Real functions

M. Zelený

January 2, 2023

Contents

I Winter semester 5
1 Differentiation of measures 7
1.1 Covering theorems 7
1.2 Differentiation of measures 12
1.3 Lebesgue points 16
1.4 Density theorem 17
1.5 AC and BV functions 17
1.6 Rademacher theorem 19
1.7 Maximal operator 22
1.8 \quad Lipschitz functions and $W^{1, \infty}$ 22
2 Hausdorff measures 23
2.1 Basic notions 23
2.2 Area formula 23
2.3 Hausdorff dimension 24

Part I

Winter semester

Chapter 1

Differentiation of measures

1.1 Covering theorems

Covering theorems provide a tool which enables us to infer global properties from local ones in the context of measure theory.

Vitali theorem

Definition. Let $A \subset \mathbf{R}^{n}$. We say that a system \mathcal{V} consisting of closed balls from \mathbf{R}^{n} forms Vitali cover of A, if

$$
\forall x \in A \forall \varepsilon>0 \exists B \in \mathcal{V}: x \in B \wedge \operatorname{diam} B<\varepsilon
$$

Notation.

- $\lambda_{n} \ldots$ Lebesgue measure on \mathbf{R}^{n}
- $\lambda_{n}^{*} \ldots$ outer Lebesgue measure on \mathbf{R}^{n}
- If $B \subset \mathbf{R}^{n}$ is a ball and $\alpha>0$, then $\alpha \star B$ denotes the ball, which is concentric with B and with α-times greater radius than B.

Theorem 1.1 (Vitali). Let $A \subset \mathbf{R}^{n}$ and \mathcal{V} be a system of closed balls forming a Vitali cover of A. Then there exists a countable disjoint subsystem $\mathcal{A} \subset \mathcal{V}$ such that $\lambda_{n}(A \backslash \cup \mathcal{A})=0$.
Proof. First assume that A is bounded. Take an open bounded set $G \subset \mathbf{R}^{n}$ with $A \subset G$. Set

$$
\mathcal{V}^{*}=\{B \in \mathcal{V} ; B \subset G\} .
$$

The system \mathcal{V}^{*} is a Vitali cover of A again. If there exists a finite disjoint subsystem \mathcal{V}^{*} covering A, we are done. So assume
(\star) there is no finite disjoint subsystem of \mathcal{V}^{*} covering A.

1st step. We set

$$
s_{1}=\sup \left\{\operatorname{diam} B ; B \in \mathcal{V}^{*}\right\}
$$

and choose a ball $B_{1} \in \mathcal{V}^{*}$ such that diam $B_{1}>s_{1} / 2$. We know that $\mathcal{V}^{*} \neq \emptyset$ and $s_{1} \leq \operatorname{diam} G<\infty$.
k-th step. Suppose that we have already chosen balls B_{1}, \ldots, B_{k-1}. We set

$$
s_{k}=\sup \left\{\operatorname{diam} B ; B \in \mathcal{V}^{*} \wedge B \cap \bigcup_{i=1}^{k-1} B_{i}=\emptyset\right\}
$$

The supremum is considered for a nonempty set since the set $\bigcup_{i=1}^{k-1} B_{i}$ is closed, which by (\star) does not cover A, and \mathcal{V}^{*} is a Vitali cover of A. We choose a ball $B_{k} \in \mathcal{V}^{*}$ such that $B_{k} \cap \bigcup_{i=1}^{k-1} B_{i}=\emptyset$ and $\operatorname{diam} B_{k}>s_{k} / 2$.

This finishes the construction of the sequence $\left(B_{k}\right)_{k=1}^{\infty}$. Set $\mathcal{A}=\left\{B_{k} ; k \in \mathbf{N}\right\}$. We verify that \mathcal{A} is the desired system.

