FUNCTIONAL ANALYSIS 1 WINTER SEMESTER 2013-14

1. TOPOLOGICAL VECTOR SPACES

Basic notions.

Notation. (a) The symbol \mathbb{F} stands for the set of all reals or for the set of all complex numbers. (b) Let (X, τ) be a topological space and $x \in X$. An open set G containing x is called **neighborhood** of x. We denote $\tau(x) = \{G \in \tau; x \in G\}$.

Definition. Suppose that τ is a topology on a vector space X over \mathbb{F} such that

- (X, τ) is T_1 , i.e., $\{x\}$ is a closed set for every $x \in X$, and
- the vector space operations are continuous with respect to τ , i.e., $+: X \times X \to X$ and $\cdot: \mathbb{F} \times X \to X$ are continuous.

Under these conditions, τ is said to be a vector topology on X and $(X, +, \cdot, \tau)$ is a topological vector space (TVS).

Remark. Let X be a TVS.

- (a) For every $a \in X$ the mapping $x \mapsto x + a$ is a homeomorphism of X onto X.
- (b) For every $\lambda \in \mathbb{F} \setminus \{0\}$ the mapping $x \mapsto \lambda x$ is a homeomorphism of X onto X.

Definition. Let X be a vector space over \mathbb{F} . We say that $A \subset X$ is

- balanced if for every $\alpha \in \mathbb{F}$, $|\alpha| \leq 1$, we have $\alpha A \subset A$,
- absorbing if for every $x \in X$ there exists $t \in \mathbf{R}, t > 0$, such that $x \in tA$,
- symmetric if A = -A.

Definition. Let X be a TVS and $A \subset X$. We say that A is **bounded** if for every $V \in \tau(0)$ there exists s > 0 such that for every t > s we have $A \subset tV$.

Definition. We say that a TVS space X is

- locally convex if there exists a basis of 0 whose members are convex,
- locally bounded if 0 has a bounded neighborhood,
- metrizable if its topology is compatible with some metric on X,
- **F-space** if its topology is induced by a complete invariant metric,
- **Fréchet space** if X is a locally convex F-space,
- normable if a norm exists on X such that the metric induced by the norm is compatible with the topology on X.

Theorem 1.1. Let (X, τ) be a TVS.

- (a) If $K \subset X$ is compact, $C \subset X$ is closed, and $K \cap C = \emptyset$, then there exists $V \in \tau(0)$ such that $(K+V) \cap (C+V) = \emptyset$.
- (b) For every neighborhood $U \in \tau(0)$ there exists $V \in \tau(0)$ such that $\overline{V} \subset U$.
- (c) The space X is a Hausdorff space, i.e., for every $x_1, x_2 \in X, x_1 \neq x_2$, there exist disjoint open sets G_1, G_2 such that $x_i \in G_i, i = 1, 2$.

Theorem 1.2. Let X be a TVS, $A \subset X$, and $B \subset X$. Then we have

- (a) $\overline{A} = \bigcap \{A + V; V \in \tau(0)\},\$
- (b) $\overline{A} + \overline{B} \subset \overline{A + B}$,
- (c) if V is a vector subspace of X, then \overline{V} is a vector subspace of X,
- (d) if A is convex, then A and int A are convex,
- (e) if A is balanced, then \overline{A} is balanced; if moreover $0 \in \text{int } A$, then int A is balanced,
- (f) if A is bounded, then \overline{A} is bounded.

Theorem 1.3. Let X be a TVS.

- (a) For every $U \in \tau(0)$ there exists balanced $V \in \tau(0)$ with $V \subset U$.
- (b) For every convex $U \in \tau(0)$ there exists balanced convex $V \in \tau(0)$ with $V \subset U$.

Corollary 1.4. Let X be a TVS.

- (a) The space X has a balanced local base.
- (b) If X is locally convex, then it has a balanced convex local base.

Theorem 1.5. Let (X, τ) be a TVS and $V \in \tau(0)$.

- (a) If $0 < r_1 < r_2 < \dots$ and $\lim r_n = \infty$, then $X = \bigcup_{n=1}^{\infty} r_n V$.
- (b) Every compact subset $K \subset X$ is bounded.
- (c) If $\delta_1 > \delta_2 > \delta_3 > \dots$, $\lim \delta_n = 0$, and V is bounded, then the collection $\{\delta_n V; n \in \mathbb{N}\}$ is a local base for X.

Linear mappings.

Theorem 1.6. Let (X, τ) and (Y, σ) be TVS and $T: X \to Y$ be a linear mapping. Then the following are equivalent.

- (i) T is continuous.
- (ii) T is continuous at 0.
- (iii) T is uniformly continuous, i.e., for every $U \in \sigma(0)$ there exists $V \in \sigma(0)$ such that for every $x_1, x_2 \in X$ with $x_1 - x_2 \in V$ we have $T(x_1) - T(x_2) \in U$.

Theorem 1.7. Let $T: X \to \mathbb{F}$ be a nonzero linear mapping. Then the following are equivalent.

- (i) T is continuous.
- (ii) ker T is closed.
- (iii) $\overline{\ker T} \neq X$.
- (iv) T is bounded on some $V \in \tau(0)$.

Metrization.

Theorem 1.8. Let X be a TVS with a countable local base. Then there is a metric d on X such that

- (a) d is compatible with the topology of X,
- (b) the open balls centered at 0 are balanced,
- (c) d is invariant.
- If, in addition, X is locally convex, then d can be chosen so as to satisfy (a), (b), (c), and also
 - (d) all open balls are convex.

Corollary 1.9. Let X be a TVS. Then the following are equivalent.

- (i) X is metrizable.
- (ii) X is metrizable by an invariant metric.
- (iii) X has a countable local base.

Theorem 1.10. (a) If d is an invariant metric on a vector space X then $d(nx, 0) \leq nd(x, 0)$ for every $x \in X$ and $n \in \mathbb{N}$.

(b) If $\{x_n\}$ is a sequence in a metrizable topological vector space X and if $\lim x_n = 0$, then there are positive scalars γ_n such that $\lim \gamma_n = \infty$ and $\lim \gamma_n x_n = 0$.

