Functional analysis 1

- 1. Topological vector spaces •
- 2. Weak topologies •
- 3. Vector integration •
- 4. Banach algebras 💿
- 5. Gelfand transformation •
- 6. Operators on Hilbert spaces •

Notation

(a) The symbol ${\mathbb F}$ stands for the set of all reals or for the set of all complex numbers.

Notation

- (a) The symbol \mathbb{F} stands for the set of all reals or for the set of all complex numbers.
- (b) Let (X, τ) be a topological space and $x \in X$. An open set G containing x is called **neighborhood** of x. We denote $\tau(x) = \{G \in \tau; x \in G\}$.

Definition

Suppose that au is a topology on a vector space X over $\mathbb F$ such that

 \blacksquare (X, τ) is T_1 ,

Definition

Suppose that au is a topology on a vector space X over $\mathbb F$ such that

 \bullet (X, τ) is T_1 , i.e., $\{x\}$ is a closed set for every $x \in X$, and

Definition

Suppose that au is a topology on a vector space X over $\mathbb F$ such that

- (X, τ) is T_1 , i.e., $\{x\}$ is a closed set for every $x \in X$, and
- the vector space operations are continuous with respect to τ ,

Definition

Suppose that au is a topology on a vector space X over $\mathbb F$ such that

- (X, τ) is T_1 , i.e., $\{x\}$ is a closed set for every $x \in X$, and
- the vector space operations are continuous with respect to τ , i.e., $+: X \times X \to X$ and $\cdot: \mathbb{F} \times X \to X$ are continuous.

Definition

Suppose that au is a topology on a vector space X over $\mathbb F$ such that

- (X, τ) is T_1 , i.e., $\{x\}$ is a closed set for every $x \in X$, and
- the vector space operations are continuous with respect to τ , i.e., $+: X \times X \to X$ and $\cdot: \mathbb{F} \times X \to X$ are continuous.

Under these conditions, τ is said to be a **vector topology** on X and $(X, +, \cdot, \tau)$ is a **topological vector space** (TVS).

Remark

Let X be a TVS.

(a) For every $a \in X$ the mapping $x \mapsto x + a$ is a homeomorphism of X onto X.

Remark

Let X be a TVS.

- (a) For every $a \in X$ the mapping $x \mapsto x + a$ is a homeomorphism of X onto X.
- (b) For every $\lambda \in \mathbb{F} \setminus \{0\}$ the mapping $x \mapsto \lambda x$ is a homeomorphism of X onto X.

Definition

Let X be a vector space over \mathbb{F} . We say that $A \subset X$ is

■ balanced if for every $\alpha \in \mathbb{F}$, $|\alpha| \leq 1$, we have $\alpha A \subset A$,

Definition

Let X be a vector space over \mathbb{F} . We say that $A \subset X$ is

- **balanced** if for every $\alpha \in \mathbb{F}$, $|\alpha| \leq 1$, we have $\alpha A \subset A$,
- **absorbing** if for every $x \in X$ there exists $t \in \mathbb{R}$, t > 0, such that $x \in tA$,

Definition

Let X be a vector space over \mathbb{F} . We say that $A \subset X$ is

- **balanced** if for every $\alpha \in \mathbb{F}$, $|\alpha| \leq 1$, we have $\alpha A \subset A$,
- **absorbing** if for every $x \in X$ there exists $t \in \mathbb{R}$, t > 0, such that $x \in tA$,
- **symmetric** if A = -A.

Definition

Let X be a TVS and $A \subset X$. We say that A is **bounded** if for every $V \in \tau(0)$ there exists s > 0 such that for every t > s we have $A \subset tV$.

Definition

We say that a TVS space X is

■ **locally convex** if there exists a basis of 0 whose members are convex,

Definition

- **locally convex** if there exists a basis of 0 whose members are convex,
- locally bounded if 0 has a bounded neighborhood,

Definition

- **locally convex** if there exists a basis of 0 whose members are convex,
- locally bounded if 0 has a bounded neighborhood,
- metrizable if its topology is compatible with some metric on X,

Definition

- **locally convex** if there exists a basis of 0 whose members are convex,
- locally bounded if 0 has a bounded neighborhood,
- metrizable if its topology is compatible with some metric on X,
- **F-space** if its topology is induced by a complete invariant metric,

Definition

- locally convex if there exists a basis of 0 whose members are convex,
- locally bounded if 0 has a bounded neighborhood,
- metrizable if its topology is compatible with some metric on X,
- **F-space** if its topology is induced by a complete invariant metric,
- **Fréchet space** if *X* is a locally convex F-space,

Definition

- locally convex if there exists a basis of 0 whose members are convex,
- locally bounded if 0 has a bounded neighborhood,
- metrizable if its topology is compatible with some metric on X,
- **F-space** if its topology is induced by a complete invariant metric,
- **Fréchet space** if *X* is a locally convex F-space,
- normable if a norm exists on X such that the metric induced by the norm is compatible with the topology on X.

Theorem 1.1

Let (X, τ) be a TVS.

(a) If $K \subset X$ is compact, $C \subset X$ is closed, and $K \cap C = \emptyset$, then there exists $V \in \tau(0)$ such that $(K + V) \cap (C + V) = \emptyset$.

Theorem 1.1

Let (X, τ) be a TVS.

(a) If $K \subset X$ is compact, $C \subset X$ is closed, and $K \cap C = \emptyset$, then there exists $V \in \tau(0)$ such that $(K + V) \cap (C + V) = \emptyset$.

Theorem 1.1

Let (X, τ) be a TVS.

- (a) If $K \subset X$ is compact, $C \subset X$ is closed, and $K \cap C = \emptyset$, then there exists $V \in \tau(0)$ such that $(K + V) \cap (C + V) = \emptyset$.
- (b) For every neighborhood $U \in \tau(0)$ there exists $V \in \tau(0)$ such that $\overline{V} \subset U$.

Theorem 1.1

Let (X, τ) be a TVS.

- (a) If $K \subset X$ is compact, $C \subset X$ is closed, and $K \cap C = \emptyset$, then there exists $V \in \tau(0)$ such that $(K + V) \cap (C + V) = \emptyset$.
- (b) For every neighborhood $U \in \tau(0)$ there exists $V \in \tau(0)$ such that $\overline{V} \subset U$.
- (c) The space X is a Hausdorff space,

Theorem 1.1

Let (X, τ) be a TVS.

- (a) If $K \subset X$ is compact, $C \subset X$ is closed, and $K \cap C = \emptyset$, then there exists $V \in \tau(0)$ such that $(K + V) \cap (C + V) = \emptyset$.
- (b) For every neighborhood $U \in \tau(0)$ there exists $V \in \tau(0)$ such that $\overline{V} \subset U$.
- (c) The space X is a Hausdorff space, i.e., for every $x_1, x_2 \in X, x_1 \neq x_2$, there exist disjoint open sets G_1, G_2 such that $x_i \in G_i, i = 1, 2$.

Theorem 1.2

(a)
$$\overline{A} = \bigcap \{A + V; V \in \tau(0)\},$$

Theorem 1.2

(a)
$$\overline{A} = \bigcap \{A + V; V \in \tau(0)\},$$

(b)
$$\overline{A} + \overline{B} \subset \overline{A + B}$$
,

Theorem 1.2

- (a) $\overline{A} = \bigcap \{A + V; V \in \tau(0)\},$
- (b) $\overline{A} + \overline{B} \subset \overline{A + B}$,
- (c) if V is a vector subspace of X, then \overline{V} is a vector subspace of X,

Theorem 1.2

- (a) $\overline{A} = \bigcap \{A + V; V \in \tau(0)\},$
- (b) $\overline{A} + \overline{B} \subset \overline{A + B}$,
- (c) if V is a vector subspace of X, then \overline{V} is a vector subspace of X,
- (d) if A is convex, then \overline{A} and int A are convex,

Theorem 1.2

- (a) $\overline{A} = \bigcap \{A + V; V \in \tau(0)\},$
- (b) $\overline{A} + \overline{B} \subset \overline{A + B}$,
- (c) if V is a vector subspace of X, then \overline{V} is a vector subspace of X,
- (d) if A is convex, then \overline{A} and int A are convex,
- (e) if A is balanced, then \overline{A} is balanced; if moreover $0 \in \text{int } A$, then int A is balanced,

Theorem 1.2

- (a) $\overline{A} = \bigcap \{A + V; V \in \tau(0)\},$
- (b) $\overline{A} + \overline{B} \subset \overline{A + B}$,
- (c) if V is a vector subspace of X, then \overline{V} is a vector subspace of X,
- (d) if A is convex, then \overline{A} and int A are convex,
- (e) if A is balanced, then \overline{A} is balanced; if moreover $0 \in \text{int } A$, then int A is balanced,
- (f) if A is bounded, then \overline{A} is bounded.

Theorem 1.3

Let X be a TVS.

(a) For every $U \in \tau(0)$ there exists balanced $V \in \tau(0)$ with $V \subset U$.

Theorem 1.3

Let X be a TVS.

- (a) For every $U \in \tau(0)$ there exists balanced $V \in \tau(0)$ with $V \subset U$.
- (b) For every convex $U \in \tau(0)$ there exists balanced convex $V \in \tau(0)$ with $V \subset U$.

Corollary 1.4

Let X be a TVS.

(a) The space X has a balanced local base.

Corollary 1.4

Let X be a TVS.

- (a) The space X has a balanced local base.
- (b) If X is locally convex, then it has a balanced convex local base.

Corollary 1.4

Let X be a TVS.

- (a) The space X has a balanced local base.
- (b) If X is locally convex, then it has a balanced convex local base.

Theorem 1.5

Let (X, τ) be a TVS and $V \in \tau(0)$.

(a) If
$$0 < r_1 < r_2 < \dots$$
 and $\lim r_n = \infty$, then $X = \bigcup_{n=1}^{\infty} r_n V$.

Theorem 1.5

Let (X, τ) be a TVS and $V \in \tau(0)$.

- (a) If $0 < r_1 < r_2 < \dots$ and $\lim r_n = \infty$, then $X = \bigcup_{n=1}^{\infty} r_n V$.
- (b) Every compact subset $K \subset X$ is bounded.

Theorem 1.5

Let (X, τ) be a TVS and $V \in \tau(0)$.

- (a) If $0 < r_1 < r_2 < \dots$ and $\lim r_n = \infty$, then $X = \bigcup_{n=1}^{\infty} r_n V$.
- (b) Every compact subset $K \subset X$ is bounded.
- (c) If $\delta_1 > \delta_2 > \delta_3 > \dots$, $\lim \delta_n = 0$, and V is bounded, then the collection $\{\delta_n V; n \in \mathbf{N}\}$ is a local base for X.

Theorem 1.6

Let (X, τ) and (Y, σ) be TVS and $T: X \to Y$ be a linear mapping. Then the following are equivalent.

(i) T is continuous.

Theorem 1.6

Let (X, τ) and (Y, σ) be TVS and $T: X \to Y$ be a linear mapping. Then the following are equivalent.

- (i) T is continuous.
- (ii) T is continuous at 0.

Theorem 1.6

Let (X, τ) and (Y, σ) be TVS and $T: X \to Y$ be a linear mapping. Then the following are equivalent.

- (i) T is continuous.
- (ii) T is continuous at 0.
- (iii) T is uniformly continuous, i.e., for every $U \in \sigma(0)$ there exists $V \in \sigma(0)$ such that for every $x_1, x_2 \in X$ with $x_1 x_2 \in V$ we have $T(x_1) T(x_2) \in U$.

Theorem 1.7

Let $T: X \to \mathbb{F}$ be a nonzero linear mapping. Then the following are equivalent.

(i) T is continuous.

Theorem 1.7

Let $T: X \to \mathbb{F}$ be a nonzero linear mapping. Then the following are equivalent.

- (i) T is continuous.
- (ii) ker T is closed.

Theorem 1.7

Let $T: X \to \mathbb{F}$ be a nonzero linear mapping. Then the following are equivalent.

- (i) T is continuous.
- (ii) ker T is closed.
- (iii) $\overline{\ker T} \neq X$.

Theorem 1.7

Let $T: X \to \mathbb{F}$ be a nonzero linear mapping. Then the following are equivalent.

- (i) T is continuous.
- (ii) ker T is closed.
- (iii) $\overline{\ker T} \neq X$.
- (iv) T is bounded on some $V \in \tau(0)$.

Theorem 1.8

Let X be a TVS with a countable local base. Then there is a metric d on X such that

(a) d is compatible with the topology of X,

Theorem 1.8

Let X be a TVS with a countable local base. Then there is a metric d on X such that

- (a) d is compatible with the topology of X,
- (b) the open balls centered at 0 are balanced,

Theorem 1.8

Let X be a TVS with a countable local base. Then there is a metric d on X such that

- (a) d is compatible with the topology of X,
- (b) the open balls centered at 0 are balanced,
- (c) d is invariant.

Theorem 1.8

Let X be a TVS with a countable local base. Then there is a metric d on X such that

- (a) d is compatible with the topology of X,
- (b) the open balls centered at 0 are balanced,
- (c) d is invariant.

If, in addition, X is locally convex, then d can be chosen so as to satisfy (a), (b), (c), and also

(d) all open balls are convex.

Corollary 1.9

Corollary 1.9

Let X be a TVS. Then the following are equivalent.

(i) X is metrizable.

Corollary 1.9

- (i) X is metrizable.
- (ii) X is metrizable by an invariant metric.

Corollary 1.9

- (i) X is metrizable.
- (ii) X is metrizable by an invariant metric.
- (iii) X has a countable local base.

