Functional analysis 1

Winter Semester 2013-14

1. TOpological vector spaces

Basic notions.

Notation. (a) The symbol \mathbb{F} stands for the set of all reals or for the set of all complex numbers.
(b) Let (X, τ) be a topological space and $x \in X$. An open set G containing x is called neighborhood of x. We denote $\tau(x)=\{G \in \tau ; x \in G\}$.

Definition. Suppose that τ is a topology on a vector space X over \mathbb{F} such that

- (X, τ) is T_{1}, i.e., $\{x\}$ is a closed set for every $x \in X$, and
- the vector space operations are continuous with respect to τ, i.e., $+: X \times X \rightarrow X$ and $\cdot: \mathbb{F} \times X \rightarrow X$ are continuous.
Under these conditions, τ is said to be a vector topology on X and $(X,+, \cdot, \tau)$ is a topological vector space (TVS).

Remark. Let X be a TVS.
(a) For every $a \in X$ the mapping $x \mapsto x+a$ is a homeomorphism of X onto X.
(b) For every $\lambda \in \mathbb{F} \backslash\{0\}$ the mapping $x \mapsto \lambda x$ is a homeomorphism of X onto X.

Definition. Let X be a vector space over \mathbb{F}. We say that $A \subset X$ is

- balanced if for every $\alpha \in \mathbb{F},|\alpha| \leq 1$, we have $\alpha A \subset A$,
- absorbing if for every $x \in X$ there exists $t \in \mathbf{R}, t>0$, such that $x \in t A$,
- symmetric if $A=-A$.

Definition. Let X be a TVS and $A \subset X$. We say that A is bounded if for every $V \in \tau(0)$ there exists $s>0$ such that for every $t>s$ we have $A \subset t V$.

Definition. We say that a TVS space X is

- locally convex if there exists a basis of 0 whose members are convex,
- locally bounded if 0 has a bounded neighborhood,
- metrizable if its topology is compatible with some metric on X,
- F-space if its topology is induced by a complete invariant metric,
- Fréchet space if X is a locally convex F-space,
- normable if a norm exists on X such that the metric induced by the norm is compatible with the topology on X.
Theorem 1.1. Let (X, τ) be a TVS.
(a) If $K \subset X$ is compact, $C \subset X$ is closed, and $K \cap C=\emptyset$, then there exists $V \in \tau(0)$ such that $(K+V) \cap(C+V)=\emptyset$.
(b) For every neighborhood $U \in \tau(0)$ there exists $V \in \tau(0)$ such that $\bar{V} \subset U$.
(c) The space X is a Hausdorff space, i.e., for every $x_{1}, x_{2} \in X, x_{1} \neq x_{2}$, there exist disjoint open sets G_{1}, G_{2} such that $x_{i} \in G_{i}, i=1,2$.

Theorem 1.2. Let X be a TVS, $A \subset X$, and $B \subset X$. Then we have
(a) $\bar{A}=\bigcap\{A+V ; V \in \tau(0)\}$,
(b) $\bar{A}+\bar{B} \subset \overline{A+B}$,
(c) if V is a vector subspace of X, then \bar{V} is a vector subspace of X,
(d) if A is convex, then \bar{A} and $\operatorname{int} A$ are convex,
(e) if A is balanced, then \bar{A} is balanced; if moreover $0 \in \operatorname{int} A$, then $\operatorname{int} A$ is balanced,
(f) if A is bounded, then \bar{A} is bounded.

Theorem 1.3. Let X be a TVS.
(a) For every $U \in \tau(0)$ there exists balanced $V \in \tau(0)$ with $V \subset U$.
(b) For every convex $U \in \tau(0)$ there exists balanced convex $V \in \tau(0)$ with $V \subset U$.

Corollary 1.4. Let X be a TVS.
(a) The space X has a balanced local base.
(b) If X is locally convex, then it has a balanced convex local base.

Theorem 1.5. Let (X, τ) be a $T V S$ and $V \in \tau(0)$.
(a) If $0<r_{1}<r_{2}<\ldots$ and $\lim r_{n}=\infty$, then $X=\bigcup_{n=1}^{\infty} r_{n} V$.
(b) Every compact subset $K \subset X$ is bounded.
(c) If $\delta_{1}>\delta_{2}>\delta_{3}>\ldots, \lim \delta_{n}=0$, and V is bounded, then the collection $\left\{\delta_{n} V ; n \in \mathbf{N}\right\}$ is a local base for X.

Linear mappings.

Theorem 1.6. Let (X, τ) and (Y, σ) be TVS and $T: X \rightarrow Y$ be a linear mapping. Then the following are equivalent.
(i) T is continuous.
(ii) T is continuous at 0 .
(iii) T is uniformly continuous, i.e., for every $U \in \sigma(0)$ there exists $V \in \sigma(0)$ such that for every $x_{1}, x_{2} \in X$ with $x_{1}-x_{2} \in V$ we have $T\left(x_{1}\right)-T\left(x_{2}\right) \in U$.

Theorem 1.7. Let $T: X \rightarrow \mathbb{F}$ be a nonzero linear mapping. Then the following are equivalent.
(i) T is continuous.
(ii) $\operatorname{ker} T$ is closed.
(iii) $\overline{\operatorname{ker} T} \neq X$.
(iv) T is bounded on some $V \in \tau(0)$.

Metrization.

Theorem 1.8. Let X be a TVS with a countable local base. Then there is a metric d on X such that
(a) d is compatible with the topology of X,
(b) the open balls centered at 0 are balanced,
(c) d is invariant.

If, in addition, X is locally convex, then d can be chosen so as to satisfy (a), (b), (c), and also
(d) all open balls are convex.

Corollary 1.9. Let X be a TVS. Then the following are equivalent.
(i) X is metrizable.
(ii) X is metrizable by an invariant metric.
(iii) X has a countable local base.

Theorem 1.10. (a) If d is an invariant metric on a vector space X then $d(n x, 0) \leq n d(x, 0)$ for every $x \in X$ and $n \in \mathbf{N}$.
(b) If $\left\{x_{n}\right\}$ is a sequence in a metrizable topological vector space X and if $\lim x_{n}=0$, then there are positive scalars γ_{n} such that $\lim \gamma_{n}=\infty$ and $\lim \gamma_{n} x_{n}=0$.

Boundedness and continuity.