Boundedness and continuity.

Theorem 1.11. The following two properties of a set E in a topological vector space are equivalent:

- (a) E is bounded.
- (b) If $\{x_n\}$ is a sequence in E and $\{\alpha_n\}$ is a sequence of scalars such that $\lim \alpha_n = 0$, then $\lim \alpha_n x_n = 0$.

- (i) T is continuous.
- (ii) T is bounded, i.e., T(A) is bounded whenever $A \subset X$ is bounded.
- (iii) If $\{x_n\}$ converges to 0 in X, then $\{T(x_n); n \in \mathbf{N}\}$ is bounded.
- (iv) If $\{x_n\}$ converges to 0 in X, then $\{T(x_n)\}$ converges to 0.

Then we have (i) \Rightarrow (ii) \Rightarrow (iii). If X is metrizable then the properties (i)-(iv) are equivalent.

Pseudonorms and local convexity.

Definition. (a) A **pseudonorm** on a vector space X is a real-valued function p on X such that

- $\forall x, y \in X : p(x+y) \le p(x) + p(y)$ (subadditivity),
- $\forall \alpha \in \mathbb{F} \ \forall x \in X \colon p(\alpha x) = |\alpha| p(x).$

(b) A family \mathcal{P} of pseudonorms on X is said to be **separating** if to each $x \neq 0$ corresponds at least one $p \in \mathcal{P}$ with $p(x) \neq 0$.

(c) Let $A \subset X$ be an absorbing set. The **Minkowski functional** μ_A of A is defined by

$$u_A(x) = \inf\{t > 0; t^{-1}x \in A\}.$$

Theorem 1.13. Suppose p is a pseudonorm on a vector space X. Then

- (a) p(0) = 0,
- (b) $\forall x, y \in X : |p(x) p(y)| \le p(x y),$
- (c) $\forall x \in X : p(x) \ge 0$,
- (d) $\{x \in X; p(x) = 0\}$ is a subspace,
- (e) the set $B = \{x \in X; p(x) < 1\}$ is convex, balanced, absorbing, and $p = \mu_B$.

Theorem 1.14. Let X be a vector space and $A \subset X$ be a convex absorbing set. Then

- (a) $\forall x, y \in X \colon \mu_A(x+y) \le \mu_A(x) + \mu_A(y),$
- (b) $\forall t \ge 0 \colon \mu_A(tx) = t\mu_A(x),$
- (c) μ_A is a pseudonorm if A is balanced,
- (d) if $B = \{x \in X; \ \mu_A(x) < 1\}$ and $C = \{x \in X; \ \mu_A(x) \le 1\}$, then $B \subset A \subset C$ and $\mu_A = \mu_B = \mu_C$.

Theorem 1.15. Suppose \mathcal{B} is a convex balanced local base in a topological vector space X. Associate to every $V \in \mathcal{B}$ its Minkowski functional μ_V . Then $\{\mu_V; V \in \mathcal{B}\}$ is a separating family of continuous pseudonorms on X.

Theorem 1.16. Suppose that \mathcal{P} is a separating family of pseudonorms on a vector space X. Associate to each $p \in \mathcal{P}$ and to each $n \in \mathbf{N}$ the set

$$V(p,n) = \{x \in X; \ p(x) < \frac{1}{n}\}.$$

Let \mathcal{B} be the collection of all finite intersection of the sets V(p,n). Then \mathcal{B} is a convex balanced local base for a topology τ on X, which turns X into a locally convex space such that

- (a) every $p \in \mathcal{P}$ is continuous, and
- (b) a set $E \subset X$ is bounded if and only if every $p \in \mathcal{P}$ is bounded on E.

Theorem 1.17. Let X be a locally convex space with countable local base. Then X is metrizable by an invariant metric.

Theorem 1.18. A TVS space X is normable if and only if its origin has a convex bounded neighborhood.

The Hahn-Banach theorems.

Theorem 1.19. Suppose that A and B are disjoint, nonempty convex sets in a topological vector space X.

- (a) If A is open there exist $\Lambda \in X^*$ and $\gamma \in \mathbf{R}$ such that $\operatorname{Re} \Lambda(x) < \gamma \leq \operatorname{Re} \Lambda(y)$ for every $x \in A$ and for every $y \in B$.
- (b) If A is compact, B is closed, and X is locally convex, then there exist $\Lambda \in X^*$, $\gamma_1, \gamma_2 \in \mathbf{R}$, such that $\operatorname{Re} \Lambda(x) < \gamma_1 < \gamma_2 \leq \operatorname{Re} \Lambda(y)$ for every $x \in A$ and for every $y \in B$.

Corollary 1.20. If X is a locally convex space then X^* separates points on X.

Theorem 1.21. Suppose M is a subspace of a locally convex space X, and $x_0 \in X$. If $x_0 \notin \overline{M}$, then there exists $\Lambda \in X^*$ such that $\Lambda(x_0) = 1$ and $\Lambda(x) = 0$ for every $x \in M$.

Theorem 1.22. If f is a continuous linear functional on a subspace M of a locally convex space X, then there exists $\Lambda \in X^*$ such that $\Lambda = f$ on M.

Theorem 1.23. Suppose B is a closed convex balanced set in a locally convex space $X, x_0 \in X \setminus B$. Then there exists $\Lambda \in X^*$ such that $|\Lambda(x)| \leq 1$ for every $x \in B$ and $\Lambda(x_0) > 1$.

2. Weak topologies

Basic properties.

Definition. Let X be a vector space and M be a subspace of the algebraic dual X^{\sharp} . Denote $\sigma(X, M)$ the topology generated by pseudonorms $x \mapsto |\varphi(x)|$, where $\varphi \in M$.

Lemma 2.1. Suppose that $\Lambda_1, \ldots, \Lambda_n$ and Λ are linear functionals on a vector space X. The following properties are equivalent.