Corollary 1.9

- (i) X is metrizable.
- (ii) X is metrizable by an invariant metric.
- (iii) X has a countable local base.

Theorem 1.10

(a) If d is an invariant metric on a vector space X then $d(nx,0) \le nd(x,0)$ for every $x \in X$ and $n \in \mathbb{N}$.

Theorem 1.10

- (a) If d is an invariant metric on a vector space X then $d(nx,0) \le nd(x,0)$ for every $x \in X$ and $n \in \mathbb{N}$.
- (b) If $\{x_n\}$ is a sequence in a metrizable topological vector space X and if $\lim x_n = 0$, then there are positive scalars γ_n such that $\lim \gamma_n = \infty$ and $\lim \gamma_n x_n = 0$.

Theorem 1.11

The following two properties of a set E in a topological vector space are equivalent:

(a) E is bounded.

Theorem 1.11

The following two properties of a set E in a topological vector space are equivalent:

- (a) E is bounded.
- (b) If $\{x_n\}$ is a sequence in E and $\{\alpha_n\}$ is a sequence of scalars such that $\lim \alpha_n = 0$, then $\lim \alpha_n x_n = 0$.

Theorem 1.12

Theorem 1.12

Let X and Y be TVS and $T: X \rightarrow Y$ be a linear mapping. Consider the following properties.

(i) T is continuous.

Theorem 1.12

- (i) T is continuous.
- (ii) T is bounded, i.e., T(A) is bounded whenever $A \subset X$ is bounded.

Theorem 1.12

- (i) T is continuous.
- (ii) T is bounded, i.e., T(A) is bounded whenever $A \subset X$ is bounded.
- (iii) If $\{x_n\}$ converges to 0 in X, then $\{T(x_n); n \in \mathbb{N}\}$ is bounded.

Theorem 1.12

- (i) T is continuous.
- (ii) T is bounded, i.e., T(A) is bounded whenever $A \subset X$ is bounded.
- (iii) If $\{x_n\}$ converges to 0 in X, then $\{T(x_n); n \in \mathbb{N}\}$ is bounded.
- (iv) If $\{x_n\}$ converges to 0 in X, then $\{T(x_n)\}$ converges to 0.

Theorem 1.12

- (i) T is continuous.
- (ii) T is bounded, i.e., T(A) is bounded whenever $A \subset X$ is bounded.
- (iii) If $\{x_n\}$ converges to 0 in X, then $\{T(x_n); n \in \mathbb{N}\}$ is bounded.
- (iv) If $\{x_n\}$ converges to 0 in X, then $\{T(x_n)\}$ converges to 0. Then we have (i) \Rightarrow (ii) \Rightarrow (iii).

Theorem 1.12

- (i) T is continuous.
- (ii) T is bounded, i.e., T(A) is bounded whenever $A \subset X$ is bounded.
- (iii) If $\{x_n\}$ converges to 0 in X, then $\{T(x_n); n \in \mathbb{N}\}$ is bounded.
- (iv) If $\{x_n\}$ converges to 0 in X, then $\{T(x_n)\}$ converges to 0. Then we have (i) \Rightarrow (ii) \Rightarrow (iii). If X is metrizable then the properties (i)–(iv) are equivalent.

- (a) A **pseudonorm** on a vector space X is a real-valued function p on X such that
 - $\forall x, y \in X : p(x + y) \le p(x) + p(y)$ (subadditivity),

- (a) A **pseudonorm** on a vector space X is a real-valued function p on X such that
 - $\forall x, y \in X : p(x+y) \le p(x) + p(y)$ (subadditivity),
 - $\forall \alpha \in \mathbb{F} \ \forall x \in X \colon p(\alpha x) = |\alpha| p(x).$

- (a) A **pseudonorm** on a vector space X is a real-valued function p on X such that
 - $\forall x, y \in X : p(x + y) \le p(x) + p(y)$ (subadditivity),
 - $\forall \alpha \in \mathbb{F} \ \forall x \in X \colon p(\alpha x) = |\alpha| p(x).$
- (b) A family \mathcal{P} of pseudonorms on X is said to be **separating** if to each $x \neq 0$ corresponds at least one $p \in \mathcal{P}$ with $p(x) \neq 0$.

- (a) A **pseudonorm** on a vector space X is a real-valued function p on X such that
 - $\forall x, y \in X : p(x + y) \le p(x) + p(y)$ (subadditivity),
 - $\forall \alpha \in \mathbb{F} \ \forall x \in X \colon p(\alpha x) = |\alpha| p(x).$
- (b) A family \mathcal{P} of pseudonorms on X is said to be **separating** if to each $x \neq 0$ corresponds at least one $p \in \mathcal{P}$ with $p(x) \neq 0$.
- (c) Let $A \subset X$ be an absorbing set. The **Minkowski** functional μ_A of A is defined by

$$\mu_A(x) = \inf\{t > 0; \ t^{-1}x \in A\}.$$

Theorem 1.13

(a)
$$p(0) = 0$$
,

Theorem 1.13

- (a) p(0) = 0,
- (b) $\forall x, y \in X : |p(x) p(y)| \le p(x y)$,

Theorem 1.13

- (a) p(0) = 0,
- (b) $\forall x, y \in X : |p(x) p(y)| \leq p(x y)$,
- (c) $\forall x \in X : p(x) \geq 0$,

Theorem 1.13

- (a) p(0) = 0,
- (b) $\forall x, y \in X : |p(x) p(y)| \leq p(x y)$,
- (c) $\forall x \in X : p(x) \geq 0$,
- (d) $\{x \in X; \ p(x) = 0\}$ is a subspace,

Theorem 1.13

- (a) p(0) = 0,
- (b) $\forall x, y \in X : |p(x) p(y)| \leq p(x y)$,
- (c) $\forall x \in X : p(x) \geq 0$,
- (d) $\{x \in X; \ p(x) = 0\}$ is a subspace,
- (e) the set $B = \{x \in X; \ p(x) < 1\}$ is convex, balanced, absorbing, and $p = \mu_B$.

Theorem 1.14

(a)
$$\forall x, y \in X : \mu_A(x+y) \leq \mu_A(x) + \mu_A(y)$$
,

Theorem 1.14

- (a) $\forall x, y \in X : \mu_A(x+y) \leq \mu_A(x) + \mu_A(y)$,
- (b) $\forall t \geq 0$: $\mu_A(tx) = t\mu_A(x)$,

Theorem 1.14

- (a) $\forall x, y \in X : \mu_A(x+y) \leq \mu_A(x) + \mu_A(y)$,
- (b) $\forall t \geq 0$: $\mu_A(tx) = t\mu_A(x)$,
- (c) μ_A is a pseudonorm if A is balanced,

Theorem 1.14

- (a) $\forall x, y \in X : \mu_A(x+y) \leq \mu_A(x) + \mu_A(y)$,
- (b) $\forall t \geq 0$: $\mu_A(tx) = t\mu_A(x)$,
- (c) μ_A is a pseudonorm if A is balanced,
- (d) if $B = \{x \in X; \ \mu_A(x) < 1\}$ and $C = \{x \in X; \ \mu_A(x) \le 1\}$, then $B \subset A \subset C$ and $\mu_A = \mu_B = \mu_C$.

Theorem 1.15

Suppose $\mathcal B$ is a convex balanced local base in a topological vector space X. Associate to every $V \in \mathcal B$ its Minkowski functional μ_V . Then $\{\mu_V; \ V \in \mathcal B\}$ is a separating family of continuous pseudonorms on X.

Theorem 1.16

Suppose that $\mathcal P$ is a separating family of pseudonorms on a vector space X. Associate to each $p \in \mathcal P$ and to each $n \in \mathbf N$ the set

$$V(p,n) = \left\{ x \in X; \ p(x) < \frac{1}{n} \right\}.$$

Let \mathcal{B} be the collection of all finite intersection of the sets V(p, n).

Theorem 1.16

Suppose that $\mathcal P$ is a separating family of pseudonorms on a vector space X. Associate to each $p \in \mathcal P$ and to each $n \in \mathbf N$ the set

$$V(p,n)=\big\{x\in X;\ p(x)<\tfrac{1}{n}\big\}.$$

Let $\mathcal B$ be the collection of all finite intersection of the sets V(p,n). Then $\mathcal B$ is a convex balanced local base for a topology τ on X, which turns X into a locally convex space such that

- (a) every $p \in \mathcal{P}$ is continuous, and
- (b) a set $E \subset X$ is bounded if and only if every $p \in P$ is bounded on E.

Theorem 1.17

Let X be a locally convex space with countable local base. Then X is metrizable by an invariant metric.

Theorem 1.17

Let X be a locally convex space with countable local base. Then X is metrizable by an invariant metric.

Theorem 1.18

A TVS space X is normable if and only if its origin has a convex bounded neighborhood.

Theorem 1.19

Suppose that A and B are disjoint, nonempty convex sets in a topological vector space X.

(a) If A is open there exist $\Lambda \in X^*$ and $\gamma \in \mathbf{R}$ such that $\operatorname{Re} \Lambda(x) < \gamma \leq \operatorname{Re} \Lambda(y)$ for every $x \in A$ and for every $y \in B$.

Theorem 1.19

Suppose that A and B are disjoint, nonempty convex sets in a topological vector space X.

- (a) If A is open there exist $\Lambda \in X^*$ and $\gamma \in \mathbf{R}$ such that $\operatorname{Re} \Lambda(x) < \gamma \leq \operatorname{Re} \Lambda(y)$ for every $x \in A$ and for every $y \in B$.
- (b) If A is compact, B is closed, and X is locally convex, then there exist $\Lambda \in X^*$, $\gamma_1, \gamma_2 \in \mathbf{R}$, such that $\operatorname{Re} \Lambda(x) < \gamma_1 < \gamma_2 \leq \operatorname{Re} \Lambda(y)$ for every $x \in A$ and for every $y \in B$.

Theorem 1.19

Suppose that A and B are disjoint, nonempty convex sets in a topological vector space X.

- (a) If A is open there exist $\Lambda \in X^*$ and $\gamma \in \mathbf{R}$ such that $\operatorname{Re} \Lambda(x) < \gamma \leq \operatorname{Re} \Lambda(y)$ for every $x \in A$ and for every $y \in B$.
- (b) If A is compact, B is closed, and X is locally convex, then there exist $\Lambda \in X^*$, $\gamma_1, \gamma_2 \in \mathbf{R}$, such that $\operatorname{Re} \Lambda(x) < \gamma_1 < \gamma_2 \leq \operatorname{Re} \Lambda(y)$ for every $x \in A$ and for every $y \in B$.

Corollary 1.20

If X is a locally convex space then X^* separates points on X.

Corollary 1.20

If X is a locally convex space then X^* separates points on X.

Theorem 1.21

Suppose M is a subspace of a locally convex space X, and $x_0 \in X$. If $x_0 \notin \overline{M}$, then there exists $\Lambda \in X^*$ such that $\Lambda(x_0) = 1$ and $\Lambda(x) = 0$ for every $x \in M$.

Theorem 1.22

If f is a continuous linear functional on a subspace M of a locally convex space X, then there exists $\Lambda \in X^*$ such that $\Lambda = f$ on M.

Theorem 1.22

If f is a continuous linear functional on a subspace M of a locally convex space X, then there exists $\Lambda \in X^*$ such that $\Lambda = f$ on M.

Theorem 1.23

Suppose B is a closed convex balanced set in a locally convex space X, $x_0 \in X \setminus B$. Then there exists $\Lambda \in X^*$ such that $|\Lambda(x)| \leq 1$ for every $x \in B$ and $\Lambda(x_0) > 1$.

Definition

Let X be a vector space and M be a subspace of the algebraic dual X^{\sharp} . Denote $\sigma(X,M)$ the topology generated by pseudonorms $x\mapsto |\varphi(x)|$, where $\varphi\in M$.

Definition

Let X be a vector space and M be a subspace of the algebraic dual X^{\sharp} . Denote $\sigma(X,M)$ the topology generated by pseudonorms $x\mapsto |\varphi(x)|$, where $\varphi\in M$.

Lemma 2.1

Suppose that $\Lambda_1, \ldots, \Lambda_n$ and Λ are linear functionals on a vector space X. The following properties are equivalent.

- (i) $\Lambda \in \text{span}\{\Lambda_1, \ldots, \Lambda_n\}$
- (ii) There exists $\gamma \in \mathbf{R}$ such that for every $x \in X$ we have

$$|\Lambda(x)| \le \gamma \max\{|\Lambda_i(x)|; \ i \in \{1,\ldots,n\}\}.$$

(iii) $\bigcap_{i=1}^n \operatorname{Ker} \Lambda_i \subset \operatorname{Ker} \Lambda$

Theorem 2.2

Suppose X is a vector space and M is a vector subspace of the algebraic dual X^{\sharp} which is separating. Then $(X, \sigma(X, M))$ is a locally convex space and $(X, \sigma(X, M))^* = M$.

Theorem 2.2

Suppose X is a vector space and M is a vector subspace of the algebraic dual X^{\sharp} which is separating. Then $(X, \sigma(X, M))$ is a locally convex space and $(X, \sigma(X, M))^* = M$.

Definition

Let X be a locally convex space. Then $\sigma(X, X^*)$ is **weak** topology on X and $\sigma(X^*, X)$ is **weak star topology** on X^* .

Theorem 2.3 (Mazur)

Let X be a locally convex space and $A \subset X$ be convex. Then $\overline{A}^w = \overline{A}$.

Theorem 2.3 (Mazur)

Let X be a locally convex space and $A \subset X$ be convex. Then $\overline{A}^w = \overline{A}$.

