty set and R" are open in R".
(ii) Let sets Gy C R", « € A # @, be open in R". Then | J, 4 Gq is open in R".
(iii) Let sets G;, i = 1,...,m, be open in R". Then ﬂ;n:l G; is open in R".

Theorem 5.3 (properties of closed sets).

(i) The empty set and R" are closed in R".
(ii) Let sets F,, C R", @ € A # @, be closed in R". Then ﬂaeA F, is closed in R".
(iii) Let sets F;, i = 1,...,m, are closed in R". Then U;’;l F; is closed in R".

Definition. Let M C R" and x € R". We say that x is a boundary point of M , if for each r > 0
we have B(x,r) N M # @ and B(x,r) N (R"\ M) # @.
Boundary of M is the set of all boundary points of M (notation bd M).
Closure of M is the set M U bd M (notation M).
Interior of M 1is the set of all interior points of M (notation int M).
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5.2. Continuous functions of several variables.

Definition. Let x/ € R” foreach j € N and x € R". We say that a sequence {x’/ G2 converges
to x, if lim;j . p(x, x7) = 0. The vector x is called limit of the sequence {x7/}3 .

Theorem 5.4. Let x/ € R" for each j € N and x € R". The sequence {x’ G2 converges to X

if and only if for eachi € {1,...,n} the sequence of real numbers {x.j 2.1 converges to the real

14
number x;.

Definition. Let M C R", x € M, and f: M — R. We say that f is continuous at x with
respect to M , if we have

VeeR,e>036€R,§>0Vy € B(x, )N M: f(y) € B(f(x),e).

We say that f is continuous at the point x, it it is continuous at x with respect to a neighborhood
of x, 1.e.,
VeeR,e>036€R,§ >0Vy € B(x,0): f(¥) € B(f(x),e).

Remark. Let M CR*, x e M, f:M — R, g:M — R,and ¢ € R.If f and g are continuous
at the point x with respect to M, then the functions cf, f + g a fg are continuous at x with
respect to M. If the function g is nonzero at each point of M, then also the function f/g is
continuous at x with respect to M .

Theorem 5.5 (Heine). Let M C R", x € M, and f: M — R. Then the following are equivalent.

(i) The function f is continuous at x with respect to M.
(ii) For each sequence {x’}°° . such that x’ € M pro j € N a lim x/ = x, we have

j=1 j—o00
lim f(7) = £(x).
j—00

Remark. Letr,s € NN M C R°, L C R"',andy € M. Let ¢q,..., ¢, are functions defined
on M, which are continuous at y with respect to M and [¢;(x),...,¢,(x)] € L foreach x €
M. Let f: L — R be continuous at the point [¢1(y),...,¢,(y)] with respect to L. Then the
composed function F': M — R defined by

F(x) = f((pl(x), ...,(,or(x)), xXeM,
is continuous at y with respect to M.

Definition. Let M C R" a f: M — R. We say that f is continuous on M , if it is continuous at
each point x € M with respect to M.

Remark. The projection r;: R” — R, wj(x) = x;, 1 < j < n, are continuous on R”".

Definition. We say that a set M C R" is compact, if for each sequence of elements of M there
exists a convergent subsequence with limit in M .

Theorem 5.6 (characterization of compact subsets of R"). The set M C R" is compact if and
only if M is bounded and closed.



Definition. Let M C R”, x € M, and f be a function defined at leaston M, i.e., M C Dy. We
say that f attains at the point x

e maximum on M , if for every y € M we have f(y) < f(x),
e local maximum with respect to M , if there exists § > 0 such that for every y € B(x,§)N

M we have f(y) < f(x),
e sharp local maximum with respect to M, if there exists § > 0 such that for every y €

(B(x,8) \ {x}) N M we have f(y) < f(x).

The notions minimum, local minimum, and sharp local minimum with respect to M are defined
analogically.

Definition. We say that a function f attains at the point x € R” local maximum, if x is a
local maximum with respect to some ball centered at the point x. Similarly one can define local
minimum, sharp local maximum and sharp local minimum.

Theorem 5.7 (attaining extrema). Let M C R” be a nonempty compact set and f: M — R be
continuous on M. Then f attains on M its maximum and minimum.

Corollary 5.8. Let M C R”" be a nonempty compact set and f: M — R be continuous on M.
Then f is bounded on M.

