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Winter semester 2013-14

1. Topological vector spaces

Basic notions.

Notation. (a) The symbol F stands for the set of all reals or for the set of all complex numbers.
(b) Let (X, τ) be a topological space and x ∈ X. An open set G containing x is called neigh-

borhood of x. We denote τ(x) = {G ∈ τ ; x ∈ G}.

Definition. Suppose that τ is a topology on a vector space X over F such that

• (X, τ) is T1, i.e., {x} is a closed set for every x ∈ X, and
• the vector space operations are continuous with respect to τ , i.e., +: X × X → X and
· : F×X → X are continuous.

Under these conditions, τ is said to be a vector topology on X and (X,+, ·, τ) is a topological
vector space (TVS).

Remark. Let X be a TVS.

(a) For every a ∈ X the mapping x 7→ x+ a is a homeomorphism of X onto X.
(b) For every λ ∈ F \ {0} the mapping x 7→ λx is a homeomorphism of X onto X.

Definition. Let X be a vector space over F. We say that A ⊂ X is

• balanced if for every α ∈ F, |α| ≤ 1, we have αA ⊂ A,
• absorbing if for every x ∈ X there exists t ∈ R, t > 0, such that x ∈ tA,
• symmetric if A = −A.

Definition. Let X be a TVS and A ⊂ X. We say that A is bounded if for every V ∈ τ(0) there
exists s > 0 such that for every t > s we have A ⊂ tV .

Definition. We say that a TVS space X is

• locally convex if there exists a basis of 0 whose members are convex,
• locally bounded if 0 has a bounded neighborhood,
• metrizable if its topology is compatible with some metric on X,
• F-space if its topology is induced by a complete invariant metric,
• Fréchet space if X is a locally convex F-space,
• normable if a norm exists on X such that the metric induced by the norm is compatible

with the topology on X.

Theorem 1.1. Let (X, τ) be a TVS.

(a) If K ⊂ X is compact, C ⊂ X is closed, and K ∩ C = ∅, then there exists V ∈ τ(0) such
that (K + V ) ∩ (C + V ) = ∅.

(b) For every neighborhood U ∈ τ(0) there exists V ∈ τ(0) such that V ⊂ U .
(c) The space X is a Hausdorff space, i.e., for every x1, x2 ∈ X,x1 6= x2, there exist disjoint

open sets G1, G2 such that xi ∈ Gi, i = 1, 2.

Theorem 1.2. Let X be a TVS, A ⊂ X, and B ⊂ X. Then we have

(a) A =
⋂
{A+ V ; V ∈ τ(0)},

(b) A+B ⊂ A+B,
(c) if V is a vector subspace of X, then V is a vector subspace of X,
(d) if A is convex, then A and intA are convex,
(e) if A is balanced, then A is balanced; if moreover 0 ∈ intA, then intA is balanced,
(f) if A is bounded, then A is bounded.
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Theorem 1.3. Let X be a TVS.

(a) For every U ∈ τ(0) there exists balanced V ∈ τ(0) with V ⊂ U .
(b) For every convex U ∈ τ(0) there exists balanced convex V ∈ τ(0) with V ⊂ U .

Corollary 1.4. Let X be a TVS.

(a) The space X has a balanced local base.
(b) If X is locally convex, then it has a balanced convex local base.

Theorem 1.5. Let (X, τ) be a TVS and V ∈ τ(0).

(a) If 0 < r1 < r2 < . . . and lim rn =∞, then X =
⋃∞
n=1 rnV .

(b) Every compact subset K ⊂ X is bounded.
(c) If δ1 > δ2 > δ3 > . . . , lim δn = 0, and V is bounded, then the collection {δnV ; n ∈ N} is

a local base for X.

Linear mappings.

Theorem 1.6. Let (X, τ) and (Y, σ) be TVS and T : X → Y be a linear mapping. Then the
following are equivalent.

(i) T is continuous.
(ii) T is continuous at 0.
(iii) T is uniformly continuous, i.e., for every U ∈ σ(0) there exists V ∈ σ(0) such that for

every x1, x2 ∈ X with x1 − x2 ∈ V we have T (x1)− T (x2) ∈ U .

Theorem 1.7. Let T : X → F be a nonzero linear mapping. Then the following are equivalent.

(i) T is continuous.
(ii) kerT is closed.
(iii) kerT 6= X.
(iv) T is bounded on some V ∈ τ(0).

Metrization.

Theorem 1.8. Let X be a TVS with a countable local base. Then there is a metric d on X such
that

(a) d is compatible with the topology of X,
(b) the open balls centered at 0 are balanced,
(c) d is invariant.

If, in addition, X is locally convex, then d can be chosen so as to satisfy (a), (b), (c), and also

(d) all open balls are convex.

Corollary 1.9. Let X be a TVS. Then the following are equivalent.

(i) X is metrizable.
(ii) X is metrizable by an invariant metric.
(iii) X has a countable local base.