- (i) $\Lambda \in \operatorname{span}\{\Lambda_1, \ldots, \Lambda_n\}$
- (ii) There exists $\gamma \in \mathbf{R}$ such that for every $x \in X$ we have

 $|\Lambda(x)| \le \gamma \max\{|\Lambda_i(x)|; \ i \in \{1, \dots, n\}\}.$

(iii) $\bigcap_{i=1}^{n} \operatorname{Ker} \Lambda_i \subset \operatorname{Ker} \Lambda$

Theorem 2.2. Suppose X is a vector space and M is a vector subspace of the algebraic dual X^{\sharp} which is separating. Then $(X, \sigma(X, M))$ is a locally convex space and $(X, \sigma(X, M))^* = M$.

Definition. Let X be a locally convex space. Then $\sigma(X, X^*)$ is weak topology on X and $\sigma(X^*, X)$ is weak star topology on X^* .

Theorem 2.3 (Mazur). Let X be a locally convex space and $A \subset X$ be convex. Then $\overline{A}^w = \overline{A}$.

Corollary 2.4. Let X be a locally convex space.

- (a) A subspace of X is originally closed if and only if it is weakly closed.
- (b) A convex subset of X is originally dense if and only if it is weakly dense.

Theorem 2.5. Suppose X is a metrizable locally convex space. If $\{x_n\}$ is a sequence in X that converges weakly to some $x \in X$, then there is a sequence $\{y_i\}$ in X such that

- (a) each y_i is a convex combination of finitely many x_n , and
- (b) $\lim y_i = x$ (with respect to the original topology).

Polars.

Definition. Let X be a TVS and $A \subset X$. Then the set

$$A^{0} = \{x^{*} \in X^{*}; |x^{*}(x)| \leq 1 \text{ for every } x \in A\}$$

is called **polar** of A. If $A \subset X^*$, then we define

 $A_0 = \{x \in X; |x^*(x)| \le 1 \text{ for every } x^* \in A\}.$

Theorem 2.6 (Banach-Alaoglu). Let X be a TVS and $V \subset X$ be a neighborhood of 0. Then V^0 is w^* -compact.

Theorem 2.7 (Bipolar theorem). Let X be a locally convex space.

- (a) If $A \subset X$ is a closed convex balanced set, then $(A^0)_0 = A$.
- (b) If $A \subset X^*$ is w^* -closed convex balanced set, then $A = (A_0)^0$.

Theorem 2.8 (Goldstin). Let X be a normed linear space. Then B_X is w^* -dense in $B_{X^{**}}$.

Theorem 2.9. Let X be a Banach space. Then X is reflexive if and only if B_X is weakly compact.

Theorem 2.10. Let X be a reflexive Banach space and $\{x_n\}$ be a bounded sequence of points from X. Then there exists a weakly convergent subsequence.

3. Vector integration

Convention. Throughout this section X will stand for a Banach space and (Ω, Σ, μ) will be a finite measure space.

Definition. A function $f: \Omega \to X$ is called **simple** if there exist $x_1, \ldots, x_n \in X$ and $E_1, \ldots, E_n \in \Sigma$ such that $f = \sum_{i=1}^n x_i \chi_{E_i}$. A function $f: \Omega \to X$ is called μ -measurable if there exists a sequence of simple functions $\{f_n\}$ such that $\lim \|f_n(\omega) - f(\omega)\| = 0$ for μ -almost all $\omega \in \Omega$. A function $f: \Omega \to X$ is called weakly μ -measurable if for each $x^* \in X^*$ the function $x^* \circ f$ is μ -measurable.

Theorem 3.1 (Pettis's measurability theorem). A function $f: \Omega \to X$ is μ -measurable if and only if

- (a) f is μ -essentially separably valued, i.e., there exists $E \in \Sigma$ with $\mu(E) = 0$ and such that $f(\Omega \setminus E)$ is a norm separable subset of X,
- (b) f is weakly μ -measurable.

Corollary 3.2. A function $f: \Omega \to X$ is μ -measurable if and only if f is the μ -almost everywhere uniform limit of a sequence of countably valued μ -measurable functions.

Definition. A μ -measurable function $f: \Omega \to X$ is called **Bochner integrable** if there exists a sequence of simple functions $\{f_n\}$ such that $\lim_{\Omega} \int_{\Omega} ||f_n - f|| d\mu = 0$. In this case, $\int_E f d\mu$ is defined for each $E \in \Sigma$ by $\int_E f d\mu = \lim_{\Omega} \int_E f_n d\mu$.

Theorem 3.3. A μ -measurable function $f: \Omega \to X$ is Bochner integrable if and only if $\int_{\Omega} ||f|| d\mu < \infty$.

Theorem 3.4. If f is a μ -Bochner integrable function, then

- (a) $\lim_{\mu(E)\to 0} \int_E f d\mu = 0$,
- (b) $\|\int_E f d\mu\| \leq \int_E \|f\| d\mu$ for all $E \in \Sigma$,
- (c) if $\{E_n\}$ is a sequence of pairwise disjoint members of Σ and $E = \bigcup_{n=1}^{\infty} E_n$, then

$$\int_E f d\mu = \sum_{n=1}^\infty \int_{E_n} f d\mu,$$

where the sum on the right is absolutely convergent,

(d) if $F(E) = \int_E f d\mu$, then F is of bounded variation and

$$|F|(E) = \int_E \|f\| d\mu$$

for all $E \in \Sigma$.

Corollary 3.5. If f and g are μ -Bochner integrable and $\int_E f d\mu = \int_E g d\mu$ for each $E \in \Sigma$, then $f = q \ \mu$ -almost everywhere.

Theorem 3.6. Let Y be a Banach space, $T \in \mathcal{L}(X, Y)$ and $f: \Omega \to X$ be μ -Bochner integrable. Then $T \circ f$ is μ -Bochner integrable and $T(\int_E f d\mu) = \int_E T \circ f d\mu$.

Corollary 3.7. Let f a g be μ -measurable. If for each $x^* \in X^*$, $x^* \circ f = x^* \circ g \mu$ -almost everywhere, then $f = g \mu$ -almost everywhere.

Corollary 3.8. Let f be μ -Bochner integrable. Then for each $E \in \Sigma$ with $\mu(E) > 0$ one has

$$\frac{1}{\mu(E)}\int_E f\,\mathrm{d}\mu\in\overline{co}\,(f(E)).$$

4. BANACH ALGEBRAS

Basic properties.