Definition. We say that function f:R” — R has at a point @ € R” limit equal A € R*, if we
have

VeeR,e>035 € R,§ >0Vx € B(a,d) \ {a}: f(x) € B(4,¢).
Remark.

e Each function has at a given point at most one limit. We write lim,_,, f(x) = A.

e The function f is continuous at a if and only if lim,_,, f(x) = f(a).

e For functions of several variables one can prove similar theorems as for functions of one
variable (arithmetics, sandwich theorem, ...).

Theorem 5.9. Letr,s € Nyae M C R, L CR’, ¢1,...,¢, be functions defined on M such
thatlimy_,, @j(x) =bj, j =1,....,r,and b = [by,...,b,] € L. Let f: L — R be continuous
at the point b. We define a function F: M — R by

F(x) = f(p1(x), 92(x),....0r(x)), x€M.
Then limy_., F(x) = f(b).

5.3. Partial derivatives.

Definition. Let f be a function of n variables, j € {1,...,n}, a € R". Then the number
af . fla+tel)— f(a)
——(a) = lim
0x; 1—0 t
r flai,....,aj—1,a; +t,aj1,....a,) — f(ar,....an)
5% ‘

is called partial derivatives (of first order) of function f according to j-th variable at the point
a (if it exists).



Theorem 5.10 (necessary condition of existence of local extremum). Let G C R" be an open
set, a € G, and a function f:G — R have at the point a local extremum. Then for each
Jj €{l,...,n}we have:

The partial derivative ;Tf/_(a) either does not exit or is zero.

Definition. Let G C R” be a nonempty open set. Let a function f: G — R have at each point
of the set G all partial derivatives continuous (i.e., function x +— %(x) are continuous on G for
J

each j € {1,...,n}). Then we say that f is of the class C' on G. The set of all these functions
is denoted by C!(G).

Remark. If G C R” is a nonempty open set and and f,g € C!(G), then f + g € CY(G),
f —g € CYG), and fg € CY(G). If moreover for each x € G we have : g(x) # 0, then
f/g € CH(G).

Proposition 5.11 (Lagrange). Letn € N, Iy, ..., I, C R be open interval;, I =11 xIr)x---x1,,
f e C'(I), a,b € I. Then there exist points £',... " € I with & € (a;j,bj) for each
i,j €{l,...,n}, such that

f(b)— fla) = Z —(s ) (bi — a;).
Definition. Let G C R” be an open set, @ € G, and f € C'(G). Then the graph of the function

of

—a,), x €R",

i)
T:x— f(a)+ a—)]:l(a)(xl

is called tangent hyperplane to the graph of the function f at the point [a, f(a)].

Theorem 5.12. Let G C R" be an open set, a € G, f € C(G), and T be a function, such that
its graph is the tangent hyperplane of the function f at the point [a, f(a)]. Then
i ) —T(x)
im ——=

= 0.
x>a  p(x,a)

Theorem 5.13. Let G C R” be an open nonempty set and f € C1(G). Then f is continuous on
G.

Theorem 5.14. Let r,s € N, G C R*, H C R’ be open sets. Let ¢y, ...,¢, € C1(G), f €
CY(H) and [¢,(x),...,¢,(x)] € H for each x € G. Then the composed function F:G — R
defined by

F(x) = f(p1(x), 02(x).....0:(x)), x€G,
is of the class C on G. Leta € G and b = [¢;(a), ..., ¢,(a)]. Then foreach j € {1,...,s} we

have
—()—Z




Definition. Let G C R” be an open set, a € G, and f € C'(G). Gradient of f at the point a is

defined as the vector 0 0 0y
Vi@ = | @@ @]

Definition. Let G C R" be an open set,a € G, f € C1(G), and V f(a) = o. Then the point a
is called stationary (or also critical) point of the function f.

Definition. Let G C R" be anopenset, f:G — R,i,j € {1,...,n}, and g—){i(x) exists for each
x € G. Then partial derivative of the second order of the function f according to i-th and j -th
variable at the point a € G is defined by

Pf 9 (of
dx;0x; @ = ax; (ax,-) @).

If i = j then we use the notation

0% f
—=(a).
Theorem 5.15. Leti, j € {1,...,n} and let both partial derivatives afg;j and % be conti-
nuous at a point a € R". Then we have
?f ?f
(a) = (a).
Bxi 8xj ax]' 8x,-

Definition. Let G C R” be an open set and k € N. We say that a function f is of the class C* on
G, if all partial derivatives of f till k-th order are continuous on G. The set of all these functions
is denoted by C*(G). We say that a function f is of the class C* on G, if all partial derivatives

of all orders of f are continuous on G. The set of all functions of the class C* on G is denoted
by C*(G).