Theorem 1.10. (a) If d is an invariant metric on a vector space X then d(nx, 0) ≤ nd(x, 0) for
every x ∈ X and n ∈ N.

(b) If {xn} is a sequence in a metrizable topological vector space X and if limxn = 0, then there
are positive scalars γn such that lim γn =∞ and lim γnxn = 0.

Boundedness and continuity.

Theorem 1.11. The following two properties of a set E in a topological vector space are equivalent:

(a) E is bounded.
(b) If {xn} is a sequence in E and {αn} is a sequence of scalars such that limαn = 0, then

limαnxn = 0.
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Theorem 1.12. Let X and Y be TVS and T : X → Y be a linear mapping. Consider the following
properties.

(i) T is continuous.
(ii) T is bounded, i.e., T (A) is bounded whenever A ⊂ X is bounded.
(iii) If {xn} converges to 0 in X, then {T (xn); n ∈ N} is bounded.
(iv) If {xn} converges to 0 in X, then {T (xn)} converges to 0.

Then we have (i) ⇒ (ii) ⇒ (iii). If X is metrizable then the properties (i)–(iv) are equivalent.

Pseudonorms and local convexity.

Definition. (a) A pseudonorm on a vector space X is a real-valued function p on X such that

• ∀x, y ∈ X : p(x+ y) ≤ p(x) + p(y) (subadditivity),
• ∀α ∈ F ∀x ∈ X : p(αx) = |α|p(x).

(b) A family P of pseudonorms on X is said to be separating if to each x 6= 0 corresponds at
least one p ∈ P with p(x) 6= 0.

(c) Let A ⊂ X be an absorbing set. The Minkowski functional µA of A is defined by

µA(x) = inf{t > 0; t−1x ∈ A}.

Theorem 1.13. Suppose p is a pseudonorm on a vector space X. Then

(a) p(0) = 0,
(b) ∀x, y ∈ X : |p(x)− p(y)| ≤ p(x− y),
(c) ∀x ∈ X : p(x) ≥ 0,
(d) {x ∈ X; p(x) = 0} is a subspace,
(e) the set B = {x ∈ X; p(x) < 1} is convex, balanced, absorbing, and p = µB.

Theorem 1.14. Let X be a vector space and A ⊂ X be a convex absorbing set. Then

(a) ∀x, y ∈ X : µA(x+ y) ≤ µA(x) + µA(y),
(b) ∀t ≥ 0: µA(tx) = tµA(x),
(c) µA is a pseudonorm if A is balanced,
(d) if B = {x ∈ X; µA(x) < 1} and C = {x ∈ X; µA(x) ≤ 1}, then B ⊂ A ⊂ C and

µA = µB = µC .

Theorem 1.15. Suppose B is a convex balanced local base in a topological vector space X. Asso-
ciate to every V ∈ B its Minkowski functional µV . Then {µV ; V ∈ B} is a separating family of
continuous pseudonorms on X.

Theorem 1.16. Suppose that P is a separating family of pseudonorms on a vector space X.
Associate to each p ∈ P and to each n ∈ N the set

V (p, n) =
{
x ∈ X; p(x) < 1

n

}
.

Let B be the collection of all finite intersection of the sets V (p, n). Then B is a convex balanced
local base for a topology τ on X, which turns X into a locally convex space such that

(a) every p ∈ P is continuous, and
(b) a set E ⊂ X is bounded if and only if every p ∈ P is bounded on E.

Theorem 1.17. Let X be a locally convex space with countable local base. Then X is metrizable
by an invariant metric.

Theorem 1.18. A TVS space X is normable if and only if its origin has a convex bounded
neighborhood.
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The Hahn-Banach theorems.

Theorem 1.19. Suppose that A and B are disjoint, nonempty convex sets in a topological vector
space X.

(a) If A is open there exist Λ ∈ X∗ and γ ∈ R such that Re Λ(x) < γ ≤ Re Λ(y) for every
x ∈ A and for every y ∈ B.

(b) If A is compact, B is closed, and X is locally convex, then there exist Λ ∈ X∗, γ1, γ2 ∈ R,
such that Re Λ(x) < γ1 < γ2 ≤ Re Λ(y) for every x ∈ A and for every y ∈ B.

Corollary 1.20. If X is a locally convex space then X∗ separates points on X.

Theorem 1.21. Suppose M is a subspace of a locally convex space X, and x0 ∈ X. If x0 /∈ M ,
then there exists Λ ∈ X∗ such that Λ(x0) = 1 and Λ(x) = 0 for every x ∈M .

Theorem 1.22. If f is a continuous linear functional on a subspace M of a locally convex space
X, then there exists Λ ∈ X∗ such that Λ = f on M .

Theorem 1.23. Suppose B is a closed convex balanced set in a locally convex space X, x0 ∈ X\B.
Then there exists Λ ∈ X∗ such that |Λ(x)| ≤ 1 for every x ∈ B and Λ(x0) > 1.

2. Weak topologies

Basic properties.