Theorem 1.11. The following two properties of a set E in a topological vector space are equivalent:
(a) E is bounded.
(b) If $\left\{x_{n}\right\}$ is a sequence in E and $\left\{\alpha_{n}\right\}$ is a sequence of scalars such that $\lim \alpha_{n}=0$, then $\lim \alpha_{n} x_{n}=0$.

Theorem 1.12. Let X and Y be TVS and $T: X \rightarrow Y$ be a linear mapping. Consider the following properties.
(i) T is continuous.
(ii) T is bounded, i.e., $T(A)$ is bounded whenever $A \subset X$ is bounded.
(iii) If $\left\{x_{n}\right\}$ converges to 0 in X, then $\left\{T\left(x_{n}\right) ; n \in \mathbf{N}\right\}$ is bounded.
(iv) If $\left\{x_{n}\right\}$ converges to 0 in X, then $\left\{T\left(x_{n}\right)\right\}$ converges to 0 .

Then we have (i) \Rightarrow (ii) \Rightarrow (iii). If X is metrizable then the properties (i)-(iv) are equivalent.
Pseudonorms and local convexity.
Definition. (a) A pseudonorm on a vector space X is a real-valued function p on X such that

- $\forall x, y \in X: p(x+y) \leq p(x)+p(y)$ (subadditivity),
- $\forall \alpha \in \mathbb{F} \forall x \in X: p(\alpha x)=|\alpha| p(x)$.
(b) A family \mathcal{P} of pseudonorms on X is said to be separating if to each $x \neq 0$ corresponds at least one $p \in \mathcal{P}$ with $p(x) \neq 0$.
(c) Let $A \subset X$ be an absorbing set. The Minkowski functional μ_{A} of A is defined by

$$
\mu_{A}(x)=\inf \left\{t>0 ; t^{-1} x \in A\right\}
$$

Theorem 1.13. Suppose p is a pseudonorm on a vector space X. Then
(a) $p(0)=0$,
(b) $\forall x, y \in X:|p(x)-p(y)| \leq p(x-y)$,
(c) $\forall x \in X: p(x) \geq 0$,
(d) $\{x \in X ; p(x)=0\}$ is a subspace,
(e) the set $B=\{x \in X ; p(x)<1\}$ is convex, balanced, absorbing, and $p=\mu_{B}$.

Theorem 1.14. Let X be a vector space and $A \subset X$ be a convex absorbing set. Then
(a) $\forall x, y \in X: \mu_{A}(x+y) \leq \mu_{A}(x)+\mu_{A}(y)$,
(b) $\forall t \geq 0: \mu_{A}(t x)=t \mu_{A}(x)$,
(c) μ_{A} is a pseudonorm if A is balanced,
(d) if $B=\left\{x \in X ; \mu_{A}(x)<1\right\}$ and $C=\left\{x \in X ; \mu_{A}(x) \leq 1\right\}$, then $B \subset A \subset C$ and $\mu_{A}=\mu_{B}=\mu_{C}$.
Theorem 1.15. Suppose \mathcal{B} is a convex balanced local base in a topological vector space X. Associate to every $V \in \mathcal{B}$ its Minkowski functional μ_{V}. Then $\left\{\mu_{V} ; V \in \mathcal{B}\right\}$ is a separating family of continuous pseudonorms on X.

Theorem 1.16. Suppose that \mathcal{P} is a separating family of pseudonorms on a vector space X. Associate to each $p \in \mathcal{P}$ and to each $n \in \mathbf{N}$ the set

$$
V(p, n)=\left\{x \in X ; p(x)<\frac{1}{n}\right\}
$$

Let \mathcal{B} be the collection of all finite intersection of the sets $V(p, n)$. Then \mathcal{B} is a convex balanced local base for a topology τ on X, which turns X into a locally convex space such that
(a) every $p \in \mathcal{P}$ is continuous, and
(b) a set $E \subset X$ is bounded if and only if every $p \in \mathcal{P}$ is bounded on E.

Theorem 1.17. Let X be a locally convex space with countable local base. Then X is metrizable by an invariant metric.

Theorem 1.18. A TVS space X is normable if and only if its origin has a convex bounded neighborhood.

The Hahn-Banach theorems.

Theorem 1.19. Suppose that A and B are disjoint, nonempty convex sets in a topological vector space X.
(a) If A is open there exist $\Lambda \in X^{*}$ and $\gamma \in \mathbf{R}$ such that $\operatorname{Re} \Lambda(x)<\gamma \leq \operatorname{Re} \Lambda(y)$ for every $x \in A$ and for every $y \in B$.
(b) If A is compact, B is closed, and X is locally convex, then there exist $\Lambda \in X^{*}, \gamma_{1}, \gamma_{2} \in \mathbf{R}$, such that $\operatorname{Re} \Lambda(x)<\gamma_{1}<\gamma_{2} \leq \operatorname{Re} \Lambda(y)$ for every $x \in A$ and for every $y \in B$.

Corollary 1.20. If X is a locally convex space then X^{*} separates points on X.
Theorem 1.21. Suppose M is a subspace of a locally convex space X, and $x_{0} \in X$. If $x_{0} \notin \bar{M}$, then there exists $\Lambda \in X^{*}$ such that $\Lambda\left(x_{0}\right)=1$ and $\Lambda(x)=0$ for every $x \in M$.
Theorem 1.22. If f is a continuous linear functional on a subspace M of a locally convex space X, then there exists $\Lambda \in X^{*}$ such that $\Lambda=f$ on M.
Theorem 1.23. Suppose B is a closed convex balanced set in a locally convex space $X, x_{0} \in X \backslash B$. Then there exists $\Lambda \in X^{*}$ such that $|\Lambda(x)| \leq 1$ for every $x \in B$ and $\Lambda\left(x_{0}\right)>1$.

2. Weak topologies

Basic properties.

Definition. Let X be a vector space and M be a subspace of the algebraic dual X^{\sharp}. Denote $\sigma(X, M)$ the topology generated by pseudonorms $x \mapsto|\varphi(x)|$, where $\varphi \in M$.

