1. Contours, open and closed sets

1. Determine contours and domains of the following functions.

$$
\begin{gathered}
f_{1}(x, y)=x+\sqrt{y}, \quad f_{2}(x, y)=\frac{y}{x}, \quad f_{3}(x, y)=x^{2}+y^{2}, \\
f_{4}(x, y)=x^{2}-y^{2}, \quad f_{5}(x, y)=\sqrt{x y}, \\
f_{6}(x, y)=\sqrt{1-x^{2}-y^{2}}, \quad f_{7}(x, y)=\frac{1}{\sqrt{x^{2}+y^{2}-1}}, \\
f_{8}(x, y)=\sqrt{\left(x^{2}+y^{2}-1\right)\left(4-x^{2}-y^{2}\right)}, \quad f_{9}(x, y)=\sqrt{\sin \left(x^{2}+y^{2}\right)}, \\
f_{10}(x, y)=\operatorname{sgn}(\sin x \cdot \sin y), \quad f_{11}(x, y)=|x|+y .
\end{gathered}
$$

2. Decide whether the following sets are open or closed, determine their interior, closure and boundary.

$$
\begin{array}{rlr}
A_{1}=\mathbb{Q}, \quad A_{2}=\mathbb{N}, & A_{3}=\{1 / n ; n \in \mathbb{N}\}, \\
A_{4}=\left\{[x, y] \in \mathbb{R}^{2} ; x>0, y \leq 0\right\}, & A_{5}=\left\{[x, y] \in \mathbb{R}^{2} ; x^{2}+y^{2}<1\right\}, \\
A_{6}=\left\{[x, y] \in \mathbb{R}^{2} ; x^{2}+y^{2} \geq 1\right\}, & A_{7}=\left\{[x, y] \in \mathbb{R}^{2} ; x^{2}+e^{y}>17\right\}, \\
& A_{8}=\left\{[x, y] \in \mathbb{R}^{2} ;\right. & \left.x^{2}+y^{2}+2 x y=5\right\}, \\
A_{9}=\left\{[x, y, z] \in \mathbb{R}^{3} ; x \geq 0, y>0, x+y=2, z \leq 0\right\} .
\end{array}
$$

3. Determine closure, boundary and interior of the set $M=\left\{(x, y) \in \mathbb{R}^{2} ;|x+y|-x-y>0\right\}$.