Definition. Let X be a vector space and M be a subspace of the algebraic dual X]. Denote
σ(X,M) the topology generated by pseudonorms x 7→ |ϕ(x)|, where ϕ ∈M .

Lemma 2.1. Suppose that Λ1, . . . ,Λn and Λ are linear functionals on a vector space X. The
following properties are equivalent.

(i) Λ ∈ span{Λ1, . . . ,Λn}
(ii) There exists γ ∈ R such that for every x ∈ X we have

|Λ(x)| ≤ γmax
{
|Λi(x)|; i ∈ {1, . . . , n}

}
.

(iii)
⋂n
i=1 Ker Λi ⊂ Ker Λ

Theorem 2.2. Suppose X is a vector space and M is a vector subspace of the algebraic dual X]

which is separating. Then (X,σ(X,M)) is a locally convex space and (X,σ(X,M))∗ = M .

Definition. Let X be a locally convex space. Then σ(X,X∗) is weak topology on X and
σ(X∗, X) is weak star topology on X∗.

Theorem 2.3 (Mazur). Let X be a locally convex space and A ⊂ X be convex. Then A
w

= A.

Corollary 2.4. Let X be a locally convex space.

(a) A subspace of X is originally closed if and only if it is weakly closed.
(b) A convex subset of X is originally dense if and only if it is weakly dense.

Theorem 2.5. Suppose X is a metrizable locally convex space. If {xn} is a sequence in X that
converges weakly to some x ∈ X, then there is a sequence {yi} in X such that

(a) each yi is a convex combination of finitely many xn, and
(b) lim yi = x (with respect to the original topology).
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Polars.

Definition. Let X be a TVS and A ⊂ X. Then the set

A0 = {x∗ ∈ X∗; |x∗(x)| ≤ 1 for every x ∈ A}

is called polar of A. If A ⊂ X∗, then we define

A0 = {x ∈ X; |x∗(x)| ≤ 1 for every x∗ ∈ A}.

Theorem 2.6 (Banach-Alaoglu). Let X be a TVS and V ⊂ X be a neighborhood of 0. Then V 0

is w∗-compact.

Theorem 2.7 (Bipolar theorem). Let X be a locally convex space.

(a) If A ⊂ X is a closed convex balanced set, then (A0)0 = A.
(b) If A ⊂ X∗ is w∗-closed convex balanced set, then A = (A0)0.

Theorem 2.8 (Goldstin). Let X be a normed linear space. Then BX is w∗-dense in BX∗∗ .

Theorem 2.9. Let X be a Banach space. Then X is reflexive if and only if BX is weakly compact.

Theorem 2.10. Let X be a reflexive Banach space and {xn} be a bounded sequence of points
from X. Then there exists a weakly convergent subsequence.

3. Vector integration

Convention. Throughout this section X will stand for a Banach space and (Ω,Σ, µ) will be a
finite measure space.

Definition. A function f : Ω→ X is called simple if there exist x1, . . . , xn ∈ X and E1, . . . , En ∈
Σ such that f =

∑n
i=1 xiχEi

. A function f : Ω → X is called µ-measurable if there exists a
sequence of simple functions {fn} such that lim ‖fn(ω) − f(ω)‖ = 0 for µ-almost all ω ∈ Ω. A
function f : Ω → X is called weakly µ-measurable if for each x∗ ∈ X∗ the function x∗ ◦ f is
µ-measurable.

Theorem 3.1 (Pettis’s measurability theorem). A function f : Ω → X is µ-measurable if and
only if

(a) f is µ-essentially separably valued, i.e., there exists E ∈ Σ with µ(E) = 0 and such that
f(Ω \ E) is a norm separable subset of X,

(b) f is weakly µ-measurable.

Corollary 3.2. A function f : Ω→ X is µ-measurable if and only if f is the µ-almost everywhere
uniform limit of a sequence of countably valued µ-measurable functions.

Definition. A µ-measurable function f : Ω→ X is called Bochner integrable if there exists a
sequence of simple functions {fn} such that lim

∫
Ω
‖fn− f‖dµ = 0. In this case,

∫
E
f dµ is defined

for each E ∈ Σ by
∫
E
f dµ = lim

∫
E
fn dµ.

Theorem 3.3. A µ-measurable function f : Ω→ X is Bochner integrable if and only if
∫

Ω
‖f‖dµ <

∞.

Theorem 3.4. If f is a µ-Bochner integrable function, then

(a) limµ(E)→0

∫
E
fdµ = 0,

(b) ‖
∫
E
fdµ‖ ≤

∫
E
‖f‖dµ for all E ∈ Σ,

(c) if {En} is a sequence of pairwise disjoint members of Σ and E =
⋃∞
n=1En, then∫

E

fdµ =

∞∑
n=1

∫
En

fdµ,

where the sum on the right is absolutely convergent,
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(d) if F (E) =
∫
E
fdµ, then F is of bounded variation and

|F |(E) =

∫
E

‖f‖dµ

for all E ∈ Σ.

Corollary 3.5. If f and g are µ-Bochner integrable and
∫
E
f dµ =

∫
E
g dµ for each E ∈ Σ, then

f = g µ-almost everywhere.