Definition. (a) A complex algebra is a vector space A over the complex field C in which a multiplication is defined that satisfies

- x(yz) = (xy)z,
- (x+y)z = xz + yz, x(y+z) = xy + xz,
- $\alpha(xy) = (\alpha x)y = x(\alpha y),$

for all $x, y, z \in A$ and $\alpha \in \mathbf{C}$.

(b) If, in addition, A is a Banach space with respect to a norm that satisfies the multiplicative inequality

$$||xy|| \le ||x|| ||y||, \qquad x, y \in A$$

then is called a **Banach algebra**.

(c) If an element $e \in A$ in a Banach algebra satisfies xe = ex = x for every $x \in A$, then e is a unit element.

Definition. (a) Suppose A is a complex algebra and φ is a linear functional on A which is not identically 0. If $\varphi(xy) = \varphi(x)\varphi(y)$ for all $x, y \in A$, then φ is called a **complex homomorphism** on A.

(b) An element $x \in A$ is said to be **invertible** if it has an inverse in A, that is, if there exists an element $x^{-1} \in A$ such that $x^{-1}x = xx^{-1} = e$, where e is the unit element of A.

Theorem 4.1. If φ is a complex homomorphism on a complex algebra A with unit e, then $\varphi(e) = 1$, and $\varphi(x) \neq 0$ for every invertible $x \in A$.

Theorem 4.2. Suppose that A is a Banach algebra with unit, $x \in A$, ||x|| < 1. Then

- (a) e x is invertible,
- (b) $||(e-x)^{-1} e x|| \le \frac{||x||^2}{1 ||x||}$, (c) $|\varphi(x)| < 1$ for every complex homomorphism φ on A.

Definition. Let A be a Banach algebra with unit.

- (a) The set of all invertible elements of A is denoted by G(A).
- (b) If $x \in A$, the spectrum $\sigma(x)$ of x is the set of all complex numbers λ such that $\lambda e x$ is not invertible. The complement of $\sigma(x)$ is the **resolvent** set of x.
- (c) The spectral radius of x is the number $\rho(x) = \sup\{|\lambda|; \lambda \in \sigma(x)\}$.

Theorem 4.3. Suppose A is a Banach algebra with unit, $x \in G(A)$, $h \in A$, $||h|| < \frac{1}{2} ||x^{-1}||^{-1}$. Then $x + h \in G(A)$ and

$$||(x+h)^{-1} - x^{-1} + x^{-1}hx^{-1}|| \le 2||x^{-1}||^3||h||^2.$$

6

Theorem 4.4. If A is a Banach algebra with unit, then G(A) is an open subset of A and the mapping $x \mapsto x^{-1}$ is a homeomorphism of G(A) onto G(A).

Theorem 4.5. If A is a Banach algebra with unit and $x \in A$, then

- (a) the spectrum $\sigma(x)$ of x is compact and nonempty, and
- (b) the spectral radius $\rho(x)$ of x satisfies

$$\rho(x) = \lim \|x^n\|^{1/n} = \inf \|x^n\|^{1/n}.$$

Theorem 4.6 (Gelfand-Mazur). If A is a Banach algebra with unit in which every nonzero element is invertible, then A is (isometrically isomorphic to) the field of complex numbers.

Lemma 4.7. Suppose V and W are open sets in some topological space $X, V \subset W$, and W contains no boundary point of V. Then V is a union of components of W.

Lemma 4.8. Suppose A is a Banach algebra with unit, $x_n \in G(A)$ for every $n \in \mathbb{N}$, x is a boundary point of G(A), and $x_n \to x$ as $n \to \infty$. Then $||x_n^{-1}|| \to \infty$.

Theorem 4.9. (a) If A is a closed subalgebra of a Banach algebra B, and if A contains the unit element of B, then G(A) is a union of components of $A \cap G(B)$.

(b) Under these conditions, if $x \in A$, then $\sigma_A(x)$ is the union of $\sigma_B(x)$ and a (possibly empty) collection of bounded components of the complement of $\sigma_B(x)$. In particular, the boundary of $\sigma_A(x)$ lies in $\sigma_B(x)$.

Corollary 4.10. If $\sigma_B(x)$ does not separate **C**, that is, if its complement Ω_B is connected, then $\sigma_A(x) = \sigma_B(x)$.

Theorem 4.11. Suppose A is a Banach algebra with unit, $x \in A$, Ω is an open set in C, and $\sigma(x) \subset \Omega$. Then there exists $\delta > 0$ such that $\sigma(x + y) \subset \Omega$ for every $y \in A$ with $||y|| < \delta$.

Holomorphic calculus.

Theorem (Cauchy). Let $\Omega \subset \mathbf{C}$ be open, $f \in \operatorname{Hol}(\Omega)$ and Γ be a contour in Ω satisfying $\operatorname{ind}_{\Gamma} \alpha = 0$ for $\alpha \in \mathbf{C} \setminus \Omega$. Then we have

- (a) $f(\lambda) \operatorname{ind}_{\Gamma} \lambda = \frac{1}{2\pi i} \int_{\Gamma} \frac{f(w)}{w \lambda} \, \mathrm{d}w, \ \lambda \in \Omega \setminus \langle \Gamma \rangle,$
- (b) $\int_{\Gamma} f(w) \,\mathrm{d}w = 0$,
- (c) if Γ_1 , Γ_2 are contours in Ω satisfying $\operatorname{ind}_{\Gamma_1} \alpha = \operatorname{ind}_{\Gamma_2} \alpha$ for each $\alpha \in \mathbf{C} \setminus \Omega$, then $\int_{\Gamma_1} f(w) \, dw = \int_{\Gamma_2} f(w) \, dw$.

Theorem. Let $K \subset \Omega \subset \mathbf{C}$, K be compact and Ω be open. Then there exists a contour Γ in Ω such that

(a)
$$\langle \Gamma \rangle \subset \Omega \setminus K$$
,
(b) $\operatorname{ind}_{\Gamma} \alpha = \begin{cases} 1, & \alpha \in K, \\ 0, & \alpha \in \mathbf{C} \setminus \Omega. \end{cases}$

Definition. If Γ has the properties (a)–(b) from the previous theorem, then we say that Γ surrounds K in Ω .