Corollary 2.4

Let X be a locally convex space.

- (a) A subspace of X is originally closed if and only if it is weakly closed.
- (b) A convex subset of X is originally dense if and only if it is weakly dense.

Theorem 2.5

Suppose X is a metrizable locally convex space. If $\{x_n\}$ is a sequence in X that converges weakly to some $x \in X$, then there is a sequence $\{y_i\}$ in X such that

- (a) each y_i is a convex combination of finitely many x_n , and
- (b) $\lim y_i = x$ (with respect to the original topology).

Definition

Let X be a TVS and $A \subset X$. Then the set

$$A^0 = \{x^* \in X^*; |x^*(x)| \le 1 \text{ for every } x \in A\}$$

is called **polar** of *A*. If $A \subset X^*$, then we define

$$A_0 = \{x \in X; \ |x^*(x)| \le 1 \text{ for every } x^* \in A\}.$$

Theorem 2.6 (Banach-Alaoglu)

Let X be a TVS and $V \subset X$ be a neighborhood of 0. Then V^0 is w^* -compact.

Theorem 2.6 (Banach-Alaoglu)

Let X be a TVS and $V \subset X$ be a neighborhood of 0. Then V^0 is w^* -compact.

Theorem 2.7 (Bipolar theorem)

Let X be a locally convex space.

- (a) If $A \subset X$ is a closed convex balanced set, then $(A^0)_0 = A$.
- (b) If $A \subset X^*$ is w^* -closed convex balanced set, then $A = (A_0)^0$.

Theorem 2.8 (Goldstin)

Let X be a normed linear space. Then B_X is w^* -dense in $B_{X^{**}}$.

Theorem 2.9

Let X be a Banach space. Then X is reflexive if and only if B_X is weakly compact.

Theorem 2.10

Let X be a reflexive Banach space and $\{x_n\}$ be a bounded sequence of points from X. Then there exists a weakly convergent subsequence.

3. Vector integration

Convention

Throughout this section X will stand for a Banach space and (Ω, Σ, μ) will be a finite measure space.

3. Vector integration

Convention

Throughout this section X will stand for a Banach space and (Ω, Σ, μ) will be a finite measure space.

Definition

A function $f: \Omega \to X$ is called **simple** if there exist $x_1, \ldots, x_n \in X$ and $E_1, \ldots, E_n \in \Sigma$ such that $f = \sum_{i=1}^n x_i \chi_{E_i}$.

Convention

Throughout this section X will stand for a Banach space and (Ω, Σ, μ) will be a finite measure space.

Definition

A function $f: \Omega \to X$ is called **simple** if there exist $x_1, \ldots, x_n \in X$ and $E_1, \ldots, E_n \in \Sigma$ such that $f = \sum_{i=1}^n x_i \chi_{E_i}$. A function $f: \Omega \to X$ is called μ -measurable if there exists a sequence of simple functions $\{f_n\}$ such that $\lim \|f_n(\omega) - f(\omega)\| = 0$ for μ -almost all $\omega \in \Omega$.

Convention

Throughout this section X will stand for a Banach space and (Ω, Σ, μ) will be a finite measure space.

Definition

A function $f:\Omega\to X$ is called **simple** if there exist $x_1,\ldots,x_n\in X$ and $E_1,\ldots,E_n\in \Sigma$ such that $f=\sum_{i=1}^n x_i\chi_{E_i}$. A function $f:\Omega\to X$ is called μ -measurable if there exists a sequence of simple functions $\{f_n\}$ such that $\lim \|f_n(\omega)-f(\omega)\|=0$ for μ -almost all $\omega\in\Omega$. A function $f:\Omega\to X$ is called **weakly** μ -measurable if for each $x^*\in X^*$ the function $x^*\circ f$ is μ -measurable.

Theorem 3.1 (Pettis's measurability theorem)

A function $f:\Omega \to X$ is μ -measurable if and only if

- (a) f is μ -essentially separably valued, i.e., there exists $E \in \Sigma$ with $\mu(E) = 0$ and such that $f(\Omega \setminus E)$ is a norm separable subset of X,
- (b) f is weakly μ -measurable.

Theorem 3.1 (Pettis's measurability theorem)

A function $f: \Omega \to X$ is μ -measurable if and only if

- (a) f is μ -essentially separably valued, i.e., there exists $E \in \Sigma$ with $\mu(E) = 0$ and such that $f(\Omega \setminus E)$ is a norm separable subset of X,
- (b) f is weakly μ -measurable.

Corollary 3.2

A function $f:\Omega\to X$ is μ -measurable if and only if f is the μ -almost everywhere uniform limit of a sequence of countably valued μ -measurable functions.

Definition

A μ -measurable function $f:\Omega\to X$ is called **Bochner integrable** if there exists a sequence of simple functions $\{f_n\}$ such that $\lim \int_\Omega \|f_n-f\|d\mu=0$. In this case, $\int_E f\,\mathrm{d}\mu$ is defined for each $E\in\Sigma$ by $\int_E f\,\mathrm{d}\mu=\lim\int_E f_n\,\mathrm{d}\mu$.

Theorem 3.3

A μ -measurable function $f: \Omega \to X$ is Bochner integrable if and only if $\int_{\Omega} \|f\| d\mu < \infty$.

If f is a μ -Bochner integrable function, then

(a)
$$\lim_{\mu(E)\to 0}\int_E f d\mu = 0$$
,

If f is a μ -Bochner integrable function, then

- (a) $\lim_{\mu(E)\to 0} \int_E f d\mu = 0$,
- (b) $\|\int_E f d\mu\| \le \int_E \|f\| d\mu$ for all $E \in \Sigma$,

If f is a μ -Bochner integrable function, then

- (a) $\lim_{\mu(E)\to 0} \int_E f d\mu = 0$,
- (b) $\|\int_E f d\mu\| \le \int_E \|f\| d\mu$ for all $E \in \Sigma$,
- (c) if $\{E_n\}$ is a sequence of pairwise disjoint members of Σ and $E = \bigcup_{n=1}^{\infty} E_n$, then

$$\int_{E} f d\mu = \sum_{n=1}^{\infty} \int_{E_{n}} f d\mu,$$

where the sum on the right is absolutely convergent,

If f is a μ -Bochner integrable function, then

- (a) $\lim_{\mu(E)\to 0}\int_E f d\mu = 0$,
- (b) $\|\int_E f d\mu\| \le \int_E \|f\| d\mu$ for all $E \in \Sigma$,
- (c) if $\{E_n\}$ is a sequence of pairwise disjoint members of Σ and $E = \bigcup_{n=1}^{\infty} E_n$, then

$$\int_{E} f d\mu = \sum_{n=1}^{\infty} \int_{E_{n}} f d\mu,$$

where the sum on the right is absolutely convergent,

(d) if $F(E) = \int_E f d\mu$, then F is of bounded variation and

$$|F|(E) = \int_{E} ||f|| d\mu$$

for all $E \in \Sigma$.

Corollary 3.5

If f and g are μ -Bochner integrable and $\int_E f \, d\mu = \int_E g \, d\mu$ for each $E \in \Sigma$, then $f = g \, \mu$ -almost everywhere.

Theorem 3.6

Let Y be a Banach space, $T \in \mathcal{L}(X,Y)$ and $f: \Omega \to X$ be μ -Bochner integrable. Then $T \circ f$ is μ -Bochner integrable and $T(\int_{\mathcal{E}} f \, \mathrm{d}\mu) = \int_{\mathcal{E}} T \circ f \, \mathrm{d}\mu$.

Theorem 3.6

Let Y be a Banach space, $T \in \mathcal{L}(X,Y)$ and $f: \Omega \to X$ be μ -Bochner integrable. Then $T \circ f$ is μ -Bochner integrable and $T(\int_{\mathcal{E}} f \, \mathrm{d}\mu) = \int_{\mathcal{E}} T \circ f \, \mathrm{d}\mu$.

Corollary 3.7

Let f a g be μ -measurable. If for each $x^* \in X^*$, $x^* \circ f = x^* \circ g$ μ -almost everywhere, then f = g μ -almost everywhere.

Theorem 3.6

Let Y be a Banach space, $T \in \mathcal{L}(X,Y)$ and $f: \Omega \to X$ be μ -Bochner integrable. Then $T \circ f$ is μ -Bochner integrable and $T(\int_{\mathcal{E}} f \, \mathrm{d}\mu) = \int_{\mathcal{E}} T \circ f \, \mathrm{d}\mu$.

Corollary 3.7

Let f a g be μ -measurable. If for each $x^* \in X^*$, $x^* \circ f = x^* \circ g$ μ -almost everywhere, then f = g μ -almost everywhere.

Corollary 3.8

Let f be μ -Bochner integrable. Then for each $E \in \Sigma$ with $\mu(E) > 0$ one has

$$\frac{1}{\mu(E)} \int_{E} f \, \mathrm{d}\mu \in \overline{co}(f(E)).$$

Definition

- (a) A **complex algebra** is a vector space *A* over the complex field **C** in which a multiplication is defined that satisfies
 - x(yz) = (xy)z,
 - $(x+y)z = xz + yz, \ x(y+z) = xy + xz,$

for all $x, y, z \in A$ and $\alpha \in \mathbf{C}$.

Definition

- (a) A **complex algebra** is a vector space *A* over the complex field **C** in which a multiplication is defined that satisfies
 - x(yz) = (xy)z,
 - $(x+y)z = xz + yz, \ x(y+z) = xy + xz,$

for all $x, y, z \in A$ and $\alpha \in \mathbf{C}$.

(b) If, in addition, A is a Banach space with respect to a norm that satisfies the multiplicative inequality

$$||xy|| \le ||x|| ||y||, \quad x, y \in A$$

then is called a **Banach algebra**.

Definition

- (a) A **complex algebra** is a vector space A over the complex field **C** in which a multiplication is defined that satisfies
 - $\mathbf{x}(yz) = (xy)z$
 - (x + y)z = xz + yz, x(y + z) = xy + xz,
 - $\alpha(xy) = (\alpha x)y = x(\alpha y),$

for all $x, y, z \in A$ and $\alpha \in \mathbf{C}$.

(b) If, in addition, A is a Banach space with respect to a norm that satisfies the multiplicative inequality

$$||xy|| < ||x|| ||y||, \quad x, y \in A$$

then is called a **Banach algebra**.

(c) If an element $e \in A$ in a Banach algebra satisfies xe = ex = x for every $x \in A$, then e is a **unit element**.

Definition

(a) Suppose A is a complex algebra and φ is a linear functional on A which is not identically 0. If $\varphi(xy) = \varphi(x)\varphi(y)$ for all $x, y \in A$, then φ is called a **complex homomorphism** on A.

Definition

- (a) Suppose A is a complex algebra and φ is a linear functional on A which is not identically 0. If $\varphi(xy) = \varphi(x)\varphi(y)$ for all $x, y \in A$, then φ is called a **complex homomorphism** on A.
- (b) An element $x \in A$ is said to be **invertible** if it has an inverse in A, that is, if there exists an element $x^{-1} \in A$ such that $x^{-1}x = xx^{-1} = e$, where e is the unit element of A.

Theorem 4.1

If φ is a complex homomorphism on a complex algebra A with unit e, then $\varphi(e)=1$, and $\varphi(x)\neq 0$ for every invertible $x\in A$.

Theorem 4.1

If φ is a complex homomorphism on a complex algebra A with unit e, then $\varphi(e)=1$, and $\varphi(x)\neq 0$ for every invertible $x\in A$.

Theorem 4.2

Suppose that A is a Banach algebra with unit, $x \in A$, ||x|| < 1. Then

- (a) e x is invertible,
- (b) $||(e-x)^{-1}-e-x|| \le \frac{||x||^2}{1-||x||}$,
- (c) $|\varphi(x)| < 1$ for every complex homomorphism φ on A.

Definition

Let A be a Banach algebra with unit.

(a) The set of all invertible elements of A is denoted by G(A).

Definition

Let A be a Banach algebra with unit.

- (a) The set of all invertible elements of A is denoted by G(A).
- (b) If $x \in A$, the **spectrum** $\sigma(x)$ of x is the set of all complex numbers λ such that $\lambda e x$ is not invertible. The complement of $\sigma(x)$ is the **resolvent** set of x.

Definition

Let A be a Banach algebra with unit.

- (a) The set of all invertible elements of A is denoted by G(A).
- (b) If $x \in A$, the **spectrum** $\sigma(x)$ of x is the set of all complex numbers λ such that $\lambda e x$ is not invertible. The complement of $\sigma(x)$ is the **resolvent** set of x.
- (c) The **spectral radius** of x is the number $\rho(x) = \sup\{|\lambda|; \ \lambda \in \sigma(x)\}.$

Theorem 4.3

Suppose A is a Banach algebra with unit, $x \in G(A)$, $h \in A$, $\|h\| < \frac{1}{2} \|x^{-1}\|^{-1}$. Then $x + h \in G(A)$ and

$$\|(x+h)^{-1}-x^{-1}+x^{-1}hx^{-1}\| \le 2\|x^{-1}\|^3\|h\|^2.$$

Theorem 4.3

Suppose A is a Banach algebra with unit, $x \in G(A)$, $h \in A$, $\|h\| < \frac{1}{2} \|x^{-1}\|^{-1}$. Then $x + h \in G(A)$ and

$$\|(x+h)^{-1}-x^{-1}+x^{-1}hx^{-1}\| \le 2\|x^{-1}\|^3\|h\|^2.$$

Theorem 4.4

If A is a Banach algebra with unit, then G(A) is an open subset of A and the mapping $x \mapsto x^{-1}$ is a homeomorphism of G(A) onto G(A).