Lemma 2.1. Suppose that $\Lambda_{1}, \ldots, \Lambda_{n}$ and Λ are linear functionals on a vector space X. The following properties are equivalent.
(i) $\Lambda \in \operatorname{span}\left\{\Lambda_{1}, \ldots, \Lambda_{n}\right\}$
(ii) There exists $\gamma \in \mathbf{R}$ such that for every $x \in X$ we have

$$
|\Lambda(x)| \leq \gamma \max \left\{\left|\Lambda_{i}(x)\right| ; i \in\{1, \ldots, n\}\right\}
$$

(iii) $\bigcap_{i=1}^{n} \operatorname{Ker} \Lambda_{i} \subset \operatorname{Ker} \Lambda$

Theorem 2.2. Suppose X is a vector space and M is a vector subspace of the algebraic dual X^{\sharp} which is separating. Then $(X, \sigma(X, M))$ is a locally convex space and $(X, \sigma(X, M))^{*}=M$.
Definition. Let X be a locally convex space. Then $\sigma\left(X, X^{*}\right)$ is weak topology on X and $\sigma\left(X^{*}, X\right)$ is weak star topology on X^{*}.
Theorem 2.3 (Mazur). Let X be a locally convex space and $A \subset X$ be convex. Then $\bar{A}^{w}=\bar{A}$.
Corollary 2.4. Let X be a locally convex space.
(a) A subspace of X is originally closed if and only if it is weakly closed.
(b) A convex subset of X is originally dense if and only if it is weakly dense.

Theorem 2.5. Suppose X is a metrizable locally convex space. If $\left\{x_{n}\right\}$ is a sequence in X that converges weakly to some $x \in X$, then there is a sequence $\left\{y_{i}\right\}$ in X such that
(a) each y_{i} is a convex combination of finitely many x_{n}, and
(b) $\lim y_{i}=x$ (with respect to the original topology).

Polars.
Definition. Let X be a TVS and $A \subset X$. Then the set

$$
A^{0}=\left\{x^{*} \in X^{*} ;\left|x^{*}(x)\right| \leq 1 \text { for every } x \in A\right\}
$$

is called polar of A. If $A \subset X^{*}$, then we define

$$
A_{0}=\left\{x \in X ;\left|x^{*}(x)\right| \leq 1 \text { for every } x^{*} \in A\right\}
$$

Theorem 2.6 (Banach-Alaoglu). Let X be a TVS and $V \subset X$ be a neighborhood of 0 . Then V^{0} is w^{*}-compact.

Theorem 2.7 (Bipolar theorem). Let X be a locally convex space.
(a) If $A \subset X$ is a closed convex balanced set, then $\left(A^{0}\right)_{0}=A$.
(b) If $A \subset X^{*}$ is w^{*}-closed convex balanced set, then $A=\left(A_{0}\right)^{0}$.

Theorem 2.8 (Goldstin). Let X be a normed linear space. Then B_{X} is w^{*}-dense in $B_{X^{* *}}$.
Theorem 2.9. Let X be a Banach space. Then X is reflexive if and only if B_{X} is weakly compact.
Theorem 2.10. Let X be a reflexive Banach space and $\left\{x_{n}\right\}$ be a bounded sequence of points from X. Then there exists a weakly convergent subsequence.

3. Vector integration

Convention. Throughout this section X will stand for a Banach space and (Ω, Σ, μ) will be a finite measure space.

Definition. A function $f: \Omega \rightarrow X$ is called simple if there exist $x_{1}, \ldots, x_{n} \in X$ and $E_{1}, \ldots, E_{n} \in$ Σ such that $f=\sum_{i=1}^{n} x_{i} \chi_{E_{i}}$. A function $f: \Omega \rightarrow X$ is called μ-measurable if there exists a sequence of simple functions $\left\{f_{n}\right\}$ such that $\lim \left\|f_{n}(\omega)-f(\omega)\right\|=0$ for μ-almost all $\omega \in \Omega$. A function $f: \Omega \rightarrow X$ is called weakly μ-measurable if for each $x^{*} \in X^{*}$ the function $x^{*} \circ f$ is μ-measurable.
Theorem 3.1 (Pettis's measurability theorem). A function $f: \Omega \rightarrow X$ is μ-measurable if and only if
(a) f is μ-essentially separably valued, i.e., there exists $E \in \Sigma$ with $\mu(E)=0$ and such that $f(\Omega \backslash E)$ is a norm separable subset of X,
(b) f is weakly μ-measurable.

Corollary 3.2. A function $f: \Omega \rightarrow X$ is μ-measurable if and only if f is the μ-almost everywhere uniform limit of a sequence of countably valued μ-measurable functions.
Definition. A μ-measurable function $f: \Omega \rightarrow X$ is called Bochner integrable if there exists a sequence of simple functions $\left\{f_{n}\right\}$ such that $\lim \int_{\Omega}\left\|f_{n}-f\right\| d \mu=0$. In this case, $\int_{E} f \mathrm{~d} \mu$ is defined for each $E \in \Sigma$ by $\int_{E} f \mathrm{~d} \mu=\lim \int_{E} f_{n} \mathrm{~d} \mu$.

Theorem 3.3. A μ-measurable function $f: \Omega \rightarrow X$ is Bochner integrable if and only if $\int_{\Omega}\|f\| d \mu<$ ∞.

Theorem 3.4. If f is a μ-Bochner integrable function, then
(a) $\lim _{\mu(E) \rightarrow 0} \int_{E} f d \mu=0$,
(b) $\left\|\int_{E} f d \mu\right\| \leq \int_{E}\|f\| d \mu$ for all $E \in \Sigma$,
(c) if $\left\{E_{n}\right\}$ is a sequence of pairwise disjoint members of Σ and $E=\bigcup_{n=1}^{\infty} E_{n}$, then

$$
\int_{E} f d \mu=\sum_{n=1}^{\infty} \int_{E_{n}} f d \mu
$$

where the sum on the right is absolutely convergent,
(d) if $F(E)=\int_{E} f d \mu$, then F is of bounded variation and

$$
|F|(E)=\int_{E}\|f\| d \mu
$$

for all $E \in \Sigma$.
Corollary 3.5. If f and g are μ-Bochner integrable and $\int_{E} f \mathrm{~d} \mu=\int_{E} g \mathrm{~d} \mu$ for each $E \in \Sigma$, then $f=g \mu$-almost everywhere.
Theorem 3.6. Let Y be a Banach space, $T \in \mathcal{L}(X, Y)$ and $f: \Omega \rightarrow X$ be μ-Bochner integrable. Then $T \circ f$ is μ-Bochner integrable and $T\left(\int_{E} f \mathrm{~d} \mu\right)=\int_{E} T \circ f \mathrm{~d} \mu$.
Corollary 3.7. Let f a g be μ-measurable. If for each $x^{*} \in X^{*}, x^{*} \circ f=x^{*} \circ g \mu$-almost everywhere, then $f=g \mu$-almost everywhere.
Corollary 3.8. Let f be μ-Bochner integrable. Then for each $E \in \Sigma$ with $\mu(E)>0$ one has

$$
\frac{1}{\mu(E)} \int_{E} f \mathrm{~d} \mu \in \overline{c o}(f(E)) .
$$

4. Banach algebras

Basic properties.