5.4. Implicit function theorem.

Theorem 5.16 (implicit function theorem). Let G C R"*! be an open set, F: G — R, X € R",
y € R, [x, Y] € G. Suppose that

(1) F € C'(G),

(2) F(x,y) =0,

oF _
(3) G_(x’y) # 0.
Y
Then there exist a neighborhood U C R" of the point X and a neighborhood V' C R of the point

y such that for each x € U there exists unique y € V with the property F(x,y) = 0. If we
denote this y by ¢(x), then the resulting function ¢ is in C'(U) and

I (x.g(x))

—m forx eU, jel{l,...,n}

dg
a_x,-(x) =



Theorem 5.17 (implicit function theorem). Letm,n € N, k € NU {oo}, G C R"™™ be an open
set, F;:G - Rforj=1,...,m,x e R", y e R", [x,y] € G. Suppose that

(1) F; € CK(G) foreach j € {1,...,m},

(2) Fj(x,y) =O0foreach j €{l,...,m},

HrEF) . pEE )

(3) z - : 7# 0.
T §) ... HEE)
oy V) gy, XY

Then there exist a neighborhood U C R”" of the point X and a neighborhood V. C R™ of the
point y such that for each x € U there exists unique y € V with the property Fi(x,y) = 0
foreach j € {1,...,m}. If we denote coordinates of this y by ¢;(x), j = 1,...,m, then the
resulting functions ¢; are in C*(U).

Remark. The symbol in the condition (3Summer semesterDoc-Start) of Theorem 5.17Summer
semesterDoc-Start is called determinant. The definition will presented later on.
For m = 1 we have |a| =a,a € R.

3‘ =ad —bc,a,b,c,d € R.

5.5. Lagrange multiplier theorem.

a
For m = 2 we have

Theorem 5.18 (Lagrange multiplier theorem). Let G C R? be an open set, f,g € C'(G),
M = {[x,y] € G; g(x,y) =0}, and [X, y] € M be a point of local extremum of | with respect
to the set M. Then at least one of the following conditions holds:

(1) Vg(x,y) = o,

(2) there exists A € R satisfying

af . g . .

— &) +A (X)) =0,

0x 0x

af

dy
Theorem 5.19 (Lagrange multiplier theorem). Let m,n € N, m < n, G C R" be an open set,
f.g1,....8m € CHG),

M ={ze€G; g1(z) =0,82(2) =0,...,gm(z) =0}

and let Z € M be a point of local extremum of f with respect to the set M. Then at least one of
the following conditions holds:

(1) the vectors

g
(&, 5) + Aa—g(x,w = 0.
Yy

Vg1(2), Vg2(2), ..., Vgm(2)
are linearly dependent,
(2) there exist Ay, Ay, ..., Am € R satisfying

Vf(Z) +AVgi1(Z) + A2V (2) + -+ + A Vgm(2) = 0.



5.6. Concave and quasiconcave functions.
Definition. Let M C R". We say that M is convex, if we have
Vx,ye MVt €(0,1):tx +(1—1t)y e M.

Definition. Let M C R” be a convex set and a function f be defined on M. We say that f is
e concave on M , if

Ya,be MVt € (0,1): f(ta+ (1 —1t)b) >tf(a)+ (1 —1)f(b),
e strictly concave on M, if

Va,be M,a # bVt e (0,1): fta+ (1 —1)b) > tf(a) + (1 — 1) f(B).

Theorem 5.20. Let a function [ be concave on an open convex set G C R”". Then f is continu-
ous on G.

Theorem 5.21. Let a function f be concave on a convex set M C R". Then for each o € R the
set Oy =4{x € M; f(x)> a} is convex.

Theorem 5.22 (characterization of concave functions of the class C'). Let G C R" be a convex
open setand f € C'(G). Then the function f is convex on G if and only if we have

of
8)6,'

Vx,y € G: f(y) < f(x)+ Z (x)(yi — xi).

Corollary 5.23. Let G C R” be a convex open set and f € C'(G) be concave on G. If a point
a € G is a stationary point of f, then a is a point of maximum of f with respect to G.

Theorem 5.24 (characterization of strictly concave functions of the class C!). Let G C R”" be a
convex open set and f € C'(G). Then the function f is strictly concave on G if and only if we
have

"9
VX p €Gx £y () < )+ ()i )

Definition. Let M C R” be a convex set and f be defined on M. We say that f is

e quasiconcave on M , if
Va,b € M ¥Vt € [0,1]: f(ta + (1 —¢t)b) > min{ f(a), f(b)},
e strictly quasiconcave on M, if
Ya,b € M,a # b, Vt € (0,1): f(ta + (1 —¢t)b) > min{ f(a), f(b)}.