Notation. Let $K \subset \mathbf{C}$ be compact. Then the symbol Hol(K) denotes the set of all complex functions which are holomorphic on some open set $\Omega \supset K$.

Notation. Let $x \in A$. Denote $R_{\lambda} = (\lambda e - x)^{-1}$, $\lambda \in \mathbf{C} \setminus \sigma(x)$.

Lemma 4.12. Let $x, y \in A$.

- (a) If x commutes with y, then x commutes with R_{λ} for every $\lambda \in \mathbf{C} \setminus \sigma(y)$.
- (b) For every $\lambda, \mu \in \mathbf{C} \setminus \sigma(x)$ we have

$$R_{\lambda} - R_{\mu} = (\mu - \lambda)R_{\mu}R_{\lambda}.$$

Theorem 4.13. Let $x \in A$ a $f \in Hol(\sigma(x))$. We set

$$f(x) = \frac{1}{2\pi i} \int_{\Gamma} f(z) R_z \, \mathrm{d}z,$$

where Γ is a contour surrounding $\sigma(x)$ in D(f). The mapping $\Phi: f \mapsto f(x)$ from $\operatorname{Hol}(\sigma(x))$ into A is well-defined and does not depend on the choice of Γ .

Theorem 4.14. Let $x \in A$ and $f \in Hol(\sigma(x))$. Then we have

- (a) $(1)(x) = e \ a \ id(x) = x$,
- (b) Φ is algebraic homomorphism from $\operatorname{Hol}(\sigma(x))$ into A,
- (c) if $f_n \in \operatorname{Hol}(D(f))$ and $f_n \stackrel{\text{loc}}{\rightrightarrows} f$ on D(f), then $f_n(x) \to f(x)$ in A,
- (d) f(x) is invertible if and only if $f \neq 0$ on $\sigma(x)$,
- (e) $\sigma(f(x)) = f(\sigma(x)),$
- (f) $(g \circ f)(x) = g(f(x))$ pro $g \in \operatorname{Hol}(\sigma(f(x))),$
- (g) if $y \in A$ commutes with x, then y commutes with f(x).

A computation in the proof of 4.14(b).

$$\begin{split} f(x)g(x) &= -\frac{1}{4\pi^2} \left(\int_{\Gamma} f(z)R_z \, \mathrm{d}z \right) \left(\int_{\Lambda} g(w)R_w \, \mathrm{d}w \right) \\ &= -\frac{1}{4\pi^2} \int_{\Gamma} \left(f(z)R_z \left(\int_{\Lambda} g(w)R_w \, \mathrm{d}w \right) \right) \, \mathrm{d}z = -\frac{1}{4\pi^2} \int_{\Gamma} \left(\int_{\Lambda} f(z)g(w)R_z R_w \, \mathrm{d}w \right) \, \mathrm{d}z \\ &= -\frac{1}{4\pi^2} \int_{\Gamma} \left(\int_{\Lambda} f(z)g(w) \frac{R_z - R_w}{w - z} \, \mathrm{d}w \right) \, \mathrm{d}z \\ &= -\frac{1}{4\pi^2} \int_{\Gamma} \left(\int_{\Lambda} \frac{f(z)g(w)}{w - z} R_z \, \mathrm{d}w - \int_{\Lambda} \frac{f(z)g(w)}{w - z} R_w \, \mathrm{d}w \right) \, \mathrm{d}z \\ &= -\frac{1}{4\pi^2} \int_{\Gamma} \left(f(z)R_z \int_{\Lambda} \frac{g(w)}{w - z} \, \mathrm{d}w \right) \, \mathrm{d}z + \frac{1}{4\pi^2} \int_{\Gamma} \left(\int_{\Lambda} \frac{f(z)g(w)}{w - z} R_w \, \mathrm{d}w \right) \, \mathrm{d}z \\ &= -\frac{1}{4\pi^2} \int_{\Gamma} \left(f(z)R_z \int_{\Lambda} \frac{g(w)}{w - z} \, \mathrm{d}w \right) \, \mathrm{d}z + \frac{1}{4\pi^2} \int_{\Lambda} \left(\int_{\Gamma} \frac{f(z)g(w)}{w - z} R_w \, \mathrm{d}z \right) \, \mathrm{d}w \\ &= -\frac{1}{4\pi^2} \int_{\Gamma} \left(f(z)R_z \int_{\Lambda} \frac{g(w)}{w - z} \, \mathrm{d}w \right) \, \mathrm{d}z + \frac{1}{4\pi^2} \int_{\Lambda} \left(g(w)R_w \int_{\Gamma} \frac{f(z)}{w - z} \, \mathrm{d}z \right) \, \mathrm{d}w \\ &= -\frac{1}{4\pi^2} \int_{\Gamma} \left(f(z)R_z \int_{\Lambda} \frac{g(w)}{w - z} \, \mathrm{d}w \right) \, \mathrm{d}z + \frac{1}{4\pi^2} \int_{\Lambda} \left(g(w)R_w \int_{\Gamma} \frac{f(z)}{w - z} \, \mathrm{d}z \right) \, \mathrm{d}w \\ &= -\frac{1}{2\pi i} \int_{\Gamma} f(z)g(z)R_z \, \mathrm{d}z = (fg)(x) \end{split}$$

Theorem 4.15. Suppose A is a Banach algebra with unit, $x \in A$, and the spectrum $\sigma(x)$ does not separate 0 from ∞ . Then

- (a) x has a logarithm in A,
- (b) x has roots of all orders in A.

5. Gelfand transformation

Definition. A subset J of a commutative complex algebra A is said to be ideal if

- (a) J is a subspace of A, and
- (b) $xy \in J$ whenever $x \in A$ and $y \in J$.

If $J \neq A$, then J is a **proper** ideal. Maximal ideals are proper ideals which are not contained in any larger proper ideal.

Theorem 5.1. (a) If A is a commutative complex algebra with unit, then every proper ideal of A is contained in a maximal ideal of A

(b) If A is a commutative Banach algebra with unit, then every maximal ideal of A is closed.