Definition. (a) A complex algebra is a vector space A over the complex field \mathbf{C} in which a multiplication is defined that satisfies

- $x(y z)=(x y) z$,
- $(x+y) z=x z+y z, x(y+z)=x y+x z$,
- $\alpha(x y)=(\alpha x) y=x(\alpha y)$,
for all $x, y, z \in A$ and $\alpha \in \mathbf{C}$.
(b) If, in addition, A is a Banach space with respect to a norm that satisfies the multiplicative inequality

$$
\|x y\| \leq\|x\|\|y\|, \quad x, y \in A
$$

then is called a Banach algebra.
(c) If an element $e \in A$ in a Banach algebra satisfies $x e=e x=x$ for every $x \in A$, then e is a unit element.

Definition. (a) Suppose A is a complex algebra and φ is a linear functional on A which is not identically 0 . If $\varphi(x y)=\varphi(x) \varphi(y)$ for all $x, y \in A$, then φ is called a complex homomorphism on A.
(b) An element $x \in A$ is said to be invertible if it has an inverse in A, that is, if there exists an element $x^{-1} \in A$ such that $x^{-1} x=x x^{-1}=e$, where e is the unit element of A.

Theorem 4.1. If φ is a complex homomorphism on a complex algebra A with unit e, then $\varphi(e)=1$, and $\varphi(x) \neq 0$ for every invertible $x \in A$.
Theorem 4.2. Suppose that A is a Banach algebra with unit, $x \in A,\|x\|<1$. Then
(a) $e-x$ is invertible,
(b) $\left\|(e-x)^{-1}-e-x\right\| \leq \frac{\|x\|^{2}}{1-\|x\|}$,
(c) $|\varphi(x)|<1$ for every complex homomorphism φ on A.

Definition. Let A be a Banach algebra with unit.
(a) The set of all invertible elements of A is denoted by $G(A)$.
(b) If $x \in A$, the spectrum $\sigma(x)$ of x is the set of all complex numbers λ such that $\lambda e-x$ is not invertible. The complement of $\sigma(x)$ is the resolvent set of x.
(c) The spectral radius of x is the number $\rho(x)=\sup \{|\lambda| ; \lambda \in \sigma(x)\}$.

Theorem 4.3. Suppose A is a Banach algebra with unit, $x \in G(A), h \in A,\|h\|<\frac{1}{2}\left\|x^{-1}\right\|^{-1}$. Then $x+h \in G(A)$ and

$$
\left\|(x+h)^{-1}-x^{-1}+x^{-1} h x^{-1}\right\| \leq 2\left\|x^{-1}\right\|^{3}\|h\|^{2}
$$

Theorem 4.4. If A is a Banach algebra with unit, then $G(A)$ is an open subset of A and the mapping $x \mapsto x^{-1}$ is a homeomorphism of $G(A)$ onto $G(A)$.

Theorem 4.5. If A is a Banach algebra with unit and $x \in A$, then
(a) the spectrum $\sigma(x)$ of x is compact and nonempty, and
(b) the spectral radius $\rho(x)$ of x satisfies

$$
\rho(x)=\lim \left\|x^{n}\right\|^{1 / n}=\inf \left\|x^{n}\right\|^{1 / n}
$$

Theorem 4.6 (Gelfand-Mazur). If A is a Banach algebra with unit in which every nonzero element is invertible, then A is (isometrically isomorphic to) the field of complex numbers.

Lemma 4.7. Suppose V and W are open sets in some topological space $X, V \subset W$, and W contains no boundary point of V. Then V is a union of components of W.

Lemma 4.8. Suppose A is a Banach algebra with unit, $x_{n} \in G(A)$ for every $n \in \mathbf{N}, x$ is a boundary point of $G(A)$, and $x_{n} \rightarrow x$ as $n \rightarrow \infty$. Then $\left\|x_{n}^{-1}\right\| \rightarrow \infty$.

Theorem 4.9. (a) If A is a closed subalgebra of a Banach algebra B, and if A contains the unit element of B, then $G(A)$ is a union of components of $A \cap G(B)$.
(b) Under these conditions, if $x \in A$, then $\sigma_{A}(x)$ is the union of $\sigma_{B}(x)$ and a (possibly empty) collection of bounded components of the complement of $\sigma_{B}(x)$. In particular, the boundary of $\sigma_{A}(x)$ lies in $\sigma_{B}(x)$.

Corollary 4.10. If $\sigma_{B}(x)$ does not separate \mathbf{C}, that is, if its complement Ω_{B} is connected, then $\sigma_{A}(x)=\sigma_{B}(x)$.

Theorem 4.11. Suppose A is a Banach algebra with unit, $x \in A, \Omega$ is an open set in \mathbf{C}, and $\sigma(x) \subset \Omega$. Then there exists $\delta>0$ such that $\sigma(x+y) \subset \Omega$ for every $y \in A$ with $\|y\|<\delta$.

Holomorphic calculus.

Theorem (Cauchy). Let $\Omega \subset \mathbf{C}$ be open, $f \in \operatorname{Hol}(\Omega)$ and Γ be a contour in Ω satisfying $\operatorname{ind}_{\Gamma} \alpha=0$ for $\alpha \in \mathbf{C} \backslash \Omega$. Then we have
(a) $f(\lambda) \operatorname{ind}_{\Gamma} \lambda=\frac{1}{2 \pi i} \int_{\Gamma} \frac{f(w)}{w-\lambda} \mathrm{d} w, \lambda \in \Omega \backslash\langle\Gamma\rangle$,
(b) $\int_{\Gamma} f(w) \mathrm{d} w=0$,
(c) if Γ_{1}, Γ_{2} are contours in Ω satisfying $\operatorname{ind}_{\Gamma_{1}} \alpha=\operatorname{ind}_{\Gamma_{2}} \alpha$ for each $\alpha \in \mathbf{C} \backslash \Omega$, then $\int_{\Gamma_{1}} f(w) \mathrm{d} w=\int_{\Gamma_{2}} f(w) \mathrm{d} w$.