Remark. Let M C R” be a convex set and f be a function defined on M.
e Let f be concave on M. Then f is quasiconcave on M.
e Let f be strictly concave on M. Then f is strictly quasiconcave on M.

Theorem 5.25 (on uniqueness of extremum). Let f be a strictly quasiconcave function on a
convex set M C R". Then there exists at most one point of maximum of f.



Corollary 5.26. Let M C R" be a convex, bounded, closed and nonempty set. Let f be conti-
nuous and strictly quasiconcave function on M. Then f attains its maximum on M in a unique
point.

Theorem 5.27 (characterization of quasiconcave functions via level sets). Let M C R" be a
convex set and [ be defined on M. The function f is quasiconcave on M if and only if for each
@ € Rtheset Qy ={x € M; f(x)> a}is convex.



6. MATRIX CALCULUS
6.1. Basic operations with matrices.

Definition. The scheme

aix diz ... din

anq dzp ... dap

aml am2 o .. amn
where a;; € R,i = 1,...,m, j = 1,...,n,is called a matrix of the type m x n. We write
(aij)i=1..m. A matrix of type n x n is called square matrix of the order n. The set of all matrices

j=1l.n

of the type m x n is denoted M (m X n).
Definition. Let

al ain ... A1p
ani [15%) ... Aoy
A =
Adm1 Am2 ... Qmn
The n-tuple (a;1,a;z,...,ai,), where
ay;
. . . . azj
i €{l1,2,...,m},is called i-th row of the matrix A. The m-tuple . |, where
a,.,,j

j €{1,2,...,n},is called j-th column matrix A.

Definition. We say that two matrices are equal, if they are of the same type and the corresponding
elements are equal, i.e., if A = (aij),-.zll,_m and B = (b,w)u:%__r, then A = B if and only if
j= n v=1..§

m =r,n =sanda;; = b;j foreveryi € '{1,...,m},j ef{l,...,n}.
Definition. Let A,B € M(m x n), A = (aij),;:ll_,m, B = (b,-j)i;ll__m, A € R. The sum of A and
B is defined by

ain +bi aix+bix ... ain+ by
A+B= a21'?‘b21 azz-?-bzz a2n'?'b2n
Ami + bml Am2 + bml <. Umn + bmn
Product of a real number A and the matrix A is defined by
)La“ Aalz )&Clln

Aa Aa ... Adap
JA — .21 '22 2

Ami Az ... Admn



Proposition 6.1 (basic properties).
e VAB,Ce M(mxn):A+B+C)=A+DB)+C,
VA,Be M(mxn):A+B =8B+ A,

(associativity)
(commutativity)

310 € M(m xn) YA € M(m xn): A+ O = A,
VA e M(m xn)3Cxp € M(m xn): A+ Cy =QO,
VA e Mmxn)VA, u € R:(An)A = A(nA),

VA e M(mxn):1-A=A,

VA e M(mxn) VA, u € Ri(A + w)A = AA + uA,
VA,Be M(m xn) VA € R:A(A + B) = LA + AB.
Definition. Let A € M(m x n), A = (Clis)isz_ll..r’rlz, BeMnxk),B = (bsj);fi..r]é. Then the

product of matrices A and B is defined as AB € M(m x k), AB = (Cij)i:]nrz, where
j=1..

n
cij = ) aishy;.
s=1

Theorem 6.2 (properties of matrix multiplication). Let m,n,k,l € N. Then we have:

(existence of the zero element)

(i) VA e M(mxn) VB e M(n xk)VC € M(k x1): A(BC) = (AB)C, (associativity)
(ii) VA €e M(m xn) VB,C € M(n x k): A(B + C) = AB + AC, (left distributivity)
(iii) VA,B € M(m xn) VC € M(n xk): (A +B)C = AC + BC, (right distributivity)

(iv) A € M(n xn) VA € M(n x n):TA = Al = A.
Remark. Warning! Matrix multiplication is not commutative.

Definition. Transpose matrix for a matrix

(identity matrix 1)

ayp diz 4z ... dip
dzy dzpx dz23 ... dap
A = .
Am1 Am2 Am3 ce. Amn
is defined by
ail dni e Ao
dip dizp oo Amn
AT = | a1z ax ... ams |,
A1n Aop coo Amn
ie., if A = (a,-j),-.=11,,m, then AT = (b,w)u=11,,n, where b, = a,, foreachu € {1,...,n},
j=1l.n v=1..m

vefl,2,....,m}.