Theorem 3.6. Let Y be a Banach space, T ∈ L(X,Y ) and f : Ω → X be µ-Bochner integrable.
Then T ◦ f is µ-Bochner integrable and T (

∫
E
f dµ) =

∫
E
T ◦ f dµ.

Corollary 3.7. Let f a g be µ-measurable. If for each x∗ ∈ X∗, x∗◦f = x∗◦g µ-almost everywhere,
then f = g µ-almost everywhere.

Corollary 3.8. Let f be µ-Bochner integrable. Then for each E ∈ Σ with µ(E) > 0 one has

1

µ(E)

∫
E

f dµ ∈ co (f(E)).

4. Banach algebras

Basic properties.

Definition. (a) A complex algebra is a vector space A over the complex field C in which a
multiplication is defined that satisfies

• x(yz) = (xy)z,
• (x+ y)z = xz + yz, x(y + z) = xy + xz,
• α(xy) = (αx)y = x(αy),

for all x, y, z ∈ A and α ∈ C.
(b) If, in addition, A is a Banach space with respect to a norm that satisfies the multiplicative

inequality
‖xy‖ ≤ ‖x‖‖y‖, x, y ∈ A

then is called a Banach algebra.
(c) If an element e ∈ A in a Banach algebra satisfies xe = ex = x for every x ∈ A, then e is a

unit element.

Definition. (a) Suppose A is a complex algebra and ϕ is a linear functional on A which is not
identically 0. If ϕ(xy) = ϕ(x)ϕ(y) for all x, y ∈ A, then ϕ is called a complex homomorphism
on A.

(b) An element x ∈ A is said to be invertible if it has an inverse in A, that is, if there exists
an element x−1 ∈ A such that x−1x = xx−1 = e, where e is the unit element of A.

Theorem 4.1. If ϕ is a complex homomorphism on a complex algebra A with unit e, then ϕ(e) = 1,
and ϕ(x) 6= 0 for every invertible x ∈ A.

Theorem 4.2. Suppose that A is a Banach algebra with unit, x ∈ A, ‖x‖ < 1. Then

(a) e− x is invertible,

(b) ‖(e− x)−1 − e− x‖ ≤ ‖x‖2
1−‖x‖ ,

(c) |ϕ(x)| < 1 for every complex homomorphism ϕ on A.

Definition. Let A be a Banach algebra with unit.

(a) The set of all invertible elements of A is denoted by G(A).
(b) If x ∈ A, the spectrum σ(x) of x is the set of all complex numbers λ such that λe− x is

not invertible. The complement of σ(x) is the resolvent set of x.
(c) The spectral radius of x is the number ρ(x) = sup{|λ|; λ ∈ σ(x)}.

Theorem 4.3. Suppose A is a Banach algebra with unit, x ∈ G(A), h ∈ A, ‖h‖ < 1
2‖x
−1‖−1.

Then x+ h ∈ G(A) and

‖(x+ h)−1 − x−1 + x−1hx−1‖ ≤ 2‖x−1‖3‖h‖2.
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Theorem 4.4. If A is a Banach algebra with unit, then G(A) is an open subset of A and the
mapping x 7→ x−1 is a homeomorphism of G(A) onto G(A).

Theorem 4.5. If A is a Banach algebra with unit and x ∈ A, then

(a) the spectrum σ(x) of x is compact and nonempty, and
(b) the spectral radius ρ(x) of x satisfies

ρ(x) = lim ‖xn‖1/n = inf ‖xn‖1/n.

Theorem 4.6 (Gelfand-Mazur). If A is a Banach algebra with unit in which every nonzero
element is invertible, then A is (isometrically isomorphic to) the field of complex numbers.

Lemma 4.7. Suppose V and W are open sets in some topological space X, V ⊂ W , and W
contains no boundary point of V . Then V is a union of components of W .

Lemma 4.8. Suppose A is a Banach algebra with unit, xn ∈ G(A) for every n ∈ N, x is a
boundary point of G(A), and xn → x as n→∞. Then ‖x−1

n ‖ → ∞.

Theorem 4.9. (a) If A is a closed subalgebra of a Banach algebra B, and if A contains the unit
element of B, then G(A) is a union of components of A ∩G(B).

(b) Under these conditions, if x ∈ A, then σA(x) is the union of σB(x) and a (possibly empty)
collection of bounded components of the complement of σB(x). In particular, the boundary of σA(x)
lies in σB(x).

Corollary 4.10. If σB(x) does not separate C, that is, if its complement ΩB is connected, then
σA(x) = σB(x).

Theorem 4.11. Suppose A is a Banach algebra with unit, x ∈ A, Ω is an open set in C, and
σ(x) ⊂ Ω. Then there exists δ > 0 such that σ(x+ y) ⊂ Ω for every y ∈ A with ‖y‖ < δ.

Holomorphic calculus.