- \mathcal{A} is countable. This follows immediately from the construction.
- \mathcal{A} is disjoint. This follows from the construction.
- It holds $\lambda_{n}(A \backslash \bigcup \mathcal{A})=0$. We have

$$
\sum_{i=1}^{\infty} \lambda_{n}\left(B_{i}\right)=\lambda_{n}\left(\bigcup_{i=1}^{\infty} B_{i}\right) \leq \lambda_{n}(G)<\infty
$$

Thus the series $\sum_{i=1}^{\infty} \lambda_{n}\left(B_{i}\right)$ is convergent, therefore $\lim _{i} \lambda_{n}\left(B_{i}\right)=0$. Using the fact that $B_{i}, i \in \mathbf{N}$, are balls we also have $\lim _{i} \operatorname{diam} B_{i}=0$. We know that $2 \operatorname{diam} B_{i}>s_{i}$, consequently $\lim _{i} s_{i}=0$.

We show that

$$
\forall x \in A \backslash \bigcup \mathcal{A} \forall i \in \mathbf{N} \exists j \in \mathbf{N}, j>i: x \in 5 \star B_{j}
$$

Take $x \in A \backslash \bigcup \mathcal{A}$ and $i \in \mathbf{N}$. Denote $\delta=\operatorname{dist}\left(x, \bigcup_{k=1}^{i} B_{k}\right)$. It holds $\delta>0$ and there exists $B \in \mathcal{V}^{*}$ such that $x \in B$ and $\operatorname{diam} B<\delta$. Then we have $B \cap \bigcup_{k=1}^{i} B_{k}=\emptyset$. Thus we have $\operatorname{diam} B>s_{p}$ for some $p \in \mathbf{N}$ since $\lim _{i} s_{i}=0$. Therefore there exists $j>i$ with $B_{j} \cap B \neq \emptyset$. Let j be the smallest number with this property. Then we have $s_{j} \geq \operatorname{diam} B$ since $B \cap \bigcup_{l=1}^{j-1} B_{l}=\emptyset$. Further we have $\operatorname{diam} B_{j}>s_{j} / 2 \geq \frac{1}{2} \operatorname{diam} B$. Together we have $2 \operatorname{diam} B_{j} \geq \operatorname{diam} B$. This implies $x \in B \subset 5 \star B_{j}$.

For any $i \in \mathbf{N}$ we have

$$
\lambda_{n}^{*}(A \backslash \bigcup \mathcal{A}) \leq \lambda_{n}\left(\bigcup_{j=i}^{\infty} 5 \star B_{j}\right) \leq \sum_{j=i}^{\infty} \lambda_{n}\left(5 \star B_{j}\right)=5^{n} \sum_{j=i}^{\infty} \lambda_{n}\left(B_{j}\right)
$$

Using $\lim _{i \rightarrow \infty} \sum_{j=i}^{\infty} \lambda_{n}\left(B_{j}\right)=0$ we get $\lambda_{n}^{*}(A \backslash \bigcup \mathcal{A})=0$, and therefore $\lambda_{n}(A \backslash \bigcup \mathcal{A})=0$.
Now we assume that the set A is a general subset of \mathbf{R}^{n}. Let $\left(G_{j}\right)_{j=1}^{\infty}$ be a sequence of bounded disjoint open sets such that $\lambda_{n}\left(\mathbf{R}^{n} \backslash \bigcup_{j=1}^{\infty} G_{j}\right)=0$. Denote

$$
\mathcal{V}_{j}^{*}=\left\{B \in \mathcal{V} ; B \subset G_{j}\right\} .
$$

The system \mathcal{V}_{j}^{*} forms a Vitali cover of the bounded set $G_{j} \cap A$. Using the previous part of the construction we find a countable disjoint system $\mathcal{A}_{j} \subset \mathcal{V}_{j}^{*}$ with $\lambda_{n}\left(\left(G_{j} \cap A\right) \backslash \bigcup \mathcal{A}_{j}\right)=0$. Now we set $\mathcal{A}=\bigcup_{j} \mathcal{A}_{j}$.

The end of the lecture no. 1, 3. 10. 2022
Definition. We say that a measure μ on \mathbf{R}^{n} satisfies Vitali theorem, if for every $M \subset \mathbf{R}^{n}$ and every Vitali cover \mathcal{V} of M there exists countable disjoint cover $\mathcal{A} \subset \mathcal{V}$ such that $\mu(M \backslash \bigcup \mathcal{A})=0$.