Theorem. Let $K \subset \Omega \subset \mathbf{C}, K$ be compact and Ω be open. Then there exists a contour Γ in Ω such that
(a) $\langle\Gamma\rangle \subset \Omega \backslash K$,
(b) $\operatorname{ind}_{\Gamma} \alpha= \begin{cases}1, & \alpha \in K, \\ 0, & \alpha \in \mathbf{C} \backslash \Omega .\end{cases}$

Definition. If Γ has the properties (a)-(b) from the previous theorem, then we say that Γ surrounds K in Ω.

Notation. Let $K \subset \mathbf{C}$ be compact. Then the symbol $\operatorname{Hol}(K)$ denotes the set of all complex functions which are holomorphic on some open set $\Omega \supset K$.

Notation. Let $x \in A$. Denote $R_{\lambda}=(\lambda e-x)^{-1}, \lambda \in \mathbf{C} \backslash \sigma(x)$.
Lemma 4.12. Let $x, y \in A$.
(a) If x commutes with y, then x commutes with R_{λ} for every $\lambda \in \mathbf{C} \backslash \sigma(y)$.
(b) For every $\lambda, \mu \in \mathbf{C} \backslash \sigma(x)$ we have

$$
R_{\lambda}-R_{\mu}=(\mu-\lambda) R_{\mu} R_{\lambda}
$$

Theorem 4.13. Let $x \in A$ a $f \in \operatorname{Hol}(\sigma(x))$. We set

$$
f(x)=\frac{1}{2 \pi i} \int_{\Gamma} f(z) R_{z} \mathrm{~d} z
$$

where Γ is a contour surrounding $\sigma(x)$ in $D(f)$. The mapping $\Phi: f \mapsto f(x)$ from $\operatorname{Hol}(\sigma(x))$ into A is well-defined and does not depend on the choice of Γ.

Theorem 4.14. Let $x \in A$ and $f \in \operatorname{Hol}(\sigma(x))$. Then we have
(a) $(1)(x)=e \quad a \operatorname{id}(x)=x$,
(b) Φ is algebraic homomorphism from $\operatorname{Hol}(\sigma(x))$ into A,
(c) if $f_{n} \in \operatorname{Hol}(D(f))$ and $f_{n} \stackrel{\text { loc }}{\rightrightarrows} f$ on $D(f)$, then $f_{n}(x) \rightarrow f(x)$ in A,
(d) $f(x)$ is invertible if and only if $f \neq 0$ on $\sigma(x)$,
(e) $\sigma(f(x))=f(\sigma(x))$,
(f) $(g \circ f)(x)=g(f(x))$ pro $g \in \operatorname{Hol}(\sigma(f(x)))$,
(g) if $y \in A$ commutes with x, then y commutes with $f(x)$.

A computation in the proof of $4.14(\mathrm{~b})$.

$$
\begin{gathered}
f(x) g(x)=-\frac{1}{4 \pi^{2}}\left(\int_{\Gamma} f(z) R_{z} \mathrm{~d} z\right)\left(\int_{\Lambda} g(w) R_{w} \mathrm{~d} w\right) \\
=-\frac{1}{4 \pi^{2}} \int_{\Gamma}\left(f(z) R_{z}\left(\int_{\Lambda} g(w) R_{w} \mathrm{~d} w\right)\right) \mathrm{d} z=-\frac{1}{4 \pi^{2}} \int_{\Gamma}\left(\int_{\Lambda} f(z) g(w) R_{z} R_{w} \mathrm{~d} w\right) \mathrm{d} z \\
=-\frac{1}{4 \pi^{2}} \int_{\Gamma}\left(\int_{\Lambda} f(z) g(w) \frac{R_{z}-R_{w}}{w-z} \mathrm{~d} w\right) \mathrm{d} z \\
=-\frac{1}{4 \pi^{2}} \int_{\Gamma}\left(\int_{\Lambda} \frac{f(z) g(w)}{w-z} R_{z} \mathrm{~d} w-\int_{\Lambda} \frac{f(z) g(w)}{w-z} R_{w} \mathrm{~d} w\right) \mathrm{d} z \\
=-\frac{1}{4 \pi^{2}} \int_{\Gamma}\left(f(z) R_{z} \int_{\Lambda} \frac{g(w)}{w-z} \mathrm{~d} w\right) \mathrm{d} z+\frac{1}{4 \pi^{2}} \int_{\Gamma}\left(\int_{\Lambda} \frac{f(z) g(w)}{w-z} R_{w} \mathrm{~d} w\right) \mathrm{d} z \\
=-\frac{1}{4 \pi^{2}} \int_{\Gamma}\left(f(z) R_{z} \int_{\Lambda} \frac{g(w)}{w-z} \mathrm{~d} w\right) \mathrm{d} z+\frac{1}{4 \pi^{2}} \int_{\Lambda}\left(\int_{\Gamma} \frac{f(z) g(w)}{w-z} R_{w} \mathrm{~d} z\right) \mathrm{d} w \\
=-\frac{1}{4 \pi^{2}} \int_{\Gamma}\left(f(z) R_{z} \int_{\Lambda} \frac{g(w)}{w-z} \mathrm{~d} w\right) \mathrm{d} z+\frac{1}{4 \pi^{2}} \int_{\Lambda}\left(g(w) R_{w} \int_{\Gamma} \frac{f(z)}{w-z} \mathrm{~d} z\right) \mathrm{d} w \\
=\frac{1}{2 \pi i} \int_{\Gamma} f(z) g(z) R_{z} \mathrm{~d} z=(f g)(x)
\end{gathered}
$$

Theorem 4.15. Suppose A is a Banach algebra with unit, $x \in A$, and the spectrum $\sigma(x)$ does not separate 0 from ∞. Then
(a) x has a logarithm in A,
(b) x has roots of all orders in A.

5. Gelfand transformation

Definition. A subset J of a commutative complex algebra A is said to be ideal if
(a) J is a subspace of A, and
(b) $x y \in J$ whenever $x \in A$ and $y \in J$.

If $J \neq A$, then J is a proper ideal. Maximal ideals are proper ideals which are not contained in any larger proper ideal.
Theorem 5.1. (a) If A is a commutative complex algebra with unit, then every proper ideal of A is contained in a maximal ideal of A
(b) If A is a commutative Banach algebra with unit, then every maximal ideal of A is closed.

