TOPOLOGICAL PRELIMINARY

Definition. Let X be a set and \mathcal{T} be a family of subsets of X. We say that (X, \mathcal{T}) is a *topological space* if the following conditions are satisfied

- (a) \emptyset and X belong to \mathcal{T} ,
- (b) if $G_{\alpha} \in \mathcal{T}$ for every $\alpha \in I$, then $\bigcup_{\alpha \in I} G_{\alpha} \in \mathcal{T}$
- (c) if $G_i \in \mathcal{T}$ for every $i \in \{1, \ldots, n\}, n \in \mathbb{N}$, then $\bigcap_{i=1}^n G_i \in \mathcal{T}$.

The sets from \mathcal{T} are called **open** and their complements are called **closed**.

Remark. Let (M, d) be a metric space. Let \mathcal{T} be the family of all open sets in (M, d) in the sense of the theory of metric spaces. Then the pair (M, \mathcal{T}) is a topological space. We say that the topology \mathcal{T} is generated by the metric d. Since each normed linear space can be considered also as a metric space, the preceding remark shows that each normed linear space can be considered also as a topological space. The topology which is defined using the given norm is called **norm topology**.

A topological space (X, \mathcal{T}) is called **metrizable** if there exists a metric ρ on X such that the topology generated by the metric ρ is \mathcal{T} .

Theorem (properties of closed sets). Let (X, \mathcal{T}) be a topological space.

- (a) The sets \emptyset and X are closed in (X, \mathcal{T}) ,
- (b) if F_{α} is closed in (X, \mathcal{T}) for every $\alpha \in I$, then $\bigcap_{\alpha \in I} F_{\alpha}$ is closed in (X, \mathcal{T}) ,
- (c) if F_i is closed for every $i \in \{1, ..., n\}, n \in \mathbb{N}$, then $\bigcup_{i=1}^n F_i \in \mathcal{T}$.

Definition. Let (X, \mathcal{T}) be a topological space and $A \subset X$. The **closure** of A is the intersection of all closed sets containing A, i.e., the smallest closed set containing A. The **interior** of A is the union of all open sets contained in A, i.e., the biggest open set contained in A.

Definition. Let (X, \mathcal{T}) be a topological space. We say that (X, \mathcal{T}) is

- (a) T_1 if for every $x, y \in X, x \neq y$, there exists an open set G such that $x \in G$ and $y \notin G$,
- (b) T₂ or Hausdorff topological space if for every x, y ∈ X, x ≠ y, there exist open sets G₁, G₂ such that x ∈ G₁, y ∈ G₂, and G₁ ∩ G₂ ≠ Ø.

Definition. Let (X, \mathcal{T}) and (Y, \mathcal{S}) be topological spaces and $f: X \to Y$ be a mapping. We say that f is a **continuous** mapping from (X, \mathcal{T}) to (Y, \mathcal{S}) if $f^{-1}(G)$ is open in (X, \mathcal{T}) whenever G is open in (Y, \mathcal{S}) .

Remark. The above notion extends the notion of continuity from metric space setting to topological one.

Definition. Let (X, \mathcal{T}) be a topological space. We say that a family $\mathcal{B} \subset \mathcal{T}$ is a **basis** of (X, \mathcal{T}) if any $G \in \mathcal{T}$ is a union of elements from \mathcal{B} . We say that a family $\mathcal{S} \subset \mathcal{T}$ is a **subbasis** of (X, \mathcal{T}) if the family of finite intersections of elements of \mathcal{S} forms a basis of (X, \mathcal{T}) .

Remark. Let X be a set and S be a family of subset of X. Then the topology generated by S is the smallest topology containing the family S, i.e., this is the topology \mathcal{T} such that $G \in \mathcal{T}$ if and only if G is a union of finite intersections of elements of S. Thus S is a subbasis of \mathcal{T} .

Definition. Let *I* be a nonempty set, *X* be a set, and \mathcal{F} be a family of mappings f_{α} of *X* into a topological space $(Y_{\alpha}, \mathcal{T}_{\alpha}), \alpha \in I$. The (**projective**) topology generated by the family \mathcal{F} is the smallest topology \mathcal{T} such that each mapping f_{α} is a continuous mapping from (X, \mathcal{T}) to $(Y_{\alpha}, \mathcal{T}_{\alpha})$, i.e. \mathcal{T} is the topology generated by the family of sets

$$\{f_{\alpha}^{-1}(G); \ \alpha \in I, G \in \mathcal{T}_{\alpha}\}.$$

Remark. (a) Let I be a nonempty set and (X_{α}, T_{α}) be a topological space for every $\alpha \in I$. Set $X = \prod_{\alpha \in I} X_{\alpha}$. The **product topology** on X is the topology generated by canonical projections from X to X_{α} . A basis of this topology is formed by the sets $\prod_{\alpha \in I} G_{\alpha}$, where each $G_{\alpha} \in \mathcal{T}_{\alpha}$ and for all α but finitely many we have $G_{\alpha} = X_{\alpha}$.

(b) Let X be a normed linear space. Then the **weak topology** is generated by the family of linear functionals which are continuous with respect to the norm topology.

Definition. We say that a topological space (X, \mathcal{T}) is **compact** if for every family of open sets \mathcal{G} which covers X, i.e., $X = \bigcup \mathcal{G}$, there exists a finite family $\mathcal{G}_0 \subset \mathcal{G}$ which covers X.

Theorem (Tychonoff's theorem). Let I be a nonempty set and $(X_{\alpha}, \mathcal{T}_{\alpha})$ be a compact topological space for every $\alpha \in I$. Then the space $\prod_{\alpha \in I} X_{\alpha}$ with the product topology is compact.