Theorem 4.5

If A is a Banach algebra with unit and $x \in A$, then

- (a) the spectrum $\sigma(x)$ of x is compact and nonempty, and
- (b) the spectral radius $\rho(x)$ of x satisfies

$$\rho(x) = \lim \|x^n\|^{1/n} = \inf \|x^n\|^{1/n}.$$

Theorem 4.6 (Gelfand-Mazur)

If A is a Banach algebra with unit in which every nonzero element is invertible, then A is (isometrically isomorphic to) the field of complex numbers.

Theorem 4.6 (Gelfand-Mazur)

If A is a Banach algebra with unit in which every nonzero element is invertible, then A is (isometrically isomorphic to) the field of complex numbers.

Lemma 4.7

Suppose V and W are open sets in some topological space X, $V \subset W$, and W contains no boundary point of V. Then V is a union of components of W.

Theorem 4.6 (Gelfand-Mazur)

If A is a Banach algebra with unit in which every nonzero element is invertible, then A is (isometrically isomorphic to) the field of complex numbers.

Lemma 4.7

Suppose V and W are open sets in some topological space X, $V \subset W$, and W contains no boundary point of V. Then V is a union of components of W.

Lemma 4.8

Suppose A is a Banach algebra with unit, $x_n \in G(A)$ for every $n \in \mathbb{N}$, x is a boundary point of G(A), and $x_n \to x$ as $n \to \infty$. Then $||x_n^{-1}|| \to \infty$.

Theorem 4.9

(a) If A is a closed subalgebra of a Banach algebra B, and if A contains the unit element of B, then G(A) is a union of components of $A \cap G(B)$.

Theorem 4.9

- (a) If A is a closed subalgebra of a Banach algebra B, and if A contains the unit element of B, then G(A) is a union of components of $A \cap G(B)$.
- (b) Under these conditions, if $x \in A$, then $\sigma_A(x)$ is the union of $\sigma_B(x)$ and a (possibly empty) collection of bounded components of the complement of $\sigma_B(x)$. In particular, the boundary of $\sigma_A(x)$ lies in $\sigma_B(x)$.

Theorem 4.9

- (a) If A is a closed subalgebra of a Banach algebra B, and if A contains the unit element of B, then G(A) is a union of components of $A \cap G(B)$.
- (b) Under these conditions, if $x \in A$, then $\sigma_A(x)$ is the union of $\sigma_B(x)$ and a (possibly empty) collection of bounded components of the complement of $\sigma_B(x)$. In particular, the boundary of $\sigma_A(x)$ lies in $\sigma_B(x)$.

Corollary 4.10

If $\sigma_B(x)$ does not separate **C**, that is, if its complement Ω_B is connected, then $\sigma_A(x) = \sigma_B(x)$.

Theorem 4.11

Suppose A is a Banach algebra with unit, $x \in A$, Ω is an open set in \mathbf{C} , and $\sigma(x) \subset \Omega$. Then there exists $\delta > 0$ such that $\sigma(x+y) \subset \Omega$ for every $y \in A$ with $\|y\| < \delta$.

Preliminaries from complex analysis

Theorem (Cauchy)

Let $\Omega \subset \mathbf{C}$ be open, $f \in \mathsf{Hol}(\Omega)$ and Γ be a contour in Ω satisfying $\mathsf{ind}_{\Gamma} \alpha = 0$ for $\alpha \in \mathbf{C} \setminus \Omega$. Then we have

(a)
$$f(\lambda) \operatorname{ind}_{\Gamma} \lambda = \frac{1}{2\pi i} \int_{\Gamma} \frac{f(w)}{w - \lambda} dw$$
, $\lambda \in \Omega \setminus \langle \Gamma \rangle$,

Preliminaries from complex analysis

Theorem (Cauchy)

Let $\Omega \subset \mathbf{C}$ be open, $f \in \mathsf{Hol}(\Omega)$ and Γ be a contour in Ω satisfying $\mathsf{ind}_{\Gamma} \alpha = 0$ for $\alpha \in \mathbf{C} \setminus \Omega$. Then we have

(a)
$$f(\lambda) \operatorname{ind}_{\Gamma} \lambda = \frac{1}{2\pi i} \int_{\Gamma} \frac{f(w)}{w - \lambda} dw$$
, $\lambda \in \Omega \setminus \langle \Gamma \rangle$,

(b)
$$\int_{\Gamma} f(w) dw = 0$$
,

Preliminaries from complex analysis

Theorem (Cauchy)

Let $\Omega \subset \mathbf{C}$ be open, $f \in \mathsf{Hol}(\Omega)$ and Γ be a contour in Ω satisfying $\mathsf{ind}_{\Gamma} \alpha = 0$ for $\alpha \in \mathbf{C} \setminus \Omega$. Then we have

- (a) $f(\lambda) \operatorname{ind}_{\Gamma} \lambda = \frac{1}{2\pi i} \int_{\Gamma} \frac{f(w)}{w \lambda} \, \mathrm{d}w$, $\lambda \in \Omega \setminus \langle \Gamma \rangle$,
- (b) $\int_{\Gamma} f(w) dw = 0$,
- (c) if Γ_1 , Γ_2 are contours in Ω satisfying $\operatorname{ind}_{\Gamma_1} \alpha = \operatorname{ind}_{\Gamma_2} \alpha$ for each $\alpha \in \mathbf{C} \setminus \Omega$, then $\int_{\Gamma_1} f(w) \, \mathrm{d} w = \int_{\Gamma_2} f(w) \, \mathrm{d} w$.

Theorem

Let $K \subset \Omega \subset \mathbf{C}$, K be compact and Ω be open. Then there exists a contour Γ in Ω such that

(a)
$$\langle \Gamma \rangle \subset \Omega \setminus K$$
,

Theorem

Let $K \subset \Omega \subset \mathbf{C}$, K be compact and Ω be open. Then there exists a contour Γ in Ω such that

(a)
$$\langle \Gamma \rangle \subset \Omega \setminus K$$
,

(b)
$$\operatorname{ind}_{\Gamma} \alpha = \begin{cases} 1, & \alpha \in K, \\ 0, & \alpha \in \mathbf{C} \setminus \Omega. \end{cases}$$

Definition

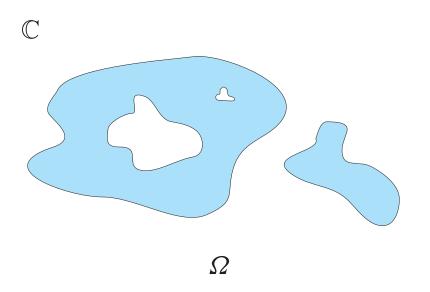
If Γ has the properties (a)–(b) from the previous theorem, then we say that Γ surrounds K in Ω .

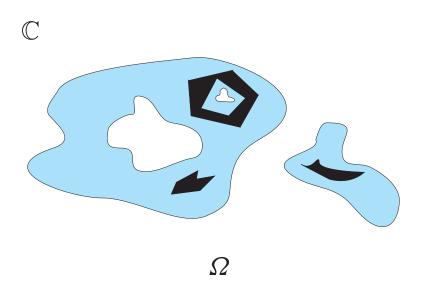
Definition

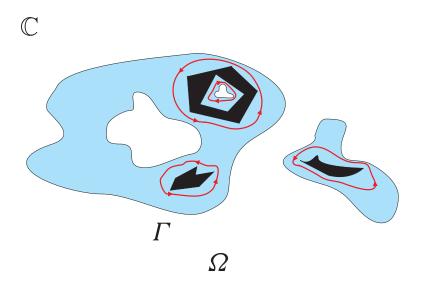
If Γ has the properties (a)–(b) from the previous theorem, then we say that Γ surrounds K in Ω .

Notation

Let $K \subset \mathbf{C}$ be compact. Then the symbol $\operatorname{Hol}(K)$ denotes the set of all complex functions which are holomorphic on some open set $\Omega \supset K$.







Notation

Let $x \in A$. Denote $R_{\lambda} = (\lambda e - x)^{-1}$, $\lambda \in \mathbf{C} \setminus \sigma(x)$.

Notation

Let $x \in A$. Denote $R_{\lambda} = (\lambda e - x)^{-1}, \ \lambda \in \mathbf{C} \setminus \sigma(x)$.

Lemma 4.12

Let $x, y \in A$.

(a) If x commutes with y, then x commutes with R_{λ} for every $\lambda \in \mathbf{C} \setminus \sigma(y)$.

Notation

Let $x \in A$. Denote $R_{\lambda} = (\lambda e - x)^{-1}, \ \lambda \in \mathbf{C} \setminus \sigma(x)$.

Lemma 4.12

Let $x, y \in A$.

- (a) If x commutes with y, then x commutes with R_{λ} for every $\lambda \in \mathbf{C} \setminus \sigma(y)$.
- (b) For every $\lambda, \mu \in \mathbf{C} \setminus \sigma(x)$ we have

$$R_{\lambda} - R_{\mu} = (\mu - \lambda) R_{\mu} R_{\lambda}.$$

Theorem 4.13 Let $x \in A$ a $f \in Hol(\sigma(x))$. We set

$$f(x) = \frac{1}{2\pi i} \int_{\Gamma} f(z) R_z \, \mathrm{d}z,$$

where Γ is a contour surrounding $\sigma(x)$ in D(f).

Theorem 4.13

Let $x \in A$ a $f \in Hol(\sigma(x))$. We set

$$f(x) = \frac{1}{2\pi i} \int_{\Gamma} f(z) R_z \, \mathrm{d}z,$$

where Γ is a contour surrounding $\sigma(x)$ in D(f). The mapping $\Phi \colon f \mapsto f(x)$ from $\operatorname{Hol}(\sigma(x))$ into A is well-defined and does not depend on the choice of Γ .

Theorem 4.14 Let $x \in A$ and $f \in \text{Hol}(\sigma(x))$. Then we have (a) (1)(x) = e a id(x) = x,

Theorem 4.14

- (a) $(1)(x) = e \ a \ id(x) = x$,
- (b) Φ is algebraic homomorphism from $Hol(\sigma(x))$ into A, $\bullet \bullet$

Theorem 4.14

- (a) $(1)(x) = e \ a \ id(x) = x$,
- (b) Φ is algebraic homomorphism from $Hol(\sigma(x))$ into A, $\bullet \bullet$
- (c) if $f_n \in \text{Hol}(D(f))$ and $f_n \stackrel{\text{loc}}{\Longrightarrow} f$ on D(f), then $f_n(x) \to f(x)$ in A,

Theorem 4.14

- (a) $(1)(x) = e \ a \ id(x) = x$,
- (b) Φ is algebraic homomorphism from $Hol(\sigma(x))$ into A, $\bullet \bullet$
- (c) if $f_n \in \text{Hol}(D(f))$ and $f_n \stackrel{\text{loc}}{\Longrightarrow} f$ on D(f), then $f_n(x) \to f(x)$ in A,
- (d) f(x) is invertible if and only if $f \neq 0$ on $\sigma(x)$,

Theorem 4.14

- (a) $(1)(x) = e \ a \ id(x) = x$,
- (b) Φ is algebraic homomorphism from $Hol(\sigma(x))$ into A, $\bullet \bullet$
- (c) if $f_n \in \text{Hol}(D(f))$ and $f_n \stackrel{\text{loc}}{\Longrightarrow} f$ on D(f), then $f_n(x) \to f(x)$ in A,
- (d) f(x) is invertible if and only if $f \neq 0$ on $\sigma(x)$,
- (e) $\sigma(f(x)) = f(\sigma(x)),$

Theorem 4.14

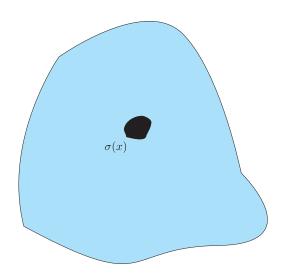
- (a) $(1)(x) = e \ a \ id(x) = x$,
- (b) Φ is algebraic homomorphism from $Hol(\sigma(x))$ into A, $\bullet \bullet$
- (c) if $f_n \in \text{Hol}(D(f))$ and $f_n \stackrel{\text{loc}}{\Rightarrow} f$ on D(f), then $f_n(x) \to f(x)$ in A,
- (d) f(x) is invertible if and only if $f \neq 0$ on $\sigma(x)$,
- (e) $\sigma(f(x)) = f(\sigma(x)),$
- (f) $(g \circ f)(x) = g(f(x))$ pro $g \in \text{Hol}(\sigma(f(x)))$,

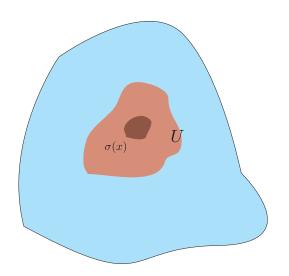
Theorem 4.14

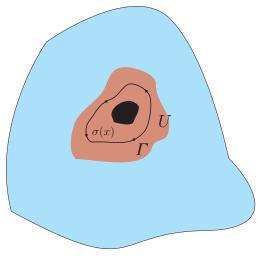
Let $x \in A$ and $f \in Hol(\sigma(x))$. Then we have