Theorem (Cauchy). Let Ω ⊂ C be open, f ∈ Hol(Ω) and Γ be a contour in Ω satisfying indΓ α = 0
for α ∈ C \ Ω. Then we have

(a) f(λ) indΓ λ = 1
2πi

∫
Γ
f(w)
w−λ dw, λ ∈ Ω \ 〈Γ〉,

(b)
∫

Γ
f(w) dw = 0,

(c) if Γ1, Γ2 are contours in Ω satisfying indΓ1
α = indΓ2

α for each α ∈ C \ Ω, then∫
Γ1
f(w) dw =

∫
Γ2
f(w) dw.

Theorem. Let K ⊂ Ω ⊂ C, K be compact and Ω be open. Then there exists a contour Γ in Ω
such that

(a) 〈Γ〉 ⊂ Ω \K,

(b) indΓ α =

{
1, α ∈ K,
0, α ∈ C \ Ω.

Definition. If Γ has the properties (a)–(b) from the previous theorem, then we say that Γ sur-
rounds K in Ω.

Notation. Let K ⊂ C be compact. Then the symbol Hol(K) denotes the set of all complex
functions which are holomorphic on some open set Ω ⊃ K.

Notation. Let x ∈ A. Denote Rλ = (λe− x)−1, λ ∈ C \ σ(x).

Lemma 4.12. Let x, y ∈ A.

(a) If x commutes with y, then x commutes with Rλ for every λ ∈ C \ σ(y).
(b) For every λ, µ ∈ C \ σ(x) we have

Rλ −Rµ = (µ− λ)RµRλ.
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Theorem 4.13. Let x ∈ A a f ∈ Hol(σ(x)). We set

f(x) =
1

2πi

∫
Γ

f(z)Rz dz,

where Γ is a contour surrounding σ(x) in D(f). The mapping Φ: f 7→ f(x) from Hol(σ(x)) into
A is well-defined and does not depend on the choice of Γ.

Theorem 4.14. Let x ∈ A and f ∈ Hol(σ(x)). Then we have

(a) (1)(x) = e a id(x) = x,
(b) Φ is algebraic homomorphism from Hol(σ(x)) into A,

(c) if fn ∈ Hol(D(f)) and fn
loc
⇒ f on D(f), then fn(x)→ f(x) in A,

(d) f(x) is invertible if and only if f 6= 0 on σ(x),
(e) σ(f(x)) = f(σ(x)),
(f) (g ◦ f)(x) = g(f(x)) pro g ∈ Hol(σ(f(x))),
(g) if y ∈ A commutes with x, then y commutes with f(x).

A computation in the proof of 4.14(b).

f(x)g(x) = −
1

4π2

(∫
Γ

f(z)Rz dz

)(∫
Λ

g(w)Rw dw

)
= −

1

4π2

∫
Γ

(
f(z)Rz

(∫
Λ

g(w)Rw dw

))
dz = −

1

4π2

∫
Γ

(∫
Λ

f(z)g(w)RzRw dw

)
dz

= −
1

4π2

∫
Γ

(∫
Λ

f(z)g(w)
Rz − Rw

w − z
dw

)
dz

= −
1

4π2

∫
Γ

(∫
Λ

f(z)g(w)

w − z
Rz dw −

∫
Λ

f(z)g(w)

w − z
Rw dw

)
dz

= −
1

4π2

∫
Γ

(
f(z)Rz

∫
Λ

g(w)

w − z
dw

)
dz +

1

4π2

∫
Γ

(∫
Λ

f(z)g(w)

w − z
Rw dw

)
dz

= −
1

4π2

∫
Γ

(
f(z)Rz

∫
Λ

g(w)

w − z
dw

)
dz +

1

4π2

∫
Λ

(∫
Γ

f(z)g(w)

w − z
Rw dz

)
dw

= −
1

4π2

∫
Γ

(
f(z)Rz

∫
Λ

g(w)

w − z
dw

)
dz +

1

4π2

∫
Λ

(
g(w)Rw

∫
Γ

f(z)

w − z
dz

)
dw

=
1

2πi

∫
Γ

f(z)g(z)Rz dz = (fg)(x)

Theorem 4.15. Suppose A is a Banach algebra with unit, x ∈ A, and the spectrum σ(x) does not
separate 0 from ∞. Then

(a) x has a logarithm in A,
(b) x has roots of all orders in A.

5. Gelfand transformation

Definition. A subset J of a commutative complex algebra A is said to be ideal if

(a) J is a subspace of A, and
(b) xy ∈ J whenever x ∈ A and y ∈ J .

If J 6= A, then J is a proper ideal. Maximal ideals are proper ideals which are not contained in
any larger proper ideal.

Theorem 5.1. (a) If A is a commutative complex algebra with unit, then every proper ideal of A
is contained in a maximal ideal of A

(b) If A is a commutative Banach algebra with unit, then every maximal ideal of A is closed.

Theorem 5.2. Let A be a commutative Banach algebra with unit. Let ∆ be the set of all complex
homomorphism of A.