Theorem 5.2. Let A be a commutative Banach algebra with unit. Let Δ be the set of all complex homomorphism of A.
(a) Every maximal ideal of A is the kernel of some $h \in \Delta$.
(b) If $h \in \Delta$, the kernel of h is a maximal ideal of A.
(c) An element $x \in A$ is invertible in A if and only if $h(x) \neq 0$ for every $h \in \Delta$.
(d) An element $x \in A$ is invertible in A if and only if x lies in no proper ideal of A.
(e) $\lambda \in \sigma(x)$ if and only if $h(x)=\lambda$ for some $h \in \Delta$.

Definition. (a) Let Δ be the set of all complex homomorphisms of a commutative Banach algebra A with unit. The formula $\hat{x}(h)=h(x)$ assigns to each $x \in A$ a function $\hat{x}: \Delta \rightarrow \mathbf{C}$, we call \hat{x} the Gelfand transform of x.
(b) The Gelfand topology of Δ is the weakest topology that makes every \hat{x} continuous.
(c) The radical of A, denoted by $\operatorname{rad} A$, is the intersection of all maximal ideals of A. If $\operatorname{rad} A=\{0\}, A$ is called semisimple.

Theorem 5.3. Let Δ be the maximal ideal space of a commutative Banach algebra A with unit.
(a) Δ is a compact Hausdorff space.
(b) The Gelfand transform is a homomorphism of A onto a subalgebra \hat{A} of $\mathcal{C}(\Delta)$, whose kernel is $\operatorname{rad} A$. The Gelfand transform is therefore an isomorphism if and only if A is semisimple.
(c) For each $x \in A$ we have Rng $\hat{x}=\sigma(x)$.

Theorem 5.4. If $\psi: B \rightarrow A$ is a homomorphism of a commutative Banach algebra B with unit into a semisimple commutative Banach algebra with unit, then ψ is continuous.

Lemma 5.5. If A is a commutative Banach algebra with unit and

$$
r=\inf _{x \neq 0} \frac{\left\|x^{2}\right\|}{\|x\|^{2}}, \quad s=\inf _{x \neq 0} \frac{\|\hat{x}\|_{\infty}}{\|x\|}
$$

then $s^{2} \leq r \leq s$.
Theorem 5.6. Suppose A is a commutative Banach algebra with unit.
(a) The Gelfand transform is an isometry if and only if $\left\|x^{2}\right\|=\|x\|^{2}$.
(b) A is semisimple and \hat{A} is closed in $\mathcal{C}(\Delta)$ if and only if there exists $K<\infty$ such that $\|x\|^{2} \leq K\left\|x^{2}\right\|$ for every $x \in A$.
Definition. A mapping $x \mapsto x^{*}$ of a complex (not necessarily commutative) algebra A into A is called an involution on A if it has the following properties for every $x, y \in A$, and $\lambda \in \mathbf{C}$:

- $(x+y)^{*}=x^{*}+y^{*}$,
- $(\lambda x)^{*}=\bar{\lambda} x^{*}$,
- $(x y)^{*}=y^{*} x^{*}$,
- $x^{* *}=x$.

Any $x \in A$ for which $x^{*}=x$ is called hermitian, or self-adjoint.
Theorem 5.7. If A is a Banach algebra with unit and an involution, and if $x \in A$, then
(a) $x+x^{*}, i\left(x-x^{*}\right)$ and $x x^{*}$ are hermitian,
(b) x has a unique representation $x=u+i v$, with $u \in A, v \in A$, and both u and v are hermitian,
(c) the unit e is hermitian,
(d) x is invertible in A if and only if x^{*} is invertible, in which case $\left(x^{*}\right)^{-1}=\left(x^{-1}\right)^{*}$, and
(e) $\lambda \in \sigma(x)$ if and only if $\bar{\lambda} \in \sigma\left(x^{*}\right)$.

Theorem 5.8. If a Banach algebra A with unit is commutative and semisimple, then every involution on A is continuous.
Definition. A Banach algebra A with an involution $x \mapsto x^{*}$ that satisfies $\left\|x x^{*}\right\|=\|x\|^{2}$ for every $x \in A$ is called a C^{*}-algebra.

Theorem 5.9 (Gelfand-Naimark). Suppose A is a commutative C^{*}-algebra with unit. The Gelfand transform is then an isometric isomorphism of A onto $\mathcal{C}(\Delta)$, which has the additional property $\widehat{x^{*}}=\overline{\hat{x}}$ for every $x \in A$.
Theorem 5.10. If A is a commutative C^{*}-algebra with unit which contains an element x such that the polynomials in x and x^{*} are dense in A, then the formula $\widehat{\Psi f}=f \circ \hat{x}$ defines an isometric isomorphism Ψ of $\mathcal{C}(\sigma(x))$ onto A which satisfies $\Psi \bar{f}=(\Psi f)^{*}$ for every $f \in \mathcal{C}(\sigma(x))$. Moreover, if $f(\lambda)=\lambda$ on $\sigma(x)$, then $\Psi f=x$.

Definition. Let A be an algebra with an involution. If $x \in A$ and $x x^{*}=x^{*} x$, then x is said to be normal. A set $S \subset A$ is said to be normal if S commutes and if $x^{*} \in S$ whenever $x \in S$.

Theorem 5.11. Suppose A is a Banach algebra with an involution, and B is a normal subset of A that is maximal with respect to being normal. Then
(a) B is a closed commutative subalgebra of A, and
(b) $\sigma_{B}(x)=\sigma_{A}(x)$ for every $x \in B$.

Theorem 5.12. Every C^{*}-algebra A has the following properties:
(a) Hermitian elements have real spectra.
(b) If $x \in A$ is normal, then $\rho(x)=\|x\|$.
(c) If $y \in A$, then $\rho\left(y y^{*}\right)=\|y\|^{2}$.
(d) If $u, v \in A$ are hermitian, $\sigma(u) \subset[0, \infty)$, $\sigma(v) \subset[0, \infty)$, then $\sigma(u+v) \subset[0, \infty)$.
(e) If $y \in A$, then $\sigma\left(y y^{*}\right) \subset[0, \infty)$.

Theorem 5.13. Suppose that A is a C^{*}-algebra with a unit e, B is a closed subalgebra of A, $e \in B$, and $x^{*} \in B$ for every $x \in B$. Then $\sigma_{A}(x)=\sigma_{B}(x)$ for every $x \in B$.

6. Operators on Hilbert spaces

In this section the symbol H stands for a nontrivial complex Hilbert space.
Definition. We say that $T \in \mathcal{L}(H)$ is

- normal, if $T^{*} T=T T^{*}$,
- selfadjoint (or also hermitian), if $T^{*}=T$,
- unitary, if $T^{*} T=I=T T^{*}$,
- orthogonal projection, if T is a projection, i.e., $T=T^{2}$, and $\operatorname{Rng} T \perp \operatorname{Ker} T$.