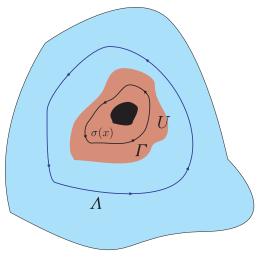
- (a) $(1)(x) = e \ a \ id(x) = x$,
- (b) Φ is algebraic homomorphism from $Hol(\sigma(x))$ into A, $\bullet \bullet$
- (c) if $f_n \in \text{Hol}(D(f))$ and $f_n \stackrel{\text{loc}}{\Longrightarrow} f$ on D(f), then $f_n(x) \to f(x)$ in A,
- (d) f(x) is invertible if and only if $f \neq 0$ on $\sigma(x)$,
- (e) $\sigma(f(x)) = f(\sigma(x)),$
- (f) $(g \circ f)(x) = g(f(x))$ pro $g \in \text{Hol}(\sigma(f(x)))$,
- (g) if $y \in A$ commutes with x, then y commutes with f(x).

next theorem









$$f(x)g(x) = -\frac{1}{4\pi^2} \left(\int_{\Gamma} f(z) R_z \, \mathrm{d}z \right) \left(\int_{\Lambda} g(w) R_w \, \mathrm{d}w \right)$$

$$\begin{split} f(x)g(x) &= -\frac{1}{4\pi^2} \left(\int_{\Gamma} f(z) R_z \, \mathrm{d}z \right) \left(\int_{\Lambda} g(w) R_w \, \mathrm{d}w \right) \\ &= -\frac{1}{4\pi^2} \int_{\Gamma} \left(f(z) R_z \left(\int_{\Lambda} g(w) R_w \, \mathrm{d}w \right) \right) \, \mathrm{d}z = -\frac{1}{4\pi^2} \int_{\Gamma} \left(\int_{\Lambda} f(z) g(w) R_z R_w \, \mathrm{d}w \right) \, \mathrm{d}z \end{split}$$

$$\begin{split} f(x)g(x) &= -\frac{1}{4\pi^2} \left(\int_{\Gamma} f(z) R_z \, \mathrm{d}z \right) \left(\int_{\Lambda} g(w) R_w \, \mathrm{d}w \right) \\ &= -\frac{1}{4\pi^2} \int_{\Gamma} \left(f(z) R_z \left(\int_{\Lambda} g(w) R_w \, \mathrm{d}w \right) \right) \, \mathrm{d}z = -\frac{1}{4\pi^2} \int_{\Gamma} \left(\int_{\Lambda} f(z) g(w) R_z R_w \, \mathrm{d}w \right) \, \mathrm{d}z \\ &= -\frac{1}{4\pi^2} \int_{\Gamma} \left(\int_{\Lambda} f(z) g(w) \frac{R_z - R_w}{w - z} \, \mathrm{d}w \right) \, \mathrm{d}z \end{split}$$

$$f(x)g(x) = -\frac{1}{4\pi^2} \left(\int_{\Gamma} f(z)R_z \, \mathrm{d}z \right) \left(\int_{\Lambda} g(w)R_w \, \mathrm{d}w \right)$$

$$= -\frac{1}{4\pi^2} \int_{\Gamma} \left(f(z)R_z \left(\int_{\Lambda} g(w)R_w \, \mathrm{d}w \right) \right) \, \mathrm{d}z = -\frac{1}{4\pi^2} \int_{\Gamma} \left(\int_{\Lambda} f(z)g(w)R_z R_w \, \mathrm{d}w \right) \, \mathrm{d}z$$

$$= -\frac{1}{4\pi^2} \int_{\Gamma} \left(\int_{\Lambda} f(z)g(w) \frac{R_z - R_w}{w - z} \, \mathrm{d}w \right) \, \mathrm{d}z$$

$$= -\frac{1}{4\pi^2} \int_{\Gamma} \left(\int_{\Lambda} \frac{f(z)g(w)}{w - z} R_z \, \mathrm{d}w - \int_{\Lambda} \frac{f(z)g(w)}{w - z} R_w \, \mathrm{d}w \right) \, \mathrm{d}z$$

$$f(x)g(x) = -\frac{1}{4\pi^2} \left(\int_{\Gamma} f(z)R_z \, \mathrm{d}z \right) \left(\int_{\Lambda} g(w)R_w \, \mathrm{d}w \right)$$

$$= -\frac{1}{4\pi^2} \int_{\Gamma} \left(f(z)R_z \left(\int_{\Lambda} g(w)R_w \, \mathrm{d}w \right) \right) \, \mathrm{d}z = -\frac{1}{4\pi^2} \int_{\Gamma} \left(\int_{\Lambda} f(z)g(w)R_z R_w \, \mathrm{d}w \right) \, \mathrm{d}z$$

$$= -\frac{1}{4\pi^2} \int_{\Gamma} \left(\int_{\Lambda} f(z)g(w) \frac{R_z - R_w}{w - z} \, \mathrm{d}w \right) \, \mathrm{d}z$$

$$= -\frac{1}{4\pi^2} \int_{\Gamma} \left(\int_{\Lambda} \frac{f(z)g(w)}{w - z} R_z \, \mathrm{d}w - \int_{\Lambda} \frac{f(z)g(w)}{w - z} R_w \, \mathrm{d}w \right) \, \mathrm{d}z$$

$$= -\frac{1}{4\pi^2} \int_{\Gamma} \left(f(z)R_z \int_{\Lambda} \frac{g(w)}{w - z} \, \mathrm{d}w \right) \, \mathrm{d}z + \frac{1}{4\pi^2} \int_{\Gamma} \left(\int_{\Lambda} \frac{f(z)g(w)}{w - z} R_w \, \mathrm{d}w \right) \, \mathrm{d}z$$

$$f(x)g(x) = -\frac{1}{4\pi^2} \left(\int_{\Gamma} f(z)R_z \, \mathrm{d}z \right) \left(\int_{\Lambda} g(w)R_w \, \mathrm{d}w \right)$$

$$= -\frac{1}{4\pi^2} \int_{\Gamma} \left(f(z)R_z \left(\int_{\Lambda} g(w)R_w \, \mathrm{d}w \right) \right) \, \mathrm{d}z = -\frac{1}{4\pi^2} \int_{\Gamma} \left(\int_{\Lambda} f(z)g(w)R_z R_w \, \mathrm{d}w \right) \, \mathrm{d}z$$

$$= -\frac{1}{4\pi^2} \int_{\Gamma} \left(\int_{\Lambda} f(z)g(w) \frac{R_z - R_w}{w - z} \, \mathrm{d}w \right) \, \mathrm{d}z$$

$$= -\frac{1}{4\pi^2} \int_{\Gamma} \left(\int_{\Lambda} \frac{f(z)g(w)}{w - z} R_z \, \mathrm{d}w - \int_{\Lambda} \frac{f(z)g(w)}{w - z} R_w \, \mathrm{d}w \right) \, \mathrm{d}z$$

$$= -\frac{1}{4\pi^2} \int_{\Gamma} \left(f(z)R_z \int_{\Lambda} \frac{g(w)}{w - z} \, \mathrm{d}w \right) \, \mathrm{d}z + \frac{1}{4\pi^2} \int_{\Gamma} \left(\int_{\Gamma} \frac{f(z)g(w)}{w - z} R_w \, \mathrm{d}w \right) \, \mathrm{d}z$$

$$= -\frac{1}{4\pi^2} \int_{\Gamma} \left(f(z)R_z \int_{\Lambda} \frac{g(w)}{w - z} \, \mathrm{d}w \right) \, \mathrm{d}z + \frac{1}{4\pi^2} \int_{\Lambda} \left(\int_{\Gamma} \frac{f(z)g(w)}{w - z} R_w \, \mathrm{d}z \right) \, \mathrm{d}w$$

$$f(x)g(x) = -\frac{1}{4\pi^2} \left(\int_{\Gamma} f(z)R_z \, \mathrm{d}z \right) \left(\int_{\Lambda} g(w)R_w \, \mathrm{d}w \right)$$

$$= -\frac{1}{4\pi^2} \int_{\Gamma} \left(f(z)R_z \left(\int_{\Lambda} g(w)R_w \, \mathrm{d}w \right) \right) \, \mathrm{d}z = -\frac{1}{4\pi^2} \int_{\Gamma} \left(\int_{\Lambda} f(z)g(w)R_z R_w \, \mathrm{d}w \right) \, \mathrm{d}z$$

$$= -\frac{1}{4\pi^2} \int_{\Gamma} \left(\int_{\Lambda} f(z)g(w) \frac{R_z - R_w}{w - z} \, \mathrm{d}w \right) \, \mathrm{d}z$$

$$= -\frac{1}{4\pi^2} \int_{\Gamma} \left(\int_{\Lambda} \frac{f(z)g(w)}{w - z} R_z \, \mathrm{d}w - \int_{\Lambda} \frac{f(z)g(w)}{w - z} R_w \, \mathrm{d}w \right) \, \mathrm{d}z$$

$$= -\frac{1}{4\pi^2} \int_{\Gamma} \left(f(z)R_z \int_{\Lambda} \frac{g(w)}{w - z} \, \mathrm{d}w \right) \, \mathrm{d}z + \frac{1}{4\pi^2} \int_{\Gamma} \left(\int_{\Lambda} \frac{f(z)g(w)}{w - z} R_w \, \mathrm{d}w \right) \, \mathrm{d}z$$

$$= -\frac{1}{4\pi^2} \int_{\Gamma} \left(f(z)R_z \int_{\Lambda} \frac{g(w)}{w - z} \, \mathrm{d}w \right) \, \mathrm{d}z + \frac{1}{4\pi^2} \int_{\Lambda} \left(\int_{\Gamma} \frac{f(z)g(w)}{w - z} R_w \, \mathrm{d}z \right) \, \mathrm{d}w$$

$$= -\frac{1}{4\pi^2} \int_{\Gamma} \left(f(z)R_z \int_{\Lambda} \frac{g(w)}{w - z} \, \mathrm{d}w \right) \, \mathrm{d}z + \frac{1}{4\pi^2} \int_{\Lambda} \left(g(w)R_w \int_{\Gamma} \frac{f(z)}{w - z} \, \mathrm{d}z \right) \, \mathrm{d}w$$

$$f(x)g(x) = -\frac{1}{4\pi^2} \left(\int_{\Gamma} f(z)R_z \, \mathrm{d}z \right) \left(\int_{\Lambda} g(w)R_w \, \mathrm{d}w \right)$$

$$= -\frac{1}{4\pi^2} \int_{\Gamma} \left(f(z)R_z \left(\int_{\Lambda} g(w)R_w \, \mathrm{d}w \right) \right) \, \mathrm{d}z = -\frac{1}{4\pi^2} \int_{\Gamma} \left(\int_{\Lambda} f(z)g(w)R_z R_w \, \mathrm{d}w \right) \, \mathrm{d}z$$

$$= -\frac{1}{4\pi^2} \int_{\Gamma} \left(\int_{\Lambda} f(z)g(w) \frac{R_z - R_w}{w - z} \, \mathrm{d}w \right) \, \mathrm{d}z$$

$$= -\frac{1}{4\pi^2} \int_{\Gamma} \left(\int_{\Lambda} \frac{f(z)g(w)}{w - z} R_z \, \mathrm{d}w - \int_{\Lambda} \frac{f(z)g(w)}{w - z} R_w \, \mathrm{d}w \right) \, \mathrm{d}z$$

$$= -\frac{1}{4\pi^2} \int_{\Gamma} \left(f(z)R_z \int_{\Lambda} \frac{g(w)}{w - z} \, \mathrm{d}w \right) \, \mathrm{d}z + \frac{1}{4\pi^2} \int_{\Gamma} \left(\int_{\Lambda} \frac{f(z)g(w)}{w - z} R_w \, \mathrm{d}w \right) \, \mathrm{d}z$$

$$= -\frac{1}{4\pi^2} \int_{\Gamma} \left(f(z)R_z \int_{\Lambda} \frac{g(w)}{w - z} \, \mathrm{d}w \right) \, \mathrm{d}z + \frac{1}{4\pi^2} \int_{\Lambda} \left(\int_{\Gamma} \frac{f(z)g(w)}{w - z} R_w \, \mathrm{d}z \right) \, \mathrm{d}w$$

$$= -\frac{1}{4\pi^2} \int_{\Gamma} \left(f(z)R_z \int_{\Lambda} \frac{g(w)}{w - z} \, \mathrm{d}w \right) \, \mathrm{d}z + \frac{1}{4\pi^2} \int_{\Lambda} \left(g(w)R_w \int_{\Gamma} \frac{f(z)}{w - z} \, \mathrm{d}z \right) \, \mathrm{d}w$$

$$= \frac{1}{2\pi i} \int_{\Gamma} f(z)g(z)R_z \, \mathrm{d}z = (fg)(x)$$

$$f(x)g(x) = -\frac{1}{4\pi^2} \left(\int_{\Gamma} f(z)R_z \, \mathrm{d}z \right) \left(\int_{\Lambda} g(w)R_w \, \mathrm{d}w \right)$$

$$= -\frac{1}{4\pi^2} \int_{\Gamma} \left(f(z)R_z \left(\int_{\Lambda} g(w)R_w \, \mathrm{d}w \right) \right) \, \mathrm{d}z = -\frac{1}{4\pi^2} \int_{\Gamma} \left(\int_{\Lambda} f(z)g(w)R_z R_w \, \mathrm{d}w \right) \, \mathrm{d}z$$

$$= -\frac{1}{4\pi^2} \int_{\Gamma} \left(\int_{\Lambda} f(z)g(w) \frac{R_z - R_w}{w - z} \, \mathrm{d}w \right) \, \mathrm{d}z$$