(a) Every maximal ideal of A is the kernel of some h ∈ ∆.
(b) If h ∈ ∆, the kernel of h is a maximal ideal of A.
(c) An element x ∈ A is invertible in A if and only if h(x) 6= 0 for every h ∈ ∆.
(d) An element x ∈ A is invertible in A if and only if x lies in no proper ideal of A.
(e) λ ∈ σ(x) if and only if h(x) = λ for some h ∈ ∆.
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Definition. (a) Let ∆ be the set of all complex homomorphisms of a commutative Banach algebra
A with unit. The formula x̂(h) = h(x) assigns to each x ∈ A a function x̂ : ∆→ C, we call x̂ the
Gelfand transform of x.

(b) The Gelfand topology of ∆ is the weakest topology that makes every x̂ continuous.
(c) The radical of A, denoted by radA, is the intersection of all maximal ideals of A. If

radA = {0}, A is called semisimple.

Theorem 5.3. Let ∆ be the maximal ideal space of a commutative Banach algebra A with unit.

(a) ∆ is a compact Hausdorff space.

(b) The Gelfand transform is a homomorphism of A onto a subalgebra Â of C(∆), whose
kernel is radA. The Gelfand transform is therefore an isomorphism if and only if A is
semisimple.

(c) For each x ∈ A we have Rng x̂ = σ(x).

Theorem 5.4. If ψ : B → A is a homomorphism of a commutative Banach algebra B with unit
into a semisimple commutative Banach algebra with unit, then ψ is continuous.

Lemma 5.5. If A is a commutative Banach algebra with unit and

r = inf
x 6=0

‖x2‖
‖x‖2

, s = inf
x6=0

‖x̂‖∞
‖x‖

,

then s2 ≤ r ≤ s.

Theorem 5.6. Suppose A is a commutative Banach algebra with unit.

(a) The Gelfand transform is an isometry if and only if ‖x2‖ = ‖x‖2.

(b) A is semisimple and Â is closed in C(∆) if and only if there exists K < ∞ such that
‖x‖2 ≤ K‖x2‖ for every x ∈ A.

Definition. A mapping x 7→ x∗ of a complex (not necessarily commutative) algebra A into A is
called an involution on A if it has the following properties for every x, y ∈ A, and λ ∈ C:

• (x+ y)∗ = x∗ + y∗,
• (λx)∗ = λx∗,
• (xy)∗ = y∗x∗,
• x∗∗ = x.

Any x ∈ A for which x∗ = x is called hermitian, or self-adjoint.

Theorem 5.7. If A is a Banach algebra with unit and an involution, and if x ∈ A, then

(a) x+ x∗, i(x− x∗) and xx∗ are hermitian,
(b) x has a unique representation x = u + iv, with u ∈ A, v ∈ A, and both u and v are

hermitian,
(c) the unit e is hermitian,
(d) x is invertible in A if and only if x∗ is invertible, in which case (x∗)−1 = (x−1)∗, and
(e) λ ∈ σ(x) if and only if λ ∈ σ(x∗).

Theorem 5.8. If a Banach algebra A with unit is commutative and semisimple, then every invo-
lution on A is continuous.

Definition. A Banach algebra A with an involution x 7→ x∗ that satisfies ‖xx∗‖ = ‖x‖2 for every
x ∈ A is called a C∗-algebra.

Theorem 5.9 (Gelfand-Naimark). Suppose A is a commutative C∗-algebra with unit. The Gelfand
transform is then an isometric isomorphism of A onto C(∆), which has the additional property

x̂∗ = x̂ for every x ∈ A.

Theorem 5.10. If A is a commutative C∗-algebra with unit which contains an element x such

that the polynomials in x and x∗ are dense in A, then the formula Ψ̂f = f ◦ x̂ defines an isometric
isomorphism Ψ of C(σ(x)) onto A which satisfies Ψf = (Ψf)∗ for every f ∈ C(σ(x)). Moreover,
if f(λ) = λ on σ(x), then Ψf = x.
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Definition. Let A be an algebra with an involution. If x ∈ A and xx∗ = x∗x, then x is said to
be normal. A set S ⊂ A is said to be normal if S commutes and if x∗ ∈ S whenever x ∈ S.

Theorem 5.11. Suppose A is a Banach algebra with an involution, and B is a normal subset of
A that is maximal with respect to being normal. Then

(a) B is a closed commutative subalgebra of A, and
(b) σB(x) = σA(x) for every x ∈ B.

Theorem 5.12. Every C∗-algebra A has the following properties:

(a) Hermitian elements have real spectra.
(b) If x ∈ A is normal, then ρ(x) = ‖x‖.
(c) If y ∈ A, then ρ(yy∗) = ‖y‖2.
(d) If u, v ∈ A are hermitian, σ(u) ⊂ [0,∞), σ(v) ⊂ [0,∞), then σ(u+ v) ⊂ [0,∞).
(e) If y ∈ A, then σ(yy∗) ⊂ [0,∞).