Lemma 6.1. Let $T \in \mathcal{L}(H)$. Then
(a) $\left\|T^{*} T\right\|=\left\|T T^{*}\right\|=\|T\|^{2}$,
(b) $\operatorname{Ker} T^{*}=\operatorname{Rng} T^{\perp}$.

Lemma 6.2. Let $T \in \mathcal{L}(H)$. Then the following are equivalent
(i) $T=0$,
(ii) $(T x, x)=0$ for every $x \in H$.

Corollary 6.3. Let $S, T \in \mathcal{L}(X)$ for every $x \in H$ satisfy $(S x, x)=(T x, x)$. Then $T=S$.
Theorem 6.4 (characterization of normal operators). An operator $T \in \mathcal{L}(H)$ is normal if and only if $\|T x\|=\left\|T^{*} x\right\|$ for each $x \in H$.
Theorem 6.5 (properties of normal operators). Let $T \in \mathcal{L}(H)$ be normal. Then we have
(a) $\operatorname{Ker} T=\operatorname{Ker} T^{*}$,
(b) T is invertible if and only if bounded from below, i.e., there exists $c>0$ such that $\|T x\| \geq c\|x\|$ for every $x \in H$ (Weyl),
(c) if $x \in H$ satisfies $T x=\lambda x$, then $T^{*} x=\bar{\lambda} x$,
(d) if $\lambda_{1}, \lambda_{2} \in \mathbf{C}$ are different eigenvalues of T, then $\operatorname{Ker}\left(\lambda_{1} I-T\right) \perp \operatorname{Ker}\left(\lambda_{2} I-T\right)$,
(e) $\left\|T^{2}\right\|=\|T\|^{2}$,
(f) $\|T\|=\rho(T)$.

Theorem 6.6 (characterization of selfadjoint operators). Let $T \in \mathcal{L}(H)$. Then $T=T^{*}$ if and only if $(T x, x)$ is a real number for every $x \in H$.

Theorem 6.7. Let $S, T \in \mathcal{L}(H)$ and S is selfadjoint. Then $\operatorname{Rng} S \perp \operatorname{Rng} T$ if and only if $S T=0$.
Theorem 6.8. For every $T \in \mathcal{L}(H)$ there exists a unique decomposition $T=S_{1}+i S_{2}$, where S_{1}, S_{2} are selfadjoint operators.

Definition. Let $T \in \mathcal{L}(H)$. Numerical range of the operator T is defined by

$$
N(T)=\left\{(T x, x) ; x \in S_{H}\right\}
$$

Theorem 6.9 (Hilbert-Toeplitz). Let $T \in \mathcal{L}(H)$. Then $\sigma(T) \subset \overline{N(T)}$.
Theorem 6.10 (spectrum of selfadjoint operator). Let $T \in \mathcal{L}(H)$ be selfadjoint. Then $N(T) \subset \mathbf{R}$ and if we denote $m_{T}=\inf N(T), M_{T}=\sup N(T)$, then we have
(i) $\sigma(T) \subset\left[m_{T}, M_{T}\right]$,
(ii) $\|T\|$ or $-\|T\|$ is in $\sigma(T)$,
(iii) $m_{T}, M_{T} \in \sigma(T)$.

Theorem 6.11 (characterization of unitary operators). Let $U \in \mathcal{L}(H)$. Then the following are equivalent:
(i) U is unitary,
(ii) $\operatorname{Rng} U=H a(U x, U y)=(x, y), x, y \in H$,
(iii) $\operatorname{Rng} U=H \quad a\|U x\|=\|x\|, x \in H$.

Theorem 6.12 (characterization of orthogonal projections). Let $P \in \mathcal{L}(H)$ be a projection. Then the following are equivalent:
(i) P is selfadjoint,
(ii) P is normal,
(iii) P is orthogonal,
(iv) $(P x, x)=\|P x\|^{2}, x \in H$.

Theorem 6.13 (spectral decomposition of compact normal operator; Hilbert-Schmidt). Let $T \in$ $\mathcal{L}(H)$ be compact and normal. Then there exists an orthonormal basis of H formed by eigenvectors of T. Further there exist nonzero eigenvalues $\left\{\lambda_{n}\right\}_{n=1}^{m}, m \in \mathbf{N} \cup\{\infty\}$, and an orthonormal basis $\left\{e_{n}\right\}_{n=1}^{m}$ of the space $\overline{\operatorname{Rng} T}$ such that

$$
T x=\sum_{n=1}^{m} \lambda_{n}\left(x, e_{n}\right) e_{n}, \quad x \in H
$$

7. Spectral Decompositions

Continuous calculus.

Theorem 7.1. Let $T \in \mathcal{L}(H)$ be normal. Then there exists a calculus $\Psi: \mathcal{C}(\sigma(T)) \rightarrow \mathcal{L}(H)$ with the following properties:
(1) $\Psi(p)=\sum_{k, l=0}^{n} a_{k l} T^{k}\left(T^{*}\right)^{l}$ for $p(z)=\sum_{k, l=0}^{n} a_{k l} z^{k} \bar{z}^{l}$,
(2) Ψ is algebraic isomorphisms of $\mathcal{L}(H), \Psi(\bar{f})=(\Psi(f))^{*}$ and $\|\Psi(f)\|_{\mathcal{L}(H)}=\|f\|_{\mathcal{C}(\sigma(T))}$,
(3) $\Psi(f)=f(T)$ for $f \in \operatorname{Hol}(\sigma(T))$,
(4) $\sigma(\Psi(f))=f(\sigma(T))$ for $f \in \mathcal{C}(\sigma(T))$,
(5) $\Psi(f)$ is normal for $f \in \mathcal{C}(\sigma(T))$,
(6) $\Psi(f)$ is selfadjoint if and only if f is real,
(7) if S commutes with T, then S commutes with $\Psi(f)$.

Borel calculus.

Lemma 7.2 (Lax-Milgram). Let $B: H \times H \rightarrow \mathbf{C}$ be linear in the first coordinate and conjugate linear in the second coordinate. Let

$$
M:=\sup _{x, y \in B_{H}}|B(x, y)|<\infty
$$

Then there exists a unique $T \in \mathcal{L}(H)$ with $B(x, y)=(T x, y)$ for $x, y \in H$ and $\|T\|=M$.
Notation. Let P be a metric space, then $\mathcal{B}^{b}(P)$ denotes the set of all bounded Borel functions from P to \mathbf{C}. The set $\mathcal{B}^{b}(P)$ is equipped by the supremum norm.