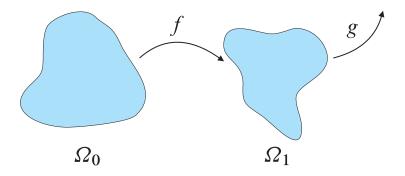
$$= -\frac{1}{4\pi^2} \int_{\Gamma} \left(\int_{\Lambda} \frac{f(z)g(w)}{w - z} R_z \, \mathrm{d}w - \int_{\Lambda} \frac{f(z)g(w)}{w - z} R_w \, \mathrm{d}w \right) \, \mathrm{d}z$$

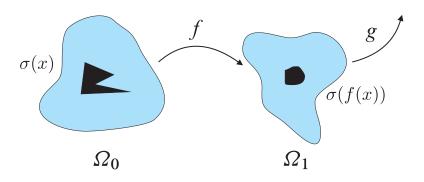
$$= -\frac{1}{4\pi^2} \int_{\Gamma} \left(f(z)R_z \int_{\Lambda} \frac{g(w)}{w - z} \, \mathrm{d}w \right) \, \mathrm{d}z + \frac{1}{4\pi^2} \int_{\Gamma} \left(\int_{\Lambda} \frac{f(z)g(w)}{w - z} R_w \, \mathrm{d}w \right) \, \mathrm{d}z$$

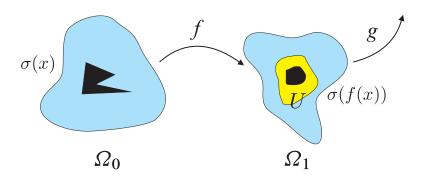
$$= -\frac{1}{4\pi^2} \int_{\Gamma} \left(f(z)R_z \int_{\Lambda} \frac{g(w)}{w - z} \, \mathrm{d}w \right) \, \mathrm{d}z + \frac{1}{4\pi^2} \int_{\Lambda} \left(\int_{\Gamma} \frac{f(z)g(w)}{w - z} R_w \, \mathrm{d}z \right) \, \mathrm{d}w$$

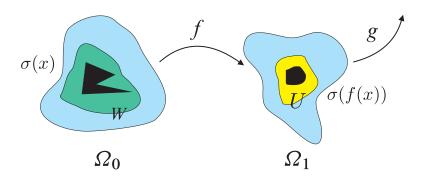
$$= -\frac{1}{4\pi^2} \int_{\Gamma} \left(f(z)R_z \int_{\Lambda} \frac{g(w)}{w - z} \, \mathrm{d}w \right) \, \mathrm{d}z + \frac{1}{4\pi^2} \int_{\Lambda} \left(g(w)R_w \int_{\Gamma} \frac{f(z)}{w - z} \, \mathrm{d}z \right) \, \mathrm{d}w$$

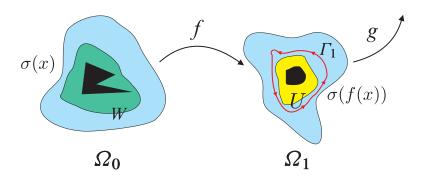
$$= \frac{1}{2\pi i} \int_{\Gamma} f(z)g(z)R_z \, \mathrm{d}z = (fg)(x)$$

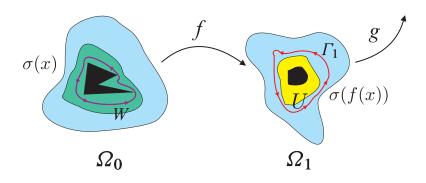












4. Banach algebras

Theorem 4.15

Suppose A is a Banach algebra with unit, $x \in A$, and the spectrum $\sigma(x)$ does not separate 0 from ∞ . Then

- (a) x has a logarithm in A,
- (b) x has roots of all orders in A.

Definition

A subset J of a commutative complex algebra A is said to be **ideal** if

(a) J is a subspace of A, and

Definition

A subset J of a commutative complex algebra A is said to be **ideal** if

- (a) J is a subspace of A, and
- (b) $xy \in J$ whenever $x \in A$ and $y \in J$.

Definition

A subset J of a commutative complex algebra A is said to be **ideal** if

- (a) J is a subspace of A, and
- (b) $xy \in J$ whenever $x \in A$ and $y \in J$.

If $J \neq A$, then J is a **proper** ideal.

Definition

A subset J of a commutative complex algebra A is said to be **ideal** if

- (a) J is a subspace of A, and
- (b) $xy \in J$ whenever $x \in A$ and $y \in J$.

If $J \neq A$, then J is a **proper** ideal. **Maximal** ideals are proper ideals which are not contained in any larger proper ideal.

Theorem 5.1

(a) If A is a commutative complex algebra with unit, then every proper ideal of A is contained in a maximal ideal of A

Theorem 5.1

(a) If A is a commutative complex algebra with unit, then every proper ideal of A is contained in a maximal ideal of A (b) If A is a commutative Banach algebra with unit, then every maximal ideal of A is closed.

Theorem 5.2

Let A be a commutative Banach algebra with unit. Let Δ be the set of all complex homomorphism of A.

(a) Every maximal ideal of A is the kernel of some $h \in \Delta$.

Theorem 5.2

- (a) Every maximal ideal of A is the kernel of some $h \in \Delta$.
- (b) If $h \in \Delta$, the kernel of h is a maximal ideal of A.

Theorem 5.2

- (a) Every maximal ideal of A is the kernel of some $h \in \Delta$.
- (b) If $h \in \Delta$, the kernel of h is a maximal ideal of A.
- (c) An element $x \in A$ is invertible in A if and only if $h(x) \neq 0$ for every $h \in \Delta$.

Theorem 5.2

- (a) Every maximal ideal of A is the kernel of some $h \in \Delta$.
- (b) If $h \in \Delta$, the kernel of h is a maximal ideal of A.
- (c) An element $x \in A$ is invertible in A if and only if $h(x) \neq 0$ for every $h \in \Delta$.
- (d) An element $x \in A$ is invertible in A if and only if x lies in no proper ideal of A.

Theorem 5.2

- (a) Every maximal ideal of A is the kernel of some $h \in \Delta$.
- (b) If $h \in \Delta$, the kernel of h is a maximal ideal of A.
- (c) An element $x \in A$ is invertible in A if and only if $h(x) \neq 0$ for every $h \in \Delta$.
- (d) An element $x \in A$ is invertible in A if and only if x lies in no proper ideal of A.
- (e) $\lambda \in \sigma(x)$ if and only if $h(x) = \lambda$ for some $h \in \Delta$.

Theorem 5.2

- (a) Every maximal ideal of A is the kernel of some $h \in \Delta$.
- (b) If $h \in \Delta$, the kernel of h is a maximal ideal of A.
- (c) An element $x \in A$ is invertible in A if and only if $h(x) \neq 0$ for every $h \in \Delta$.
- (d) An element $x \in A$ is invertible in A if and only if x lies in no proper ideal of A.
- (e) $\lambda \in \sigma(x)$ if and only if $h(x) = \lambda$ for some $h \in \Delta$.

Definition

(a) Let Δ be the set of all complex homomorphisms of a commutative Banach algebra A with unit. The formula $\hat{x}(h) = h(x)$ assigns to each $x \in A$ a function $\hat{x} : \Delta \to \mathbf{C}$, we call \hat{x} the **Gelfand transform** of x.

Definition

- (a) Let Δ be the set of all complex homomorphisms of a commutative Banach algebra A with unit. The formula $\hat{x}(h) = h(x)$ assigns to each $x \in A$ a function $\hat{x} : \Delta \to \mathbf{C}$, we call \hat{x} the **Gelfand transform** of x.
- (b) The **Gelfand topology** of Δ is the weakest topology that makes every \hat{x} continuous.

Definition

- (a) Let Δ be the set of all complex homomorphisms of a commutative Banach algebra A with unit. The formula $\hat{x}(h) = h(x)$ assigns to each $x \in A$ a function $\hat{x} : \Delta \to \mathbf{C}$, we call \hat{x} the **Gelfand transform** of x.
- (b) The **Gelfand topology** of Δ is the weakest topology that makes every \hat{x} continuous.
- (c) The **radical** of A, denoted by rad A, is the intersection of all maximal ideals of A. If rad $A = \{0\}$, A is called **semisimple**.

Theorem 5.3

Let Δ be the maximal ideal space of a commutative Banach algebra A with unit.

(a) Δ is a compact Hausdorff space.

Theorem 5.3

Let Δ be the maximal ideal space of a commutative Banach algebra A with unit.

- (a) Δ is a compact Hausdorff space.
- (b) The Gelfand transform is a homomorphism of A onto a subalgebra \hat{A} of $\mathcal{C}(\Delta)$, whose kernel is rad A. The Gelfand transform is therefore an isomorphism if and only if A is semisimple.

Theorem 5.3

Let Δ be the maximal ideal space of a commutative Banach algebra A with unit.

- (a) Δ is a compact Hausdorff space.
- (b) The Gelfand transform is a homomorphism of A onto a subalgebra \hat{A} of $\mathcal{C}(\Delta)$, whose kernel is rad A. The Gelfand transform is therefore an isomorphism if and only if A is semisimple.
- (c) For each $x \in A$ we have $\operatorname{Rng} \hat{x} = \sigma(x)$.

Theorem 5.4

If $\psi \colon B \to A$ is a homomorphism of a commutative Banach algebra B with unit into a semisimple commutative Banach algebra with unit, then ψ is continuous.

Lemma 5.5

If A is a commutative Banach algebra with unit and

$$r = \inf_{x \neq 0} \frac{\|x^2\|}{\|x\|^2}, \qquad s = \inf_{x \neq 0} \frac{\|\hat{x}\|_{\infty}}{\|x\|},$$

then $s^2 \le r \le s$.

Theorem 5.6

Suppose A is a commutative Banach algebra with unit.

(a) The Gelfand transform is an isometry if and only if $||x^2|| = ||x||^2$.

Theorem 5.6

Suppose A is a commutative Banach algebra with unit.

- (a) The Gelfand transform is an isometry if and only if $||x^2|| = ||x||^2$.
- (b) A is semisimple and \hat{A} is closed in $\mathcal{C}(\Delta)$ if and only if there exists $K < \infty$ such that $\|x\|^2 \le K \|x^2\|$ for every $x \in A$.

Definition

A mapping $x \mapsto x^*$ of a complex (not necessarily commutative) algebra A into A is called an **involution** on A if it has the following properties for every $x, y \in A$, and $\lambda \in \mathbf{C}$:

- $(x+y)^* = x^* + y^*$,
- $(\lambda x)^* = \overline{\lambda} x^*,$
- $(xy)^* = y^*x^*$,

Any $x \in A$ for which $x^* = x$ is called **hermitian**, or **self-adjoint**.

Theorem 5.7

If A is a Banach algebra with unit and an involution, and if $x \in A$, then

- (a) $x + x^*$, $i(x x^*)$ and xx^* are hermitian,
- (b) x has a unique representation x = u + iv, with $u \in A$, $v \in A$, and both u and v are hermitian,
- (c) the unit e is hermitian,
- (d) x is invertible in A if and only if x^* is invertible, in which case $(x^*)^{-1} = (x^{-1})^*$, and
- (e) $\lambda \in \sigma(x)$ if and only if $\overline{\lambda} \in \sigma(x^*)$.

Theorem 5.8

If a Banach algebra A with unit is commutative and semisimple, then every involution on A is continuous.

Theorem 5.8

If a Banach algebra A with unit is commutative and semisimple, then every involution on A is continuous.

Definition

A Banach algebra A with an involution $x \mapsto x^*$ that satisfies $||xx^*|| = ||x||^2$ for every $x \in A$ is called a C^* -algebra.

Theorem 5.9 (Gelfand-Naimark)

Suppose A is a commutative C^* -algebra with unit. The Gelfand transform is then an isometric isomorphism of A onto $\mathcal{C}(\Delta)$, which has the additional property $\widehat{x^*} = \overline{\widehat{x}}$ for every $x \in A$.

Theorem 5.10

If A is a commutative C^* -algebra with unit which contains an element x such that the polynomials in x and x^* are dense in A, then the formula $\widehat{\Psi f} = f \circ \widehat{x}$ defines an isometric isomorphism Ψ of $\mathcal{C}(\sigma(x))$ onto A which satisfies $\Psi \overline{f} = (\Psi f)^*$ for every $f \in \mathcal{C}(\sigma(x))$. Moreover, if $f(\lambda) = \lambda$ on $\sigma(x)$, then $\Psi f = x$.

Definition

Let A be an algebra with an involution. If $x \in A$ and $xx^* = x^*x$, then x is said to be **normal**. A set $S \subset A$ is said to be **normal** if S commutes and if $x^* \in S$ whenever $x \in S$.

Theorem 5.11

Suppose A is a Banach algebra with an involution, and B is a normal subset of A that is maximal with respect to being normal. Then

(a) B is a closed commutative subalgebra of A, and

Definition

Let A be an algebra with an involution. If $x \in A$ and $xx^* = x^*x$, then x is said to be **normal**. A set $S \subset A$ is said to be **normal** if S commutes and if $x^* \in S$ whenever $x \in S$.

Theorem 5.11

Suppose A is a Banach algebra with an involution, and B is a normal subset of A that is maximal with respect to being normal. Then

- (a) B is a closed commutative subalgebra of A, and
- (b) $\sigma_B(x) = \sigma_A(x)$ for every $x \in B$.

Theorem 5.12

Every C*-algebra A has the following properties:

(a) Hermitian elements have real spectra.

Theorem 5.12

Every C*-algebra A has the following properties:

- (a) Hermitian elements have real spectra.
- (b) If $x \in A$ is normal, then $\rho(x) = ||x||$.