Theorem 5.2. Let A be a commutative Banach algebra with unit. Let Δ be the set of all complex homomorphism of A.

- (a) Every maximal ideal of A is the kernel of some $h \in \Delta$.
- (b) If $h \in \Delta$, the kernel of h is a maximal ideal of A.
- (c) An element $x \in A$ is invertible in A if and only if $h(x) \neq 0$ for every $h \in \Delta$.
- (d) An element $x \in A$ is invertible in A if and only if x lies in no proper ideal of A.
- (e) $\lambda \in \sigma(x)$ if and only if $h(x) = \lambda$ for some $h \in \Delta$.

Definition. (a) Let Δ be the set of all complex homomorphisms of a commutative Banach algebra A with unit. The formula $\hat{x}(h) = h(x)$ assigns to each $x \in A$ a function $\hat{x} \colon \Delta \to \mathbf{C}$, we call \hat{x} the **Gelfand transform** of x.

(b) The **Gelfand topology** of Δ is the weakest topology that makes every \hat{x} continuous.

(c) The **radical** of A, denoted by rad A, is the intersection of all maximal ideals of A. If rad $A = \{0\}$, A is called **semisimple**.

Theorem 5.3. Let Δ be the maximal ideal space of a commutative Banach algebra A with unit.

- (a) Δ is a compact Hausdorff space.
- (b) The Gelfand transform is a homomorphism of A onto a subalgebra \hat{A} of $\mathcal{C}(\Delta)$, whose kernel is rad A. The Gelfand transform is therefore an isomorphism if and only if A is semisimple.
- (c) For each $x \in A$ we have $\operatorname{Rng} \hat{x} = \sigma(x)$.

Theorem 5.4. If $\psi \colon B \to A$ is a homomorphism of a commutative Banach algebra B with unit into a semisimple commutative Banach algebra with unit, then ψ is continuous.

Lemma 5.5. If A is a commutative Banach algebra with unit and

$$r = \inf_{x \neq 0} \frac{\|x^2\|}{\|x\|^2}, \qquad s = \inf_{x \neq 0} \frac{\|\hat{x}\|_{\infty}}{\|x\|},$$

then $s^2 \leq r \leq s$.

Theorem 5.6. Suppose A is a commutative Banach algebra with unit.

- (a) The Gelfand transform is an isometry if and only if $||x^2|| = ||x||^2$.
- (b) A is semisimple and \hat{A} is closed in $\mathcal{C}(\Delta)$ if and only if there exists $K < \infty$ such that $\|x\|^2 \leq K \|x^2\|$ for every $x \in A$.

Definition. A mapping $x \mapsto x^*$ of a complex (not necessarily commutative) algebra A into A is called an **involution** on A if it has the following properties for every $x, y \in A$, and $\lambda \in \mathbb{C}$:

- $(x+y)^* = x^* + y^*$,
- $(\lambda x)^* = \overline{\lambda} x^*$,
- $(xy)^* = y^*x^*$,
- $x^{**} = x$.

Any $x \in A$ for which $x^* = x$ is called **hermitian**, or **self-adjoint**.

Theorem 5.7. If A is a Banach algebra with unit and an involution, and if $x \in A$, then

- (a) $x + x^*$, $i(x x^*)$ and xx^* are hermitian,
- (b) x has a unique representation x = u + iv, with $u \in A$, $v \in A$, and both u and v are hermitian,
- (c) the unit *e* is hermitian,
- (d) x is invertible in A if and only if x^* is invertible, in which case $(x^*)^{-1} = (x^{-1})^*$, and
- (e) $\lambda \in \sigma(x)$ if and only if $\overline{\lambda} \in \sigma(x^*)$.

Theorem 5.8. If a Banach algebra A with unit is commutative and semisimple, then every involution on A is continuous.

Definition. A Banach algebra A with an involution $x \mapsto x^*$ that satisfies $||xx^*|| = ||x||^2$ for every $x \in A$ is called a C^* -algebra.

Theorem 5.9 (Gelfand-Naimark). Suppose A is a commutative C^* -algebra with unit. The Gelfand transform is then an isometric isomorphism of A onto $\mathcal{C}(\Delta)$, which has the additional property $\widehat{x^*} = \overline{\widehat{x}}$ for every $x \in A$.

Theorem 5.10. If A is a commutative C^* -algebra with unit which contains an element x such that the polynomials in x and x^* are dense in A, then the formula $\widehat{\Psi f} = f \circ \hat{x}$ defines an isometric isomorphism Ψ of $\mathcal{C}(\sigma(x))$ onto A which satisfies $\Psi \overline{f} = (\Psi f)^*$ for every $f \in \mathcal{C}(\sigma(x))$. Moreover, if $f(\lambda) = \lambda$ on $\sigma(x)$, then $\Psi f = x$.

Definition. Let A be an algebra with an involution. If $x \in A$ and $xx^* = x^*x$, then x is said to be **normal**. A set $S \subset A$ is said to be **normal** if S commutes and if $x^* \in S$ whenever $x \in S$.

Theorem 5.11. Suppose A is a Banach algebra with an involution, and B is a normal subset of A that is maximal with respect to being normal. Then

- (a) B is a closed commutative subalgebra of A, and
- (b) $\sigma_B(x) = \sigma_A(x)$ for every $x \in B$.

Theorem 5.12. Every C^* -algebra A has the following properties:

- (a) Hermitian elements have real spectra.
- (b) If $x \in A$ is normal, then $\rho(x) = ||x||$.
- (c) If $y \in A$, then $\rho(yy^*) = \|y\|^2$.
- (d) If $u, v \in A$ are hermitian, $\sigma(u) \subset [0, \infty)$, $\sigma(v) \subset [0, \infty)$, then $\sigma(u+v) \subset [0, \infty)$.
- (e) If $y \in A$, then $\sigma(yy^*) \subset [0, \infty)$.

Theorem 5.13. Suppose that A is a C^{*}-algebra with a unit e, B is a closed subalgebra of A, $e \in B$, and $x^* \in B$ for every $x \in B$. Then $\sigma_A(x) = \sigma_B(x)$ for every $x \in B$.