Theorem 6.3 (properties of transpose matrix). We have
(i) VA € M(m x n): (AT)" = A,
(ii) VA, B € M(m x n): (A +B)T = AT + BT,
(iii) VA € M(m xn) VB € M(n x k): (AB)T = BTAT.
6.2. Regular matrices.

Definition. Let A € M(n x n). We say that A is regular matrix, if there exists B € M(n x n)
such that
AB = BA =1.

Definition. We say that B € M (n x n) is inverse to a matrix A € M(n x n), if AB = BA = 1.
Remark. A matrix A € M(n x n) is regular, if and only if A has its inverse matrix.

Theorem 6.4 (regularity and matrix operations). Let A, B € M (n x n) be regular. Then we have:
(i) A= is regular and (A‘l)_1 = A,

(ii) AT is regular and (AT)_1 = (A_I)T,

(iii) AB is regular and (AB)™! = B~ 1AL,

Definition. Let v!,..., v € R” be vectors. Linear combination of vectors v!, ..., v* is an
expression A1v! + --- 4+ Axv¥, where Ay, ..., Ax € R. Trivial linear combination of vectors
v!, ..., v* we mean the linear combination O - v! + --- + 0 - v*. Linear combination, which is

not trivial, is called nontrivial.

Definition. We say that vectors v!, ..., vk are linearly dependent, if there exists their nontrivial
linear combination, which is equal to the zero vector.
We say that vectors v!, . .., v¥ are linearly independent, if they are not linearly dependent, i.e.,

if A1,..., Ax € Rsatisfy A;v' + -+ A,v¥ =0, thend; =1, =--- = A = 0.

Definition. Let A € M(m x n). Rank of the matrix A is the maximal number of linearly inde-
pendent row vectors of A. Rank of A is denoted by rk(A).

Definition. We say that A € M(m x n) is in the row echelon form, if for eachi € {2,...,m}
we have, that i -th row of A is a zero vector or the number of zeros at the beginning of the row is
bigger than the number of zeros at the beginning of (i — 1)-st row.

Remark. The rank of row echelon matrix A is equal to the number of nonzero rows of A.

Definition. Elementary row transformations of the matrix A are defined as:

(1) interchange of two rows,
(i1) multiplication of a row by a nonzero real number,
(ii1) addition of a row to another row.

Definition. Transformation is defined as a finite sequence of elementary row transformation. If
the matrix B € M(m x n) was created from A € M(m x n) applying a transformation 7" to A,

then this fact is denoted by A «T» B.



Theorem 6.5 (properties of transformation).

(i) Let A € M(m x n). Then there exists a transformation transforming A to a row echelon
matrix.
(ii) Let Ty be a transformation applicable to matrices of the type m x n. Then there exists a

T
transformation T, applicable to matrices of the type m x n such that if A ~ B for some
T:
A,B € M(m x n), then B ~> A.

T
(iii) Let A,B € M(m x n) and there exist a transformation T such that A ~ B. Then rk(A) =
rk(B).

Theorem 6.6 (multiplication and transformation). Let A € M(m x k), B € M(k x n), C €

M (m x n) and we have AB = C. Let T be a transformation and A f\T/) A" and C «T» C'. Then we
have A'B = C'.

Lemma 6.7. Let A € M(n xn) and rk(A) = n. Then there exists a transformation transforming
Atol.

Theorem 6.8. Let A € M(n x n). Then A is regular if and only if tk(A) = n.
6.3. Determinants.

Definition. Let A € M(n x n). The symbol A;; denotes the matrix of the type (n — 1) x (n — 1),
which is created from A omitting i -th row and j-th column.

Definition. Let A = (a;;)i, j=1..n. Determinant of the matrix A is defined by

al thenn = 1,
S (=D la; det Ay

For det A we will use also the symbol

det A =
thenn > 1.

aipr diz2 ... dAip
az1 dzy ... Aoy
anl anz o« .. ann

Theorem 6.9. Let j,n € N, j < n, and matrices A,B,C € M(n x n) coincide at each row

except j-th row. Let j-th row of A be equal to the sum of j-th rows of B and C. Then we have
det A = det B + det C.

ail ain ai ain arl aln
aj—1,1 - Qj—1.n aj—1,1 - Qj—1.n aj—1,1 - Qj—1.n
ui+vy ... uptvy Ul . Up V1 . Uy
aj+1.1 - Gj+1.n aj+1.1 - Qj+1.n aj+1.1 - Qj41.n

anl Ann anl Ann ani ann




Theorem 6.10 (determinant and transformation). Let A, A’ € M(n x n).