Theorem 5.12

Every C*-algebra A has the following properties:

- (a) Hermitian elements have real spectra.
- (b) If $x \in A$ is normal, then $\rho(x) = ||x||$.
- (c) If $y \in A$, then $\rho(yy^*) = ||y||^2$.

Theorem 5.12

Every C*-algebra A has the following properties:

- (a) Hermitian elements have real spectra.
- (b) If $x \in A$ is normal, then $\rho(x) = ||x||$.
- (c) If $y \in A$, then $\rho(yy^*) = ||y||^2$.
- (d) If $u, v \in A$ are hermitian, $\sigma(u) \subset [0, \infty)$, $\sigma(v) \subset [0, \infty)$, then $\sigma(u + v) \subset [0, \infty)$.

Theorem 5.12

Every C*-algebra A has the following properties:

- (a) Hermitian elements have real spectra.
- (b) If $x \in A$ is normal, then $\rho(x) = ||x||$.
- (c) If $y \in A$, then $\rho(yy^*) = ||y||^2$.
- (d) If $u, v \in A$ are hermitian, $\sigma(u) \subset [0, \infty)$, $\sigma(v) \subset [0, \infty)$, then $\sigma(u + v) \subset [0, \infty)$.
- (e) If $y \in A$, then $\sigma(yy^*) \subset [0, \infty)$.

Theorem 5.13

Suppose that A is a C*-algebra with a unit e, B is a closed subalgebra of A, $e \in B$, and $x^* \in B$ for every $x \in B$. Then $\sigma_A(x) = \sigma_B(x)$ for every $x \in B$.

In this section the symbol H stands for a nontrivial complex Hilbert space.

Definition

We say that $T \in \mathcal{L}(H)$ is

- normal, if $T^*T = TT^*$,
- **selfadjoint** (or also **hermitian**), if $T^* = T$,
- unitary, if $T^*T = I = TT^*$,
- **orthogonal projection**, if T is a projection, i.e., $T = T^2$, and Rng $T \perp$ Ker T.

Lemma 6.1

Let $T \in \mathcal{L}(H)$. Then

(a)
$$||T^*T|| = ||TT^*|| = ||T||^2$$
,

(b) Ker $T^* = \operatorname{Rng} T^{\perp}$.

Lemma 6.1

Let $T \in \mathcal{L}(H)$. Then

- (a) $||T^*T|| = ||TT^*|| = ||T||^2$,
- (b) Ker $T^* = \operatorname{Rng} T^{\perp}$.

Lemma 6.2

Let $T \in \mathcal{L}(H)$. Then the following are equivalent

- (i) T = 0,
- (ii) (Tx, x) = 0 for every $x \in H$.

Corollary 6.3

Let $S, T \in \mathcal{L}(X)$ for every $x \in H$ satisfy (Sx, x) = (Tx, x). Then T = S.

Corollary 6.3

Let $S, T \in \mathcal{L}(X)$ for every $x \in H$ satisfy (Sx, x) = (Tx, x). Then T = S.

Theorem 6.4 (characterization of normal operators)

An operator $T \in \mathcal{L}(H)$ is normal if and only if $||Tx|| = ||T^*x||$ for each $x \in H$.

Theorem 6.5 (properties of normal operators)

Let $T \in \mathcal{L}(H)$ be normal. Then we have

- (a) $\operatorname{Ker} T = \operatorname{Ker} T^*$,
- (b) T is invertible if and only if **bounded from below**, i.e., there exists c > 0 such that $||Tx|| \ge c||x||$ for every $x \in H$ (Weyl),
- (c) if $x \in H$ satisfies $Tx = \lambda x$, then $T^*x = \overline{\lambda}x$,
- (d) if $\lambda_1, \lambda_2 \in \mathbf{C}$ are different eigenvalues of T, then $\operatorname{Ker}(\lambda_1 I T) \perp \operatorname{Ker}(\lambda_2 I T)$,
- (e) $||T^2|| = ||T||^2$,
- (f) $||T|| = \rho(T)$.

Theorem 6.6 (characterization of selfadjoint operators)

Let $T \in \mathcal{L}(H)$. Then $T = T^*$ if and only if (Tx, x) is a real number for every $x \in H$.

Theorem 6.6 (characterization of selfadjoint operators)

Let $T \in \mathcal{L}(H)$. Then $T = T^*$ if and only if (Tx, x) is a real number for every $x \in H$.

Theorem 6.7

Let $S, T \in \mathcal{L}(H)$ and S is selfadjoint. Then $\operatorname{Rng} S \perp \operatorname{Rng} T$ if and only if ST = 0.

Theorem 6.6 (characterization of selfadjoint operators)

Let $T \in \mathcal{L}(H)$. Then $T = T^*$ if and only if (Tx, x) is a real number for every $x \in H$.

Theorem 6.7

Let $S, T \in \mathcal{L}(H)$ and S is selfadjoint. Then $\operatorname{Rng} S \perp \operatorname{Rng} T$ if and only if ST = 0.

Theorem 6.8

For every $T \in \mathcal{L}(H)$ there exists a unique decomposition $T = S_1 + iS_2$, where S_1 , S_2 are selfadjoint operators.

Definition

Let $T \in \mathcal{L}(H)$. **Numerical range** of the operator T is defined by

$$N(T) = \{(Tx, x); x \in S_H\}.$$

Definition

Let $T \in \mathcal{L}(H)$. **Numerical range** of the operator T is defined by

$$N(T) = \{(Tx, x); x \in S_H\}.$$

Theorem 6.9 (Hilbert-Toeplitz)

Let $T \in \mathcal{L}(H)$. Then $\sigma(T) \subset \overline{N(T)}$.

Theorem 6.10 (spectrum of selfadjoint operator)

Let $T \in \mathcal{L}(H)$ be selfadjoint. Then $N(T) \subset \mathbf{R}$ and if we denote $m_T = \inf N(T)$, $M_T = \sup N(T)$, then we have

- (i) $\sigma(T) \subset [m_T, M_T]$,
- (ii) ||T|| or -||T|| is in $\sigma(T)$,
- (iii) $m_T, M_T \in \sigma(T)$.

Theorem 6.11 (characterization of unitary operators)

Let $U \in \mathcal{L}(H)$. Then the following are equivalent:

- (i) U is unitary,
- (ii) Rng U = H a $(Ux, Uy) = (x, y), x, y \in H$,
- (iii) Rng U = H a ||Ux|| = ||x||, $x \in H$.

Theorem 6.12 (characterization of orthogonal projections)

Let $P \in \mathcal{L}(H)$ be a projection. Then the following are equivalent:

- (i) P is selfadjoint,
- (ii) P is normal,
- (iii) P is orthogonal,
- (iv) $(Px, x) = ||Px||^2, x \in H.$

Theorem 6.13 (spectral decomposition of compact normal operator; Hilbert–Schmidt)

Let $T \in \mathcal{L}(H)$ be compact and normal. Then there exists an orthonormal basis of H formed by eigenvectors of T. Further there exist nonzero eigenvalues $\{\lambda_n\}_{n=1}^m$, $m \in \mathbb{N} \cup \{\infty\}$, and an orthonormal basis $\{e_n\}_{n=1}^m$ of the space $\overline{\operatorname{Rng} T}$ such that

$$Tx = \sum_{n=1}^{m} \lambda_n(x, e_n) e_n, \quad x \in H.$$

Theorem 7.1

Let $T \in \mathcal{L}(H)$ be normal. Then there exists a calculus $\Psi \colon \mathcal{C}(\sigma(T)) \to \mathcal{L}(H)$ with the following properties: $(1) \ \Psi(p) = \sum_{k,l=0}^n a_{kl} T^k(T^*)^l$ for $p(z) = \sum_{k,l=0}^n a_{kl} z^k \overline{z}^l$,

Theorem 7.1

- (1) $\Psi(p) = \sum_{k,l=0}^{n} a_{kl} T^k (T^*)^l$ for $p(z) = \sum_{k,l=0}^{n} a_{kl} z^k \overline{z}^l$,
- (2) Ψ is algebraic isomorphisms of $\mathcal{L}(H)$, $\Psi(\overline{f}) = (\Psi(f))^*$ and $\|\Psi(f)\|_{\mathcal{L}(H)} = \|f\|_{\mathcal{C}(\sigma(T))}$,

Theorem 7.1

- (1) $\Psi(p) = \sum_{k,l=0}^{n} a_{kl} T^k (T^*)^l$ for $p(z) = \sum_{k,l=0}^{n} a_{kl} z^k \overline{z}^l$,
- (2) Ψ is algebraic isomorphisms of $\mathcal{L}(H)$, $\Psi(\overline{f}) = (\Psi(f))^*$ and $\|\Psi(f)\|_{\mathcal{L}(H)} = \|f\|_{\mathcal{C}(\sigma(T))}$,
- (3) $\Psi(f) = f(T)$ for $f \in \text{Hol}(\sigma(T))$,

Theorem 7.1

- (1) $\Psi(p) = \sum_{k,l=0}^n a_{kl} T^k (T^*)^l$ for $p(z) = \sum_{k,l=0}^n a_{kl} z^k \overline{z}^l$,
- (2) Ψ is algebraic isomorphisms of $\mathcal{L}(H)$, $\Psi(\overline{f}) = (\Psi(f))^*$ and $\|\Psi(f)\|_{\mathcal{L}(H)} = \|f\|_{\mathcal{C}(\sigma(T))}$,
- (3) $\Psi(f) = f(T)$ for $f \in \text{Hol}(\sigma(T))$,
- (4) $\sigma(\Psi(f)) = f(\sigma(T))$ for $f \in \mathcal{C}(\sigma(T))$,

Theorem 7.1

- (1) $\Psi(p) = \sum_{k,l=0}^{n} a_{kl} T^k (T^*)^l$ for $p(z) = \sum_{k,l=0}^{n} a_{kl} z^k \overline{z}^l$,
- (2) Ψ is algebraic isomorphisms of $\mathcal{L}(H)$, $\Psi(\overline{f}) = (\Psi(f))^*$ and $\|\Psi(f)\|_{\mathcal{L}(H)} = \|f\|_{\mathcal{C}(\sigma(T))}$,
- (3) $\Psi(f) = f(T)$ for $f \in \text{Hol}(\sigma(T))$,
- (4) $\sigma(\Psi(f)) = f(\sigma(T))$ for $f \in \mathcal{C}(\sigma(T))$,
- (5) $\Psi(f)$ is normal for $f \in \mathcal{C}(\sigma(T))$,

Theorem 7.1

- (1) $\Psi(p) = \sum_{k,l=0}^n a_{kl} T^k (T^*)^l$ for $p(z) = \sum_{k,l=0}^n a_{kl} z^k \overline{z}^l$,
- (2) Ψ is algebraic isomorphisms of $\mathcal{L}(H)$, $\Psi(\overline{f}) = (\Psi(f))^*$ and $\|\Psi(f)\|_{\mathcal{L}(H)} = \|f\|_{\mathcal{C}(\sigma(T))}$,
- (3) $\Psi(f) = f(T)$ for $f \in \text{Hol}(\sigma(T))$,
- (4) $\sigma(\Psi(f)) = f(\sigma(T))$ for $f \in \mathcal{C}(\sigma(T))$,
- (5) $\Psi(f)$ is normal for $f \in \mathcal{C}(\sigma(T))$,
- (6) $\Psi(f)$ is selfadjoint if and only if f is real,

Theorem 7.1

- (1) $\Psi(p) = \sum_{k,l=0}^{n} a_{kl} T^k (T^*)^l$ for $p(z) = \sum_{k,l=0}^{n} a_{kl} z^k \overline{z}^l$,
- (2) Ψ is algebraic isomorphisms of $\mathcal{L}(H)$, $\Psi(\overline{f}) = (\Psi(f))^*$ and $\|\Psi(f)\|_{\mathcal{L}(H)} = \|f\|_{\mathcal{C}(\sigma(T))}$,
- (3) $\Psi(f) = f(T)$ for $f \in \text{Hol}(\sigma(T))$,
- (4) $\sigma(\Psi(f)) = f(\sigma(T))$ for $f \in \mathcal{C}(\sigma(T))$,
- (5) $\Psi(f)$ is normal for $f \in \mathcal{C}(\sigma(T))$,
- (6) $\Psi(f)$ is selfadjoint if and only if f is real,
- (7) if S commutes with T, then S commutes with $\Psi(f)$.

Lemma 7.2 (Lax-Milgram)

Let $B: H \times H \to \mathbf{C}$ be linear in the first coordinate and conjugate linear in the second coordinate. Let

$$M:=\sup_{x,y\in B_H}|B(x,y)|<\infty$$

Then there exists a unique $T \in \mathcal{L}(H)$ with B(x,y) = (Tx,y) for $x,y \in H$ and ||T|| = M.

Notation

Let P be a metric space, then $\mathcal{B}^b(P)$ denotes the set of all bounded Borel functions from P to \mathbf{C} . The set $\mathcal{B}^b(P)$ is equipped by the supremum norm.

Notation

Let P be a metric space, then $\mathcal{B}^b(P)$ denotes the set of all bounded Borel functions from P to \mathbf{C} . The set $\mathcal{B}^b(P)$ is equipped by the supremum norm.

Lemma 7.3

Let P be a compact metric space and A be the smallest system of complex function on P, which contains continuous functions and is closed with respect to pointwise limit of bounded sequences. Then $A = \mathcal{B}^b(P)$.