6. Operators on Hilbert spaces

In this section the symbol H stands for a nontrivial complex Hilbert space.

Definition. We say that $T \in \mathcal{L}(H)$ is

- normal, if $T^*T = TT^*$,
- selfadjoint (or also hermitian), if $T^* = T$,
- unitary, if $T^*T = I = TT^*$,
- orthogonal projection, if T is a projection, i.e., $T = T^2$, and $\operatorname{Rng} T \perp \operatorname{Ker} T$.

Lemma 6.1. Let $T \in \mathcal{L}(H)$. Then

- (a) $||T^*T|| = ||TT^*|| = ||T||^2$,
- (b) Ker $T^* = \operatorname{Rng} T^{\perp}$.

Lemma 6.2. Let $T \in \mathcal{L}(H)$. Then the following are equivalent

- (i) T = 0, (7)
- (ii) (Tx, x) = 0 for every $x \in H$.

Corollary 6.3. Let $S, T \in \mathcal{L}(X)$ for every $x \in H$ satisfy (Sx, x) = (Tx, x). Then T = S.

Theorem 6.4 (characterization of normal operators). An operator $T \in \mathcal{L}(H)$ is normal if and only if $||Tx|| = ||T^*x||$ for each $x \in H$.

Theorem 6.5 (properties of normal operators). Let $T \in \mathcal{L}(H)$ be normal. Then we have

- (a) Ker $T = \text{Ker } T^*$,
- (b) T is invertible if and only if **bounded from below**, i.e., there exists c > 0 such that $||Tx|| \ge c||x||$ for every $x \in H$ (Weyl),
- (c) if $x \in H$ satisfies $Tx = \lambda x$, then $T^*x = \overline{\lambda}x$,
- (d) if $\lambda_1, \lambda_2 \in \mathbf{C}$ are different eigenvalues of T, then $\operatorname{Ker}(\lambda_1 I T) \perp \operatorname{Ker}(\lambda_2 I T)$,
- (e) $||T^2|| = ||T||^2$,
- (f) $||T|| = \rho(T)$.

Theorem 6.6 (characterization of selfadjoint operators). Let $T \in \mathcal{L}(H)$. Then $T = T^*$ if and only if (Tx, x) is a real number for every $x \in H$.

Theorem 6.7. Let $S, T \in \mathcal{L}(H)$ and S is selfadjoint. Then $\operatorname{Rng} S \perp \operatorname{Rng} T$ if and only if ST = 0.

Theorem 6.8. For every $T \in \mathcal{L}(H)$ there exists a unique decomposition $T = S_1 + iS_2$, where S_1 , S_2 are selfadjoint operators.

Definition. Let $T \in \mathcal{L}(H)$. Numerical range of the operator T is defined by

 $N(T) = \{(Tx, x); x \in S_H\}.$

10

Theorem 6.9 (Hilbert–Toeplitz). Let $T \in \mathcal{L}(H)$. Then $\sigma(T) \subset \overline{N(T)}$.

Theorem 6.10 (spectrum of selfadjoint operator). Let $T \in \mathcal{L}(H)$ be selfadjoint. Then $N(T) \subset \mathbf{R}$ and if we denote $m_T = \inf N(T)$, $M_T = \sup N(T)$, then we have

(i) $\sigma(T) \subset [m_T, M_T],$

- (ii) ||T|| or -||T|| is in $\sigma(T)$,
- (iii) $m_T, M_T \in \sigma(T)$.

Theorem 6.11 (characterization of unitary operators). Let $U \in \mathcal{L}(H)$. Then the following are equivalent:

(i) U is unitary,

- (ii) Rng $U = H \ a \ (Ux, Uy) = (x, y), \ x, y \in H$,
- (iii) Rng $U = H \ a \|Ux\| = \|x\|, x \in H.$

Theorem 6.12 (characterization of orthogonal projections). Let $P \in \mathcal{L}(H)$ be a projection. Then the following are equivalent:

- (i) P is selfadjoint,
- (ii) *P* is normal,
- (iii) *P* is orthogonal,
- (iv) $(Px, x) = ||Px||^2, x \in H.$

Theorem 6.13 (spectral decomposition of compact normal operator; Hilbert–Schmidt). Let $T \in \mathcal{L}(H)$ be compact and normal. Then there exists an orthonormal basis of H formed by eigenvectors of T. Further there exist nonzero eigenvalues $\{\lambda_n\}_{n=1}^m$, $m \in \mathbb{N} \cup \{\infty\}$, and an orthonormal basis $\{e_n\}_{n=1}^m$ of the space $\overline{\operatorname{Rng} T}$ such that

$$Tx = \sum_{n=1}^{m} \lambda_n(x, e_n) e_n, \quad x \in H.$$

7. Spectral decompositions

Continuous calculus.

Theorem 7.1. Let $T \in \mathcal{L}(H)$ be normal. Then there exists a calculus $\Psi \colon \mathcal{C}(\sigma(T)) \to \mathcal{L}(H)$ with the following properties:

- (1) $\Psi(p) = \sum_{k,l=0}^{n} a_{kl} T^k (T^*)^l$ for $p(z) = \sum_{k,l=0}^{n} a_{kl} z^k \overline{z}^l$,
- (2) Ψ is algebraic isomorphisms of $\mathcal{L}(H)$, $\Psi(\overline{f}) = (\Psi(f))^*$ and $\|\Psi(f)\|_{\mathcal{L}(H)} = \|f\|_{\mathcal{C}(\sigma(T))}$,
- (3) $\Psi(f) = f(T)$ for $f \in \operatorname{Hol}(\sigma(T))$,
- (4) $\sigma(\Psi(f)) = f(\sigma(T))$ for $f \in \mathcal{C}(\sigma(T))$,
- (5) $\Psi(f)$ is normal for $f \in \mathcal{C}(\sigma(T))$,
- (6) $\Psi(f)$ is selfadjoint if and only if f is real,
- (7) if S commutes with T, then S commutes with $\Psi(f)$.

Borel calculus.