(i) Let A’ be created from A such that we interchanged two rows in A (i.e., we applied an
elementary row transformation of the first kind). Then we have det A’ = — det A.
(ii) Let A’ be created from A such that a row in A is multiplied by A € R. Then we have
det A" = A det A.
(iii) Let A’ be created from A such that we added a row of A to another row of A (i.e., we
applied an elementary row transformation of the third kind). Then we have det A’ = det A.

Corollary 6.11. Let A, A’ € M(n x n) and A’ be created from A applying a transformation.
Then det A’ # 0 if and only if det A # 0.

Theorem 6.12 (determinant and transposition). Let A € M(n x n). Then we have det AT =
det A.

Theorem 6.13 (determinant of product). Let A,B € M(n x n). Then we have
det AB = det A - det B.
Theorem 6.14. Let A = (a;j)i j=1.., kK € {1,...,n}. Then

det A = "(—=1)"**a det Ay,

i=1
n

det A =) (=1)*ay; det Ay;.
j=1

Definition. Let A = (a;j);, j—1..,. We say that A is upper triangular matrix if we have a;; = 0
fori > j,i,j € {l,...,n}. We say that A is lower triangular matrix, if we have a;; = 0 for
i<j,i,jell,...,n}

Theorem 6.15. Let A = (a;j)i, j=1.n is upper (lower, respectively) triangular matrix. Then we
have

detAzau-azz """ Aun.
Theorem 6.16. Let A € M(n x n). Then A is regular if and only if det A # 0.
6.4. Systems of linear equations. The system of n equations with n unknowns:
ap1xXiy + appXxs + -+ aipx, = by
A21X1 + A2Xp + -+ d2nXp = by
(S)
An1X1 + ApaXo + -+ + AppXn = bn

Matrix form
Ax = b,



ai]y ... Aain bl

where A = ( : : ) is called matrix of the system, b = ( :

anl -+ Qnn by

) vector of the right side and

x1
x = ( : ) vectors of unknowns.

Xn

Theorem 6.17. Let A € M(n x n). Then the following are equivalent.

(i) The matrix A is regular.
(ii) The system (SSystems of linear equationsDoc-Start) have for each b a unique solution.
(iii) The system (SSystems of linear equationsDoc-Start) have for each b at least one solution.

Theorem 6.18 (Cramer’s rule). Let A € M(n x n) be a regular matrix, b € M(n x 1), x €
M@ x 1), and Ax = b. Then

ain ... dij—1 bl ai,j+1 ... Qdin
Ap1 ... Ap,j—1 bn an,j+1 ... Qpn
Xj =
det A

forj=1,...,n.
System of m equations with n unknowns:

aj Xy + apxs + -+ appx, = by
ax1X1 + anXy + -+ 4 apXxy = by

(S%)
Am1X1 + QmaXa + -+ + QupXy = bm

Matrix notation
Ax = b,

aml .- Amn

ail ... ain by X1
whereA:(; o )eM(mxn),b=(5)eM(mxl)ax:(;)eM(nxl).

bm Xn

Definition. The matrix
air ... dAip bl
(Alb) = :

Adm1 .- Amn bm

is called extended matrix of the system (S’ Systems of linear equationsDoc-Start).

Theorem 6.19. The system (S’ Systems of linear equationsDoc-Start) has a solution if and only
if the matrix has the same rank as the extended matrix of the system.



6.5. Matrix and linear mappings.

Definition. We say that a mapping f:R"” — R is linear if

(1) Yu,veR": f(u+v) = f(u) + f(v),
(ii)) YA € RYu € R": f(Au) = Af(u).

Definition. Leti € {1,...,n}. The vector
0
el = |1 . 1-th coordinate
o
is called i-th canonical vector of the space R”. The set {e!, ..., e"} of all canonical vectors in

R" is called canonical basis of the space R".

The properties of canonical vectors:
() Vx eR"3Ay,..., A, eRix = Ajel +---+ A,e”,
(ii) the vectors e!, ..., e" are linearly independent.

Theorem 6.20 (representation of linear mappings). The mapping f:R" — R™ is linear if and
only if there exists a matrix A € M(m x n) such that
air ... dAip Ui
Vu e R": f(u) = Au =
Aml - Amn/ \Up
Theorem 6.21. Let a mapping f:R" — R” be linear. Then the following are equivalent.
(i) The mapping f is a bijection (i.e., f is an injective mapping R" onto R").
(ii) The mapping f is an injective mapping.
(iii) The mapping f is a mapping R" onto R".
Theorem 6.22. Let f:R" — R™ be a linear mapping represented by matrix A € M(m X n) a

2:R™ — R be a linear mapping represented by a matrix B € M(k x m). Then the composed
mapping g o f:R"* — RF is linear and is represented by the matrix BA.