Remark. (1) By Theorem $\overline{1.1} \lambda_{n}$ satisfies Vitali theorem.
(2) If μ satisfies Vitali theorem and $\nu \ll \mu$, then ν satisfies Vitali theorem.

Remark. If μ is the Borel measure on \mathbf{R}^{2} such that $\mu(A)=\lambda_{1}(A \cap(\mathbf{R} \times\{0\}))$ for any $B \subset \mathbf{R}^{2}$ Borel, then Vitali theorem does not hold for μ.

Theorem 1.2. Let $E \subset \mathbf{R}^{n}$ be measurable and \mathcal{S} be a finite system of closed balls covering E. Then there exists a disjoint system $\mathcal{L} \subset \mathcal{S}$ such that $\lambda_{n}(E) \leq 3^{n} \sum_{B \in \mathcal{L}} \lambda_{n}(B)$.

Proof. Without any loss of generality we may assume that \mathcal{S} is nonempty. Choose $B_{1} \in \mathcal{S}$ with maximal radius among balls in \mathcal{S}. Suppose that we have already constructed B_{1}, \ldots, B_{k-1}. If possible, choose $B_{k} \in$ \mathcal{S} disjoint with $\bigcup_{i<k} B_{i}$ and with maximal radius among balls in \mathcal{S} satisfying this property. We construct a finite sequence of closed balls B_{1}, \ldots, B_{N} and set $\mathcal{L}=\left\{B_{1}, \ldots, B_{N}\right\}$. We have $E \subset \bigcup_{B \in \mathcal{L}} 3 \star B$. To this end consider $x \in E$. Then there exists $B \in \mathcal{S}$ with $x \in B$. We find minimal k such that $B \cap B_{k} \neq \emptyset$. Then we have radius $(B) \leq \operatorname{radius}\left(B_{k}\right)$. This implies that $x \in B \subset 3 \star B_{k}$.

Then we have

$$
\lambda_{n}(E) \leq \lambda_{n}\left(\bigcup_{B \in \mathcal{L}} 3 \star B\right) \leq \sum_{B \in \mathcal{L}} \lambda_{n}(3 \star B)=3^{n} \sum_{B \in \mathcal{L}} \lambda_{n}(B)
$$

Besicovitch theorem

Theorem 1.3 (Besicovitch). For each $n \in \mathbf{N}$ there exists $N \in \mathbf{N}$ with the following property. If $A \subset \mathbf{R}^{n}$ and $\Delta: A \rightarrow(0, \infty)$ is a bounded function, then there exist sets A_{1}, \ldots, A_{N} such that

- $\left\{\bar{B}(x, \Delta(x)) ; x \in A_{i}\right\}$ is disjoint for every $i \in\{1, \ldots, N\}$,
- $A \subset \bigcup\left\{\bar{B}(x, \Delta(x)) ; x \in \bigcup_{i=1}^{N} A_{i}\right\}$.

Proof. The case of a bounded set A. Let $R=\sup _{A} \Delta$. Choose $B_{1}:=\bar{B}\left(a_{1}, r_{1}\right)$ such that $a_{1} \in A$ and $r_{1}:=\Delta\left(a_{1}\right)>\frac{3}{4} R$. Assume that we have already chosen balls B_{1}, \ldots, B_{j-1} where $j \geq 2$. If

$$
F_{j}:=A \backslash \bigcup_{i=1}^{j-1} \bar{B}\left(a_{i}, r_{i}\right)=\emptyset
$$

then the process stops and we set $J=j$. If $F_{j} \neq \emptyset$, we continue by choosing $B_{j}:=\bar{B}\left(a_{j}, r_{j}\right)$ such that $a_{j} \in F_{j}$ and

$$
\begin{equation*}
r_{j}:=\Delta\left(a_{j}\right)>\frac{3}{4} \sup _{F_{j}} \Delta \tag{1.1}
\end{equation*}
$$