Theorem 7.4

(1)
$$\Theta = \Psi$$
 on $C(\sigma(T))$,

Theorem 7.4

- (1) $\Theta = \Psi$ on $C(\sigma(T))$,
- (2) if $f_n \in \mathcal{B}^b(\sigma(T))$, $f_n \to f$, and $\{f_n\}$ is bounded, then for every $x, y \in H$ we have $(\Theta(f_n)x, y) \to (\Theta(f)x, y)$,

Theorem 7.4

- (1) $\Theta = \Psi$ on $C(\sigma(T))$,
- (2) if $f_n \in \mathcal{B}^b(\sigma(T))$, $f_n \to f$, and $\{f_n\}$ is bounded, then for every $x, y \in H$ we have $(\Theta(f_n)x, y) \to (\Theta(f)x, y)$,
- (3) Θ is an algebraic homomorphisms, $(\Theta(f))^* = \Theta(\overline{f})$, $\|\Theta(f)\| \leq \|f\|_{\mathcal{B}^b(\sigma(T))}$,

Theorem 7.4

- (1) $\Theta = \Psi$ on $C(\sigma(T))$,
- (2) if $f_n \in \mathcal{B}^b(\sigma(T))$, $f_n \to f$, and $\{f_n\}$ is bounded, then for every $x, y \in H$ we have $(\Theta(f_n)x, y) \to (\Theta(f)x, y)$,
- (3) Θ is an algebraic homomorphisms, $(\Theta(f))^* = \Theta(\overline{f})$, $\|\Theta(f)\| \leq \|f\|_{\mathcal{B}^b(\sigma(T))}$,
- (4) $\Theta(f)$ is normal for $f \in \mathcal{B}^b(\sigma(T))$,

Theorem 7.4

- (1) $\Theta = \Psi$ on $C(\sigma(T))$,
- (2) if $f_n \in \mathcal{B}^b(\sigma(T))$, $f_n \to f$, and $\{f_n\}$ is bounded, then for every $x, y \in H$ we have $(\Theta(f_n)x, y) \to (\Theta(f)x, y)$,
- (3) Θ is an algebraic homomorphisms, $(\Theta(f))^* = \Theta(\overline{f})$, $\|\Theta(f)\| \le \|f\|_{\mathcal{B}^b(\sigma(T))}$,
- (4) $\Theta(f)$ is normal for $f \in \mathcal{B}^b(\sigma(T))$,
- (5) if $f \in \mathcal{B}^b(\sigma(T))$ is real, then $\Theta(f)$ is selfadjoint,

Theorem 7.4

- (1) $\Theta = \Psi$ on $C(\sigma(T))$,
- (2) if $f_n \in \mathcal{B}^b(\sigma(T))$, $f_n \to f$, and $\{f_n\}$ is bounded, then for every $x, y \in H$ we have $(\Theta(f_n)x, y) \to (\Theta(f)x, y)$,
- (3) Θ is an algebraic homomorphisms, $(\Theta(f))^* = \Theta(\overline{f})$, $\|\Theta(f)\| \leq \|f\|_{\mathcal{B}^b(\sigma(T))}$,
- (4) $\Theta(f)$ is normal for $f \in \mathcal{B}^b(\sigma(T))$,
- (5) if $f \in \mathcal{B}^b(\sigma(T))$ is real, then $\Theta(f)$ is selfadjoint,
- (6) if S commutes with T, then S commutes with $\Theta(f)$ for $f \in \mathcal{B}^b(\sigma(T))$.

Notation

Let K be a metric space. The system of all Borel subsets of K is denoted by Borel(K).

Definition

Let K be a nonempty compact metric space. We say that the mapping $E \colon \mathsf{Borel}(K) \to \mathcal{L}(H)$ is **spectral measure**, if we have:

(i) for every $B \in \text{Borel}(K)$ is E(B) an orthogonal projection, $E(\emptyset) = 0$, E(K) = I,

Definition

Let K be a nonempty compact metric space. We say that the mapping $E \colon \mathsf{Borel}(K) \to \mathcal{L}(H)$ is **spectral measure**, if we have:

- (i) for every $B \in \text{Borel}(K)$ is E(B) an orthogonal projection, $E(\emptyset) = 0$, E(K) = I,
- (ii) $E(B_1 \cap B_2) = E(B_1)E(B_2)$ for every $B_1, B_2 \in Borel(K)$,

Definition

Let K be a nonempty compact metric space. We say that the mapping $E \colon \mathsf{Borel}(K) \to \mathcal{L}(H)$ is **spectral measure**, if we have:

- (i) for every $B \in \text{Borel}(K)$ is E(B) an orthogonal projection, $E(\emptyset) = 0$, E(K) = I,
- (ii) $E(B_1 \cap B_2) = E(B_1)E(B_2)$ for every $B_1, B_2 \in Borel(K)$,
- (iii) $E(B_1 \cup B_2) = E(B_1) + E(B_2)$ for every $B_1, B_2 \in Borel(K)$ disjoint,

Definition

Let K be a nonempty compact metric space. We say that the mapping $E \colon \mathsf{Borel}(K) \to \mathcal{L}(H)$ is **spectral measure**, if we have:

- (i) for every $B \in \text{Borel}(K)$ is E(B) an orthogonal projection, $E(\emptyset) = 0$, E(K) = I,
- (ii) $E(B_1 \cap B_2) = E(B_1)E(B_2)$ for every $B_1, B_2 \in Borel(K)$,
- (iii) $E(B_1 \cup B_2) = E(B_1) + E(B_2)$ for every $B_1, B_2 \in Borel(K)$ disjoint,
- (iv) for every $x \in H$ the mapping $E_{x,x} \colon B \mapsto (E(B)x,x)$ is a measure on K, such that its completion is Radon.

Theorem 7.5

If $T \in \mathcal{L}(H)$ is normal, then E: Borel $(\sigma(T)) \to \mathcal{L}(H)$ defined as $E(B) = \Theta(\chi_B)$ is a spectral measure and it holds:

(i)
$$\forall x \in H \ \forall f \in \mathcal{B}^b(\sigma(T))$$
: $(\Theta(f)x, x) = \int_{\sigma(T)} f \, \mathrm{d}E_{x,x}$,

Theorem 7.5

If $T \in \mathcal{L}(H)$ is normal, then E: Borel $(\sigma(T)) \to \mathcal{L}(H)$ defined as $E(B) = \Theta(\chi_B)$ is a spectral measure and it holds:

- (i) $\forall x \in H \ \forall f \in \mathcal{B}^b(\sigma(T))$: $(\Theta(f)x, x) = \int_{\sigma(T)} f \, \mathrm{d}E_{x,x}$,
- (ii) for $A \in \text{Borel}(\sigma(T))$ and $T_A := T|_{\text{Rng } E(A)}$ we have $T_A \in \mathcal{L}(\text{Rng } E(A))$ and $\sigma(T_A) \subset \overline{A}$,

Theorem 7.5

If $T \in \mathcal{L}(H)$ is normal, then E: Borel $(\sigma(T)) \to \mathcal{L}(H)$ defined as $E(B) = \Theta(\chi_B)$ is a spectral measure and it holds:

- (i) $\forall x \in H \ \forall f \in \mathcal{B}^b(\sigma(T)) : \ (\Theta(f)x, x) = \int_{\sigma(T)} f \, \mathrm{d}E_{x,x}$
- (ii) for $A \in \text{Borel}(\sigma(T))$ and $T_A := T|_{\text{Rng } E(A)}$ we have $T_A \in \mathcal{L}(\text{Rng } E(A))$ and $\sigma(T_A) \subset \overline{A}$,
- (iii) for every nonempty set $G \subset \sigma(T)$ which is open in $\sigma(T)$ we have $E(G) \neq 0$.

Theorem 7.6

Let E: Borel(K) $\to \mathcal{L}(H)$ be a spectral measure on a nonempty compact metric space K. For every function $f \in \mathcal{B}^b(K)$ there exists a unique $T(f) \in \mathcal{L}(H)$ satisfying $(T(f)x,x) = \int_K f \, \mathrm{d}E_{x,x}$ for every $x \in H$. Further we have

(i) the mapping $T: f \mapsto T(f)$ is linear, multiplicative, ||T|| = 1, and $T(\overline{f}) = (T(f))^*$,

Theorem 7.6

Let E: Borel(K) $\to \mathcal{L}(H)$ be a spectral measure on a nonempty compact metric space K. For every function $f \in \mathcal{B}^b(K)$ there exists a unique $T(f) \in \mathcal{L}(H)$ satisfying $(T(f)x,x) = \int_K f \, \mathrm{d}E_{x,x}$ for every $x \in H$. Further we have

- (i) the mapping $T: f \mapsto T(f)$ is linear, multiplicative, ||T|| = 1, and $T(\overline{f}) = (T(f))^*$,
- (ii) $||T(f)x||^2 = \int_K |f|^2 dE_{x,x}, x \in H.$

Theorem 7.6

Let E: Borel(K) $\to \mathcal{L}(H)$ be a spectral measure on a nonempty compact metric space K. For every function $f \in \mathcal{B}^b(K)$ there exists a unique $T(f) \in \mathcal{L}(H)$ satisfying $(T(f)x,x) = \int_K f \, \mathrm{d}E_{x,x}$ for every $x \in H$. Further we have

- (i) the mapping $T: f \mapsto T(f)$ is linear, multiplicative, ||T|| = 1, and $T(\overline{f}) = (T(f))^*$,
- (ii) $||T(f)x||^2 = \int_K |f|^2 dE_{x,x}, x \in H.$

Notation

We denote $T(f) = \int_K f dE = \int_K f(t) dE(t)$.

Theorem 7.7

Let $T \in \mathcal{L}(H)$ be normal. Then there exists a unique spectral measure E on $\sigma(T)$ such that $T = \int_{\sigma(T)} t \, \mathrm{d}E(t)$.

Theorem 7.7

Let $T \in \mathcal{L}(H)$ be normal. Then there exists a unique spectral measure E on $\sigma(T)$ such that $T = \int_{\sigma(T)} t \, \mathrm{d}E(t)$.

Theorem 7.8

Let $T \in \mathcal{L}(H)$ be normal and $\lambda \in \sigma(T)$. Then we have

(i)
$$\operatorname{Rng} E(\{\lambda\}) = \operatorname{Ker}(\lambda I - T)$$
,

Theorem 7.7

Let $T \in \mathcal{L}(H)$ be normal. Then there exists a unique spectral measure E on $\sigma(T)$ such that $T = \int_{\sigma(T)} t \, \mathrm{d}E(t)$.

Theorem 7.8

Let $T \in \mathcal{L}(H)$ be normal and $\lambda \in \sigma(T)$. Then we have

- (i) Rng $E(\{\lambda\}) = \text{Ker}(\lambda I T)$,
- (ii) $\lambda \in \sigma_p(T)$ if and only if $E(\{\lambda\}) \neq 0$,

Theorem 7.7

Let $T \in \mathcal{L}(H)$ be normal. Then there exists a unique spectral measure E on $\sigma(T)$ such that $T = \int_{\sigma(T)} t \, \mathrm{d}E(t)$.

Theorem 7.8

Let $T \in \mathcal{L}(H)$ be normal and $\lambda \in \sigma(T)$. Then we have

- (i) $\operatorname{Rng} E(\{\lambda\}) = \operatorname{Ker}(\lambda I T)$,
- (ii) $\lambda \in \sigma_p(T)$ if and only if $E(\{\lambda\}) \neq 0$,
- (iii) if λ is an isolated point of $\sigma(T)$, then $\lambda \in \sigma_p(T)$.

Definition

We say that $T \in \mathcal{L}(H)$ is **positive** if $(Tx, x) \ge 0$ for every $x \in H$. If T is positive we write $T \le 0$.

Theorem 7.9

Let $T \in \mathcal{L}(H)$. Then the following are equivalent

- (i) $\forall x \in H: (Tx, x) \geq 0$,
- (ii) $T = T^*$ and $\sigma(T) \subset [0, \infty)$.

Theorem 7.10

Every positive $T \in \mathcal{L}(H)$ has a unique positive square root $S \in \mathcal{L}(H)$. If T is invertible then S is invertible.

Theorem 7.10

Every positive $T \in \mathcal{L}(H)$ has a unique positive square root $S \in \mathcal{L}(H)$. If T is invertible then S is invertible.

Theorem 7.11

If $T \in \mathcal{L}(H)$, then the positive square root of T^*T is the only positive operator $P \in \mathcal{L}(H)$ that satisfies ||Px|| = ||Tx|| for every $x \in H$.

Theorem 7.10

Every positive $T \in \mathcal{L}(H)$ has a unique positive square root $S \in \mathcal{L}(H)$. If T is invertible then S is invertible.

Theorem 7.11

If $T \in \mathcal{L}(H)$, then the positive square root of T^*T is the only positive operator $P \in \mathcal{L}(H)$ that satisfies ||Px|| = ||Tx|| for every $x \in H$.

Theorem 7.12

(a) If $T \in \mathcal{L}(H)$ is invertible, then T has a unique **polar** decomposition T = UP, i.e., U is unitary and $P \ge 0$.

Theorem 7.10

Every positive $T \in \mathcal{L}(H)$ has a unique positive square root $S \in \mathcal{L}(H)$. If T is invertible then S is invertible.

Theorem 7.11

If $T \in \mathcal{L}(H)$, then the positive square root of T^*T is the only positive operator $P \in \mathcal{L}(H)$ that satisfies $\|Px\| = \|Tx\|$ for every $x \in H$.

Theorem 7.12

- (a) If $T \in \mathcal{L}(H)$ is invertible, then T has a unique **polar** decomposition T = UP, i.e., U is unitary and $P \ge 0$.
- (b) If $T \in \mathcal{L}(H)$ is normal, then T has a polar decomposition T = UP.