7. INFINITE SERIES
7.1. Basic notions.

Definition. Let {a, } be a sequence of real numbers. Symbol Y > | a,, is called an infinite series.
For m € N we set
Sm=ay+az+ -+ dap.

The number s, is called m-th partial sum of the series Z,ﬁl a,. The element a,, is called n-th
member of the series Y .- | a,. The sum of infinite series Y o, a, is defined as the limit of the
sequence {sy}, if such a limit exists. The sum of the series is denoted by the symbol Y 2 | ay,.
We say that a series converges, if its sum is a real number. In the opposite case, we say that the
series diverges.

Theorem 7.1 (necessary condition). If a series Y .o, an converges, then lima, = 0.

Remark. Suppose that « € R and a series Y .- | a, converges. Then the series Y -, aa, con-
verges and itholds Y > aa, = a ) voan. If> o2 a, and Y oo b, converge, then the series
> o2 (an + by) convergens and if holds Y v (an + by) =Y ooy dn + Y vy bn-

7.2. Series with nonnegative members and absolute convergence.

Theorem 7.2. Let Y .2 a, and y .., by be series satisfying 0 < a, < b, for eachn € N.

(i) If Y oo, by converges, then Y oo, a, converges.
(ii) If Y oo, an diverges, then > o | b, diverges.

Theorem 7.3. Let {a,} be a sequence of real numbers. If > oo |a,| converges, then Y oo | an
converges.

Definition. We say that Y oo, a, is absolute convergent, if Y oo | |a,| converges. If Y °7 | a,
o0
converges but not absolutely, then )~ , a, converges nonabsolutely.

Remark. Let |a,| < b, for each n € N. If the series Z;‘;l b, converges, then Zf;l a, conver-
ges.

Theorem 7.4 (limit test). Let Y oo, a, and Y o, by be series with nonnegative members.
(i) Let

. ay
lim —
n—oo n

exists proper. If Y oo | by converges, then Y .-, a, converges.
(ii) Let
. ap
lim 5= ¢ € (0, 400).

n—>oo n

Then Y oo, an converges if and only if Y o | by converges.



Theorem 7.5 (Cauchy test). Let Z:o=1 a, be a series. The we have
(i) Iflim {/|an| < 1, then Y, | an is absolutely convergent.
(ii) Ifim {/|an| > 1, then Y ;2 | a, diverges.
Theorem 7.6 (d’ Alembert test). Let Z;ozl a, be a series with nonzero members. Then we have

(i) Iflim |ay41/an| < 1, then Y .- | an absolutely convergent.
(ii) Iflim |an41/an| > 1, then Y .2 | a, diverges.

Theorem 7.7. Let « € R. The series Y .-, 1/n* converges if and only if a > 1.
7.3. Alternating series.

Theorem 7.8 (Leibniz). Let Y . (—1)"ay, be a series. Assume
® a, > ay+1 > 0foreveryn € N,
o lim, ,oca, = 0.

Then Y oo (—1)"a, converges.



8. INTEGRALS

8.1. Riemann integral.

Definition. A finite sequence {x;}7_,, is called a partition of the interval [a, b], if we have
a=x9g<x1<--<x,=>b.

The points xy, ..., x, are called partition points.
By a norm of partition D = {x;}}_, we mean

v(D) = max{x; —x;_1; j =1,...,n}.

We say that a partition D’ of an interval [a, b] is a refinement of the partition D of the interval
[a, b], if each point of D is a partition point of D’.

Definition. Let f be a bounded function on an interval [a, b] and D = {x;}_, be a partition of
[a, b]. We denote

S(f.D) = ZMj(xj — Xxj_1), where M; = sup{f(x); x € [x;_1,x;]},

J=1

S(f.D) = ij(xj — Xj—1), where m; = inf{ f(x); x € [xj_1,x;]},

j=1

— -

/ f(x)dx = inf{S(f, D); D is a partition of the interval [a, b]},
a

b
/ f(x)dx = sup{i(f, D); D is a partition of the interval [a, b]}.