If $F_{j} \neq \emptyset$ for all j, then we set $J=\infty$. In this case $\lim _{j \rightarrow \infty} r_{j}=0$ because A is bounded and the inequalities

$$
\left\|a_{i}-a_{j}\right\| \geq r_{i}=\frac{1}{3} r_{i}+\frac{2}{3} r_{i}>\frac{1}{3} r_{i}+\frac{1}{2} r_{j}>\frac{1}{3} r_{i}+\frac{1}{3} r_{j}
$$

for $i<j<J$ imply that

$$
\begin{equation*}
\left\{\frac{1}{3} \star B_{j} ; j<J\right\} \text { is a disjoint family. } \tag{1.2}
\end{equation*}
$$

In case $J<\infty$, we have $A \subset \bigcup_{j<J} B_{j}$. This is also true in the case $J=\infty$. Otherwise there exist $a \in \bigcap_{j=1}^{\infty} F_{j}$ and $j_{0} \in \mathbf{N}$ with $r_{j_{0}} \leq \frac{3}{4} \Delta(a)$, contradicting the choice of $r_{j_{0}}$.

Fix $k<J$. We set $I=\left\{i<k ; B_{i} \cap B_{k} \neq \emptyset\right\}$. We now prove that there exists $M \in \mathbf{N}$ depending only on n which estimates $|I|$. To this end we split I into I_{1} and I_{2} and we estimate their cardinality separately.

$$
\begin{aligned}
& I_{1}=\left\{i<k ; B_{i} \cap B_{k} \neq \emptyset, r_{i}<10 r_{k}\right\}, \\
& I_{2}=\left\{i<k ; B_{i} \cap B_{k} \neq \emptyset, r_{i} \geq 10 r_{k}\right\}
\end{aligned}
$$

The estimate of $\left|I_{1}\right|$. We have $\frac{1}{3} \star B_{i} \subset 15 \star B_{k}$ for every $i \in I_{1}$. Indeed, if $x \in \frac{1}{3} \star B_{i}$, then

$$
\left\|x-a_{k}\right\| \leq\left\|x-a_{i}\right\|+\left\|a_{i}-a_{k}\right\| \leq \frac{10}{3} r_{k}+r_{i}+r_{k} \leq \frac{43}{3} r_{k}<15 r_{k}
$$

Hence, there are at most 60^{n} elements of I_{1}, because for any $i \in I_{1}$ we have

$$
\lambda_{n}\left(\frac{1}{3} \star B_{i}\right)=\lambda_{n}(\bar{B}(0,1)) \cdot\left(\frac{1}{3} r_{i}\right)^{n}>\lambda_{n}(\bar{B}(0,1)) \cdot\left(\frac{1}{4} r_{k}\right)^{n}=\frac{1}{60^{n}} \lambda_{n}\left(15 \star B_{k}\right)
$$

The end of the lecture no. 2, 10. 10. 2022

See 1.7
The end of the lecture no. 3, 24. 10. 2022
The estimate of $\left|I_{2}\right|$. Denote $b_{i}=a_{i}-a_{k}$. An elementary mesh-like construction gives a family $\left\{Q_{m} ; 1 \leq\right.$ $\left.m \leq(22 n)^{n}\right\}$ of closed cubes with edge length $1 /(11 n)$ (so that $\operatorname{diam} Q_{m} \leq 1 / 11$), which cover $[-1,1]^{n}$ and thus in particular the unit sphere. We claim that for each $1 \leq m \leq(22 n)^{n}$ there is at most one $i \in I_{2}$ such that $b_{i} /\left\|b_{i}\right\| \in Q_{m}$, which estimates the cardinality of I_{2}.

If the claim were not valid, then there would exist $i, j \in I_{2}, i<j$, such that

$$
\left\|\frac{b_{i}}{\left\|b_{i}\right\|}-\frac{b_{j}}{\left\|b_{j}\right\|}\right\| \leq \frac{1}{11}
$$

Notice that

$$
\begin{equation*}
r_{i}<\left\|b_{i}\right\|<r_{i}+r_{k} \quad \text { and } \quad r_{j}<\left\|b_{j}\right\|<r_{j}+r_{k} \tag{1.3}
\end{equation*}
$$

as the balls B_{i}, B_{j} intersect B_{k} but does not contain a_{k}. Hence

$$
\left|\left\|b_{i}\right\|-\left\|b_{j}\right\|\right| \leq\left|r_{i}-r_{j}\right|+r_{k} \leq\left|r_{i}-r_{j}\right|+\frac{1}{10} r_{j}
$$

and

$$
\begin{equation*}
\left\|b_{j}\right\| \leq r_{j}+r_{k} \leq r_{j}+\frac{1}{10} r_{j}=\frac{11}{10} r_{j} \tag{1.4}
\end{equation*}
$$