Lemma 7.2 (Lax-Milgram). Let $B: H \times H \to \mathbb{C}$ be linear in the first coordinate and conjugate linear in the second coordinate. Let

$$M:=\sup_{x,y\in B_H}|B(x,y)|<\infty$$

Then there exists a unique $T \in \mathcal{L}(H)$ with B(x, y) = (Tx, y) for $x, y \in H$ and ||T|| = M.

Notation. Let P be a metric space, then $\mathcal{B}^b(P)$ denotes the set of all bounded Borel functions from P to C. The set $\mathcal{B}^b(P)$ is equipped by the supremum norm.

Lemma 7.3. Let P be a compact metric space and \mathcal{A} be the smallest system of complex function on P, which contains continuous functions and is closed with respect to pointwise limit of bounded sequences. Then $\mathcal{A} = \mathcal{B}^b(P)$.

Theorem 7.4. Let $T \in \mathcal{L}(H)$ be normal. Then there exists a Borel calculus $\Theta \colon \mathcal{B}^b(\sigma(T)) \to \mathcal{L}(H)$ such that

- (1) $\Theta = \Psi$ on $\mathcal{C}(\sigma(T))$,
- (2) if $f_n \in \mathcal{B}^b(\sigma(T)), f_n \to f$, and $\{f_n\}$ is bounded, then for every $x, y \in H$ we have $(\Theta(f_n)x, y) \to (\Theta(f)x, y),$
- (3) Θ is an algebraic homomorphisms, $(\Theta(f))^* = \Theta(\overline{f}), \|\Theta(f)\| \le \|f\|_{\mathcal{B}^b(\sigma(T))},$
- (4) $\Theta(f)$ is normal for $f \in \mathcal{B}^b(\sigma(T))$,
- (5) if $f \in \mathcal{B}^b(\sigma(T))$ is real, then $\Theta(f)$ is selfadjoint,
- (6) if S commutes with T, then S commutes with $\Theta(f)$ for $f \in \mathcal{B}^b(\sigma(T))$.

Spectral decomposition of normal operator.

Notation. Let K be a metric space. The system of all Borel subsets of K is denoted by Borel(K).

Definition. Let K be a nonempty compact metric space. We say that the mapping E: Borel $(K) \rightarrow \mathcal{L}(H)$ is spectral measure, if we have:

- (i) for every $B \in \text{Borel}(K)$ is E(B) an orthogonal projection, $E(\emptyset) = 0$, E(K) = I,
- (ii) $E(B_1 \cap B_2) = E(B_1)E(B_2)$ for every $B_1, B_2 \in Borel(K)$,
- (iii) $E(B_1 \cup B_2) = E(B_1) + E(B_2)$ for every $B_1, B_2 \in Borel(K)$ disjoint,
- (iv) for every $x \in H$ the mapping $E_{x,x}: B \mapsto (E(B)x, x)$ is a measure on K, such that its completion is Radon.

Theorem 7.5. If $T \in \mathcal{L}(H)$ is normal, then E: Borel $(\sigma(T)) \rightarrow \mathcal{L}(H)$ defined as $E(B) = \Theta(\chi_B)$ is a spectral measure and it holds:

- (i) $\forall x \in H \ \forall f \in \mathcal{B}^b(\sigma(T))$: $(\Theta(f)x, x) = \int_{\sigma(T)} f \, \mathrm{d}E_{x,x},$
- (ii) for $A \in \text{Borel}(\sigma(T))$ and $T_A := T|_{\text{Rng } E(A)}$ we have $T_A \in \mathcal{L}(\text{Rng } E(A))$ and $\sigma(T_A) \subset \overline{A}$,
- (iii) for every nonempty set $G \subset \sigma(T)$ which is open in $\sigma(T)$ we have $E(G) \neq 0$.

Theorem 7.6. Let E: Borel $(K) \to \mathcal{L}(H)$ be a spectral measure on a nonempty compact metric space K. For every function $f \in \mathcal{B}^b(K)$ there exists a unique $T(f) \in \mathcal{L}(H)$ satisfying $(T(f)x, x) = \int_K f \, dE_{x,x}$ for every $x \in H$. Further we have

(i) the mapping $T: f \mapsto T(f)$ is linear, multiplicative, ||T|| = 1, and $T(\overline{f}) = (T(f))^*$, (ii) $||T(f)x||^2 = \int_K |f|^2 dE_{x,x}, x \in H$.

Notation. We denote $T(f) = \int_{K} f \, dE = \int_{K} f(t) \, dE(t)$.

Theorem 7.7. Let $T \in \mathcal{L}(H)$ be normal. Then there exists a unique spectral measure E on $\sigma(T)$ such that $T = \int_{\sigma(T)} t \, dE(t)$.

Theorem 7.8. Let $T \in \mathcal{L}(H)$ be normal and $\lambda \in \sigma(T)$. Then we have

- (i) $\operatorname{Rng} E(\{\lambda\}) = \operatorname{Ker}(\lambda I T),$
- (ii) $\lambda \in \sigma_p(T)$ if and only if $E(\{\lambda\}) \neq 0$,
- (iii) if λ is an isolated point of $\sigma(T)$, then $\lambda \in \sigma_p(T)$.

Definition. We say that $T \in \mathcal{L}(H)$ is **positive** if $(Tx, x) \ge 0$ for every $x \in H$. If T is positive we write $T \le 0$.

Theorem 7.9. Let $T \in \mathcal{L}(H)$. Then the following are equivalent

(i) $\forall x \in H : (Tx, x) \ge 0$, (ii) $T = T^*$ and $\sigma(T) \subset [0, \infty)$.

Theorem 7.10. Every positive $T \in \mathcal{L}(H)$ has a unique positive square root $S \in \mathcal{L}(H)$. If T is invertible then S is invertible.

Theorem 7.11. If $T \in \mathcal{L}(H)$, then the positive square root of T^*T is the only positive operator $P \in \mathcal{L}(H)$ that satisfies ||Px|| = ||Tx|| for every $x \in H$.

Theorem 7.12.

- (a) If $T \in \mathcal{L}(H)$ is invertible, then T has a unique **polar decomposition** T = UP, i.e., U is unitary and $P \ge 0$.
- (b) If $T \in \mathcal{L}(H)$ is normal, then T has a polar decomposition T = UP.