Definition. We say that a bounded function f* has Riemann integral over the interval [a, D], if
/ ab fx)dx = [ ab f(x)dx. Then the value of the integral of f over the interval [a, D] is equal to
fabf(x) dx and is denoted by fab f(x)dx.If a > b, we define fab fx)dx = — [ f(x)dx. If
a = b, we define fab f(x)dx = 0.

Theorem 8.1. (i) Let a function [ have Riemann integral over [a,b] and let [c,d] C [a,b].
Then f has Riemann integral over [c, d].

(ii) Let ¢ € (a,b) and a function f have Riemann integral over [a,c] and [c,b]. Then f has
Riemann integral over [a, b] and we have

/abf(x)dx = /acf(x)dx—l-/cb £(x)dx.

Theorem 8.2. Let f and g be functions with Riemann integral over [a, b] and let o € R. Then
(i) the function o.f has Riemann integral over [a, b] and it holds

/abozf(x)dx :a/abf(x)dx,



(ii) the function f + g has Riemann integral over [a, b] and it holds
b

b b
[ (f(x) + g(x)) dx = / £ dx + / g(x)dx.

Theorem 8.3. Let a,b € R, a < b, and let f and g be functions with Riemann integral over
[a, b].
(i) If f(x) > 0 foreach x € [a, b], then

/;bf(x)dx > 0.

(ii) If f(x) < g(x) for each x € [a,b], then
b b
/ f(x)dx 5/ g(x)dx.

a

(iii) The function | f'| has Riemann integral over [a, b] and it holds

/abf(x)dx

Theorem 8.4. Let a function f be continuous on the interval [a,b], a,b € R. Then f has
Riemann integral over [a, b].

b
5/ f@)] dx.

Theorem 8.5. Let f be a continuous function on [a, b and let ¢ € [a, b]. If we denote F(x) =
fcx f(t)dt for x € (a,b), then F'(x) = f(x) for each x € (a,b).

8.3. Primitive functions.

Definition. Let a function f be defined on an open interval /. We say that a function F is a
primitive function of f on I, if for each x € [ there exists F'(x) and F'(x) = f(x).

Theorem 8.6. Let F and G be primitive functions of f on an open interval I. Then there exists
¢ € R such that F(x) = G(x) + ¢ foreach x € I.

Theorem 8.7. Let f be a continuous function on an open interval I. Then f has on I a primitive
function.

Theorem 8.8. Let f have on an open interval I a primitive function F, let a function g have on
I a primitive function G, and o, f € R. Then the function aF + BG is a primitive function of

af +Bgonl.

Theorem 8.9 (substitution). (i) Let F' be a primitive function of f on (a,b). Let ¢ be a function
defined on an interval («, B) with values in (a,b) and ¢ has at each point t € («, ) proper
derivative. Then we have

/f((p(l))sﬂ'(t) dt = F(p(1)) on (a, B).



(ii) Let a function ¢ have at each point of an interval (o, ) nonzero proper derivative and
o((a, B)) = (a, b). Let [ be defined on an interval (a, b) and we have

‘/f@UDWUﬁhé(Hﬂmwmﬂl
Then we have

/ f(x)dx = G(p~'(x)) on (a, b).

Theorem 8.10 (integration per partes). Let I be an open interval and let functions [ and g be
continuous on I. Let F be a primitive function of f on I and G be a primitive function of g on
1. Then we have

/g(x)F(x) dx = G(x)F(x) — / Gx)f(x)dxnal.
Definition. Rational function is aratio of two polynomials, where the polynomial in denominator
is not identically zero.

Theorem 8.11. Let P, Q be polynomial functions with real coefficients such that

(1) degree of P is strictly smaller than degree of Q,
() O(x) = a,(x —x1)P' ... (x = xp)P (X% + ayx + B9 ... (x% + oyx + B,

(111) ana-xlv'-'xksal’---val’ ,Bl»---’,BIER’an#O,
(IV) plv"‘apkv QI,-H,QI EN:
(v) the polynomials X — X1, X — Xp,...,X — Xk, x> +a;x + B1, ..., x2 + ayx + B; have
no common root,
(vi) the polynomials x> + a1x + B1, ..., x% + ayx + B; have no real root.
ThenthereexistuniquerealnumbersAl,...,All,],...,A’f,...,A’;k,Bll, Cll,...,B;l,qul,...,B{,
Cll, R Bél, Cél such that we have
PO _ A Ap,
O(x) (x—xp» (x —x1)
k k
+...+L i
(o — xg ) Px X — Xk
Bl i Brech
(x2 + a1x + B0 x24+ax+p
Bix +Cf By x +Cy,
(x%2 4+ ajx + B X2+ ax + fy