We have

$$
\begin{aligned}
\left\|a_{i}-a_{j}\right\| & =\left\|b_{i}-b_{j}\right\| \leq\left\|b_{i}-\frac{\left\|b_{j}\right\|}{\left\|b_{i}\right\|} b_{i}\right\|+\left\|\frac{\left\|b_{j}\right\|}{\left\|b_{i}\right\|} b_{i}-b_{j}\right\| \\
& =\left\|\frac{\left\|b_{i}\right\| b_{i}}{\left\|b_{i}\right\|}-\frac{\left\|b_{j}\right\|}{\left\|b_{i}\right\|} b_{i}\right\|+\left\|\frac{\left\|b_{j}\right\|}{\left\|b_{i}\right\|} b_{i}-\frac{\left\|b_{j}\right\|}{\left\|b_{j}\right\|} b_{j}\right\| \\
& \leq\left|\left\|b_{i}\right\|-\left\|b_{j}\right\|\right|+\frac{1}{11}\left\|b_{j}\right\| \\
& \leq\left|r_{i}-r_{j}\right|+\frac{1}{10} r_{j}+\frac{1}{10} r_{j} \quad \text { (using (1.3) and (1.4)) } \\
& \leq \begin{cases}r_{i}-\frac{4}{5} r_{j}<r_{i} & \text { if } r_{i}>r_{j} \\
-r_{i}+\frac{6}{5} r_{j} \leq-r_{i}+\frac{8}{5} r_{i}<r_{i} & \text { if } r_{i} \leq r_{j}\end{cases}
\end{aligned}
$$

In the last inequality we have used that $i<j$ and thus $r_{j}<\frac{4}{3} r_{i}$ by 1.1. We arrived at a contradiction as $i<j$ and thus $a_{j} \notin B_{i}$. Hence $\left|I_{2}\right| \leq(22 n)^{n}$.

Thus it is sufficient to choose $M>60^{n}+(22 n)^{n}$.
Choice of A_{1}, \ldots, A_{M}. For each $k \in \mathbf{N}$ we define $\lambda_{k} \in\{1,2, \ldots, M\}$ such that $\lambda_{k}=k$ whenever $k \leq M$ and for $k>M$ we define λ_{k} inductively as follows. There is $\lambda_{k} \in\{1, \ldots, M\}$ such that

$$
B_{k} \cap \bigcup\left\{B_{i} ; i<k, \lambda_{i}=\lambda_{k}\right\}=\emptyset
$$

Now we set $A_{j}=\left\{a_{i} ; \lambda_{i}=j\right\}, j=1, \ldots, M$.

The case of a general set A. For each $l \in \mathbf{N}$ apply the previously obtained result with A replaced by

$$
A^{l}=A \cap\{x ; 3(l-1) R \leq\|x\|<3 l R\}
$$

and denote resulting sets as $A_{i}^{l}, i=1, \ldots, M$. Then we set

$$
A_{i}=\bigcup_{l \text { is odd }} A_{i}^{l}, \quad A_{M+i}=\bigcup_{l \text { is even }} A_{i}^{l}, \quad i=1, \ldots, M
$$

Then we constructed $N:=2 M$ subsets which have the required properties.
Definition. Let P be a locally compact space and \mathcal{S} be a σ-algebra of subsets of P. We say that μ is a Radon measure on (P, \mathcal{S}) if
(a) \mathcal{S} contains all Borel subsets of P,
(b) $\mu(K)<\infty$ for every compact set $K \subset P$,
(c) $\mu(G)=\sup \{\mu(K) ; K \subset G$ is compact $\}$ for every open set $G \subset P$,
(d) $\mu(A)=\inf \{\mu(G) ; A \subset G, G$ is open $\}$ for every $A \in \mathcal{S}$,
(e) μ is complete.