Theorem 5.13. Suppose that A is a C∗-algebra with a unit e, B is a closed subalgebra of A,
e ∈ B, and x∗ ∈ B for every x ∈ B. Then σA(x) = σB(x) for every x ∈ B.

6. Operators on Hilbert spaces

In this section the symbol H stands for a nontrivial complex Hilbert space.

Definition. We say that T ∈ L(H) is

• normal, if T ∗T = TT ∗,
• selfadjoint (or also hermitian), if T ∗ = T ,
• unitary, if T ∗T = I = TT ∗,
• orthogonal projection, if T is a projection, i.e., T = T 2, and Rng T⊥KerT .

Lemma 6.1. Let T ∈ L(H). Then

(a) ‖T ∗T‖ = ‖TT ∗‖ = ‖T‖2,
(b) KerT ∗ = Rng T⊥.

Lemma 6.2. Let T ∈ L(H). Then the following are equivalent

(i) T = 0,
(ii) (Tx, x) = 0 for every x ∈ H.

Corollary 6.3. Let S, T ∈ L(X) for every x ∈ H satisfy (Sx, x) = (Tx, x). Then T = S.

Theorem 6.4 (characterization of normal operators). An operator T ∈ L(H) is normal if and
only if ‖Tx‖ = ‖T ∗x‖ for each x ∈ H.

Theorem 6.5 (properties of normal operators). Let T ∈ L(H) be normal. Then we have

(a) KerT = KerT ∗,
(b) T is invertible if and only if bounded from below, i.e., there exists c > 0 such that
‖Tx‖ ≥ c‖x‖ for every x ∈ H (Weyl),

(c) if x ∈ H satisfies Tx = λx, then T ∗x = λx,
(d) if λ1, λ2 ∈ C are different eigenvalues of T , then Ker(λ1I − T ) ⊥ Ker(λ2I − T ),
(e) ‖T 2‖ = ‖T‖2,
(f) ‖T‖ = ρ(T ).

Theorem 6.6 (characterization of selfadjoint operators). Let T ∈ L(H). Then T = T ∗ if and
only if (Tx, x) is a real number for every x ∈ H.

Theorem 6.7. Let S, T ∈ L(H) and S is selfadjoint. Then RngS ⊥ Rng T if and only if ST = 0.

Theorem 6.8. For every T ∈ L(H) there exists a unique decomposition T = S1 + iS2, where S1,
S2 are selfadjoint operators.

Definition. Let T ∈ L(H). Numerical range of the operator T is defined by

N(T ) = {(Tx, x); x ∈ SH}.
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Theorem 6.9 (Hilbert–Toeplitz). Let T ∈ L(H). Then σ(T ) ⊂ N(T ).

Theorem 6.10 (spectrum of selfadjoint operator). Let T ∈ L(H) be selfadjoint. Then N(T ) ⊂ R
and if we denote mT = inf N(T ), MT = supN(T ), then we have

(i) σ(T ) ⊂ [mT ,MT ],
(ii) ‖T‖ or −‖T || is in σ(T ),
(iii) mT ,MT ∈ σ(T ).

Theorem 6.11 (characterization of unitary operators). Let U ∈ L(H). Then the following are
equivalent:

(i) U is unitary,
(ii) RngU = H a (Ux,Uy) = (x, y), x, y ∈ H,
(iii) RngU = H a ‖Ux‖ = ‖x‖, x ∈ H.
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Theorem 6.12 (characterization of orthogonal projections). Let P ∈ L(H) be a projection. Then
the following are equivalent:

(i) P is selfadjoint,
(ii) P is normal,
(iii) P is orthogonal,
(iv) (Px, x) = ‖Px‖2, x ∈ H.

Theorem 6.13 (spectral decomposition of compact normal operator; Hilbert–Schmidt). Let T ∈
L(H) be compact and normal. Then there exists an orthonormal basis of H formed by eigenvectors
of T . Further there exist nonzero eigenvalues {λn}mn=1, m ∈ N ∪ {∞}, and an orthonormal basis
{en}mn=1 of the space Rng T such that

Tx =

m∑
n=1

λn(x, en)en, x ∈ H.

7. Spectral decompositions

Continuous calculus.

Theorem 7.1. Let T ∈ L(H) be normal. Then there exists a calculus Ψ: C(σ(T )) → L(H) with
the following properties:

(1) Ψ(p) =
∑n
k,l=0 aklT

k(T ∗)l for p(z) =
∑n
k,l=0 aklz

kzl,

(2) Ψ is algebraic isomorphisms of L(H), Ψ(f) = (Ψ(f))∗ and ‖Ψ(f)‖L(H) = ‖f‖C(σ(T )),
(3) Ψ(f) = f(T ) for f ∈ Hol(σ(T )),
(4) σ(Ψ(f)) = f(σ(T )) for f ∈ C(σ(T )),
(5) Ψ(f) is normal for f ∈ C(σ(T )),
(6) Ψ(f) is selfadjoint if and only if f is real,
(7) if S commutes with T , then S commutes with Ψ(f).

Borel calculus.