Lemma 7.3. Let P be a compact metric space and \mathcal{A} be the smallest system of complex function on P, which contains continuous functions and is closed with respect to pointwise limit of bounded sequences. Then $\mathcal{A}=\mathcal{B}^{b}(P)$.
Theorem 7.4. Let $T \in \mathcal{L}(H)$ be normal. Then there exists a Borel calculus $\Theta: \mathcal{B}^{b}(\sigma(T)) \rightarrow \mathcal{L}(H)$ such that
(1) $\Theta=\Psi$ on $\mathcal{C}(\sigma(T))$,
(2) if $f_{n} \in \mathcal{B}^{b}(\sigma(T))$, $f_{n} \rightarrow f$, and $\left\{f_{n}\right\}$ is bounded, then for every $x, y \in H$ we have $\left(\Theta\left(f_{n}\right) x, y\right) \rightarrow(\Theta(f) x, y)$,
(3) Θ is an algebraic homomorphisms, $(\Theta(f))^{*}=\Theta(\bar{f}),\|\Theta(f)\| \leq\|f\|_{\mathcal{B}^{b}(\sigma(T))}$,
(4) $\Theta(f)$ is normal for $f \in \mathcal{B}^{b}(\sigma(T))$,
(5) if $f \in \mathcal{B}^{b}(\sigma(T))$ is real, then $\Theta(f)$ is selfadjoint,
(6) if S commutes with T, then S commutes with $\Theta(f)$ for $f \in \mathcal{B}^{b}(\sigma(T))$.

Spectral decomposition of normal operator.

Notation. Let K be a metric space. The system of all Borel subsets of K is denoted by $\operatorname{Borel}(K)$.
Definition. Let K be a nonempty compact metric space. We say that the mapping $E: \operatorname{Borel}(K) \rightarrow$ $\mathcal{L}(H)$ is spectral measure, if we have:
(i) for every $B \in \operatorname{Borel}(K)$ is $E(B)$ an orthogonal projection, $E(\emptyset)=0, E(K)=I$,
(ii) $E\left(B_{1} \cap B_{2}\right)=E\left(B_{1}\right) E\left(B_{2}\right)$ for every $B_{1}, B_{2} \in \operatorname{Borel}(K)$,
(iii) $E\left(B_{1} \cup B_{2}\right)=E\left(B_{1}\right)+E\left(B_{2}\right)$ for every $B_{1}, B_{2} \in \operatorname{Borel}(K)$ disjoint,
(iv) for every $x \in H$ the mapping $E_{x, x}: B \mapsto(E(B) x, x)$ is a measure on K, such that its completion is Radon.

Theorem 7.5. If $T \in \mathcal{L}(H)$ is normal, then $E: \operatorname{Borel}(\sigma(T)) \rightarrow \mathcal{L}(H)$ defined as $E(B)=\Theta\left(\chi_{B}\right)$ is a spectral measure and it holds:
(i) $\forall x \in H \forall f \in \mathcal{B}^{b}(\sigma(T)):(\Theta(f) x, x)=\int_{\sigma(T)} f \mathrm{~d} E_{x, x}$,
(ii) for $A \in \operatorname{Borel}(\sigma(T))$ and $T_{A}:=\left.T\right|_{\operatorname{Rng} E(A)}$ we have $T_{A} \in \mathcal{L}(\operatorname{Rng} E(A))$ and $\sigma\left(T_{A}\right) \subset \bar{A}$,
(iii) for every nonempty set $G \subset \sigma(T)$ which is open in $\sigma(T)$ we have $E(G) \neq 0$.

Theorem 7.6. Let $E: \operatorname{Borel}(K) \rightarrow \mathcal{L}(H)$ be a spectral measure on a nonempty compact metric space K. For every function $f \in \mathcal{B}^{b}(K)$ there exists a unique $T(f) \in \mathcal{L}(H)$ satisfying $(T(f) x, x)=$ $\int_{K} f \mathrm{~d} E_{x, x}$ for every $x \in H$. Further we have
(i) the mapping $T: f \mapsto T(f)$ is linear, multiplicative, $\|T\|=1$, and $T(\bar{f})=(T(f))^{*}$,
(ii) $\|T(f) x\|^{2}=\int_{K}|f|^{2} \mathrm{~d} E_{x, x}, x \in H$.

Notation. We denote $T(f)=\int_{K} f \mathrm{~d} E=\int_{K} f(t) \mathrm{d} E(t)$.
Theorem 7.7. Let $T \in \mathcal{L}(H)$ be normal. Then there exists a unique spectral measure E on $\sigma(T)$ such that $T=\int_{\sigma(T)} t \mathrm{~d} E(t)$.
Theorem 7.8. Let $T \in \mathcal{L}(H)$ be normal and $\lambda \in \sigma(T)$. Then we have
(i) $\operatorname{Rng} E(\{\lambda\})=\operatorname{Ker}(\lambda I-T)$,
(ii) $\lambda \in \sigma_{p}(T)$ if and only if $E(\{\lambda\}) \neq 0$,
(iii) if λ is an isolated point of $\sigma(T)$, then $\lambda \in \sigma_{p}(T)$.

Definition. We say that $T \in \mathcal{L}(H)$ is positive if $(T x, x) \geq 0$ for every $x \in H$. If T is positive we write $T \leq 0$.

Theorem 7.9. Let $T \in \mathcal{L}(H)$. Then the following are equivalent
(i) $\forall x \in H:(T x, x) \geq 0$,
(ii) $T=T^{*}$ and $\sigma(T) \subset[0, \infty)$.

Theorem 7.10. Every positive $T \in \mathcal{L}(H)$ has a unique positive square root $S \in \mathcal{L}(H)$. If T is invertible then S is invertible.

Theorem 7.11. If $T \in \mathcal{L}(H)$, then the positive square root of $T^{*} T$ is the only positive operator $P \in \mathcal{L}(H)$ that satisfies $\|P x\|=\|T x\|$ for every $x \in H$.

Theorem 7.12.
(a) If $T \in \mathcal{L}(H)$ is invertible, then T has a unique polar decomposition $T=U P$, i.e., U is unitary and $P \geq 0$.
(b) If $T \in \mathcal{L}(H)$ is normal, then T has a polar decomposition $T=U P$.