Definition. Let μ be a measure on X. Outer measure corresponding to μ is defined by

$$
\mu^{*}(A)=\inf \{\mu(B) ; A \subset B, B \text { is } \mu \text {-measurable }\}
$$

Remark. Let μ be a Radon measure on $\left(\mathbf{R}^{n}, \mathcal{S}\right)$ and $A \in \mathcal{S}$. Then there exist a Borel set $B \subset \mathbf{R}^{n}$ such that $A \subset B$ and $\mu(B \backslash A)=0$. If ν is a Radon measure on $\left(\mathbf{R}^{n}, \mathcal{S}^{\prime}\right)$ with $\nu \ll \mu$, then $\mathcal{S} \subset \mathcal{S}^{\prime}$.

Lemma 1.4. Let μ be a measure on X and $\left\{A_{j}\right\}_{j=1}^{\infty}$ be an increasing sequence of subset of X. Then $\lim \mu^{*}\left(A_{j}\right)=\mu^{*}\left(\bigcup_{j=1}^{\infty} A_{j}\right)$.

Theorem 1.5. Let μ be a Radon measure on \mathbf{R}^{n} and \mathcal{F} be a system of closed balls in \mathbf{R}^{n}. Let A denote the set of centers of the balls in \mathcal{F}. Assume $\inf \{r ; B(a, r) \in \mathcal{F}\}=0$ for each $a \in A$. Then there exists a countable disjoint system $\mathcal{G} \subset \mathcal{F}$ such that $\mu(A \backslash \bigcup \mathcal{G})=0$.

Proof. The case $\mu^{*}(A)<\infty$. Let N be the natural number from Theorem 1.3. Fix θ such that $1-\frac{1}{N}<$ $\theta<1$.

Claim. Let $U \subset \mathbf{R}^{n}$ be an open set. There exists a disjoint finite system $\mathcal{H} \subset \mathcal{F}$ such that $\bigcup \mathcal{H} \subset U$ and

$$
\begin{equation*}
\mu^{*}((A \cap U) \backslash \bigcup \mathcal{H}) \leq \theta \mu^{*}(A \cap U) \tag{1.5}
\end{equation*}
$$

The end of the lecture no. $4,31.10 .2022$
Proof of Claim. We may assume that $\mu^{*}(A \cap U)>0$. Let $\mathcal{F}_{1}=\{B \in \mathcal{F}$; $\operatorname{diam} B<1, B \subset U\}$. By Theorem 1.3 there exist disjoint families $\mathcal{G}_{1}, \ldots, \mathcal{G}_{N} \subset \mathcal{F}_{1}$ such that

$$
A \cap U \subset \bigcup_{i=1}^{N} \bigcup \mathcal{G}_{i}
$$

Thus

$$
\mu^{*}(A \cap U) \leq \sum_{i=1}^{N} \mu^{*}\left(A \cap U \cap \bigcup \mathcal{G}_{i}\right)
$$

Consequently, there exists an integer $1 \leq j \leq N$ for which

$$
\mu^{*}\left(A \cap U \cap \bigcup \mathcal{G}_{j}\right) \geq \frac{1}{N} \mu^{*}(A \cap U)>(1-\theta) \mu^{*}(A \cap U)
$$

Using Lemma 1.4 we find a finite system $\mathcal{H} \subset \mathcal{G}_{j}$ such that

$$
\mu^{*}(A \cap U \cap \bigcup \mathcal{H})>(1-\theta) \mu^{*}(A \cap U)
$$

The set $\bigcup \mathcal{H}$ is μ-measurable and therefore

$$
\begin{aligned}
\mu^{*}(A \cap U) & =\mu^{*}(A \cap U \cap \bigcup \mathcal{H})+\mu^{*}(A \cap U \backslash \bigcup \mathcal{H}) \\
& \geq(1-\theta) \mu^{*}(A \cap U)+\mu^{*}(A \cap U \backslash \bigcup \mathcal{H})
\end{aligned}
$$

This gives (1.5).