Lemma 7.2 (Lax-Milgram). Let B : H ×H → C be linear in the first coordinate and conjugate
linear in the second coordinate. Let

M := sup
x,y∈BH

|B(x, y)| <∞

Then there exists a unique T ∈ L(H) with B(x, y) = (Tx, y) for x, y ∈ H and ‖T‖ = M .

Notation. Let P be a metric space, then Bb(P ) denotes the set of all bounded Borel functions
from P to C. The set Bb(P ) is equipped by the supremum norm.

Lemma 7.3. Let P be a compact metric space and A be the smallest system of complex function
on P , which contains continuous functions and is closed with respect to pointwise limit of bounded
sequences. Then A = Bb(P ).

Theorem 7.4. Let T ∈ L(H) be normal. Then there exists a Borel calculus Θ: Bb(σ(T ))→ L(H)
such that

(1) Θ = Ψ on C(σ(T )),
(2) if fn ∈ Bb(σ(T )), fn → f , and {fn} is bounded, then for every x, y ∈ H we have

(Θ(fn)x, y)→ (Θ(f)x, y),
(3) Θ is an algebraic homomorphisms, (Θ(f))∗ = Θ(f), ‖Θ(f)‖ ≤ ‖f‖Bb(σ(T )),

(4) Θ(f) is normal for f ∈ Bb(σ(T )),
(5) if f ∈ Bb(σ(T )) is real, then Θ(f) is selfadjoint,
(6) if S commutes with T , then S commutes with Θ(f) for f ∈ Bb(σ(T )).
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Spectral decomposition of normal operator.

Notation. Let K be a metric space. The system of all Borel subsets of K is denoted by Borel(K).

Definition. LetK be a nonempty compact metric space. We say that the mapping E : Borel(K)→
L(H) is spectral measure, if we have:

(i) for every B ∈ Borel(K) is E(B) an orthogonal projection, E(∅) = 0, E(K) = I,
(ii) E(B1 ∩B2) = E(B1)E(B2) for every B1, B2 ∈ Borel(K),
(iii) E(B1 ∪B2) = E(B1) + E(B2) for every B1, B2 ∈ Borel(K) disjoint,
(iv) for every x ∈ H the mapping Ex,x : B 7→ (E(B)x, x) is a measure on K, such that its

completion is Radon.

Theorem 7.5. If T ∈ L(H) is normal, then E : Borel(σ(T ))→ L(H) defined as E(B) = Θ(χB)
is a spectral measure and it holds:

(i) ∀x ∈ H ∀f ∈ Bb(σ(T )) : (Θ(f)x, x) =
∫
σ(T )

f dEx,x,

(ii) for A ∈ Borel(σ(T )) and TA := T |RngE(A) we have TA ∈ L(RngE(A)) and σ(TA) ⊂ A,
(iii) for every nonempty set G ⊂ σ(T ) which is open in σ(T ) we have E(G) 6= 0.

Theorem 7.6. Let E : Borel(K) → L(H) be a spectral measure on a nonempty compact metric
space K. For every function f ∈ Bb(K) there exists a unique T (f) ∈ L(H) satisfying (T (f)x, x) =∫
K
f dEx,x for every x ∈ H. Further we have

(i) the mapping T : f 7→ T (f) is linear, multiplicative, ‖T‖ = 1, and T
(
f
)

=
(
T (f)

)∗
,

(ii) ‖T (f)x‖2 =
∫
K
|f |2 dEx,x, x ∈ H.

Notation. We denote T (f) =
∫
K
f dE =

∫
K
f(t) dE(t).

Theorem 7.7. Let T ∈ L(H) be normal. Then there exists a unique spectral measure E on σ(T )
such that T =

∫
σ(T )

tdE(t).

Theorem 7.8. Let T ∈ L(H) be normal and λ ∈ σ(T ). Then we have

(i) RngE({λ}) = Ker(λI − T ),
(ii) λ ∈ σp(T ) if and only if E({λ}) 6= 0,
(iii) if λ is an isolated point of σ(T ), then λ ∈ σp(T ).

Definition. We say that T ∈ L(H) is positive if (Tx, x) ≥ 0 for every x ∈ H. If T is positive we
write T ≤ 0.

Theorem 7.9. Let T ∈ L(H). Then the following are equivalent

(i) ∀x ∈ H : (Tx, x) ≥ 0,
(ii) T = T ∗ and σ(T ) ⊂ [0,∞).

Theorem 7.10. Every positive T ∈ L(H) has a unique positive square root S ∈ L(H). If T is
invertible then S is invertible.

Theorem 7.11. If T ∈ L(H), then the positive square root of T ∗T is the only positive operator
P ∈ L(H) that satisfies ‖Px‖ = ‖Tx‖ for every x ∈ H.

Theorem 7.12.

(a) If T ∈ L(H) is invertible, then T has a unique polar decomposition T = UP , i.e., U is
unitary and P ≥ 0.

(b) If T ∈ L(H) is normal, then T has a polar decomposition T = UP .
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