Set $U_{1}=\mathbf{R}^{n}$. Using Claim we find a disjoint finite system $\mathcal{H}_{1} \subset \mathcal{F}$ such that $\bigcup \mathcal{H}_{1} \subset U_{1}$ and

$$
\mu^{*}\left(\left(A \cap U_{1}\right) \backslash \bigcup \mathcal{H}_{1}\right) \leq \theta \mu^{*}\left(A \cap U_{1}\right)
$$

Continuing by induction we obtain a sequence of open set $\left(U_{j}\right)$ and finite disjoint finite systems $\left(\mathcal{H}_{j}\right)$ such that $U_{j+1}=U_{j} \backslash \bigcup \mathcal{H}_{j}, \mathcal{H}_{j} \subset \mathcal{F}, \bigcup \mathcal{H}_{j} \subset U_{j}$, and

$$
\mu\left(A \cap U_{j+1}\right)=\mu^{*}\left(\left(A \cap U_{j}\right) \backslash \bigcup \mathcal{H}_{j}\right) \leq \theta \mu^{*}\left(A \cap U_{j}\right)
$$

for every $j \in \mathbf{N}$. Together we have

$$
\mu^{*}\left(A \cap U_{j+1}\right) \leq \theta^{j} \mu^{*}(A)
$$

for every $j \in \mathbf{N}$. Since $\mu^{*}(A)<\infty$ we get $\mu^{*}\left(A \backslash \bigcup_{j=1}^{\infty} \bigcup \mathcal{H}_{j}\right)=0$. Thus we set $\mathcal{G}=\bigcup_{j=1}^{\infty} \mathcal{H}_{j}$ and we are done.

The general case. We find a sequence of bounded disjoint open sets $\left(G_{j}\right)_{j=1}^{\infty}$ such that $\mu\left(\mathbf{R}^{n} \backslash \bigcup_{j=1}^{\infty} G_{j}\right)=$ 0 . Then $\mu\left(G_{j}\right)<\infty$ for every $j \in \mathbf{N}$ and we proceed as in the proof of Theorem 1.1

1.2 Differentiation of measures

Notation. The symbol \mathcal{B} stands for the family of all closed balls in \mathbf{R}^{n}.
Definition. Let ν and μ are measures on \mathbf{R}^{n} and $x \in \mathbf{R}^{n}$. Then we define

- upper derivative of ν with respect to μ at x by

$$
\bar{D}(\nu, \mu, x)=\lim _{r \rightarrow 0+}(\sup \{\nu(B) / \mu(B) ; x \in B, B \in \mathcal{B}, \operatorname{diam} B<r\})
$$

if the term at the right side is defined,

- lower derivative of ν with respect to μ at x by

$$
\underline{D}(\nu, \mu, x)=\lim _{r \rightarrow 0+}(\inf \{\nu(B) / \mu(B) ; x \in B, B \in \mathcal{B}, \operatorname{diam} B<r\}),
$$

if the term at the right side is defined,

- derivative of ν with respect to μ at x (denoting $D(\nu, \mu, x)$) as the common value of $\bar{D}(\nu, \mu, x)$ and $\underline{D}(\nu, \mu, x)$, if it is defined.

Remark. The value $\bar{D}(\nu, \mu, x)(\underline{D}(\nu, \mu, x))$ is well defined if and only if

$$
\forall B \in \mathcal{B}, x \in B: \mu(B)>0
$$

Theorem 1.6. Let ν and μ be Radon measures on \mathbf{R}^{n} and μ satisfy Vitali theorem. Then $\bar{D}(\nu, \mu, x)$ and $\underline{D}(\nu, \mu, x)$ exist μ-a.e.

Proof. Denote

$$
\begin{aligned}
M & =\left\{x \in \mathbf{R}^{n} ; \bar{D}(\nu, \mu, x) \text { is not defined }\right\} \\
\mathcal{V} & =\{B \in \mathcal{B} ; \mu(B)=0\}
\end{aligned}
$$

The family \mathcal{V} is a Vitali cover of M. We find a countable disjoint system $\mathcal{A} \subset \mathcal{V}$ such that $\mu(M \backslash \bigcup \mathcal{A})=0$. The we have

$$
\mu(\bigcup \mathcal{A})=\sum_{B \in \mathcal{A}} \mu(B)=0
$$

therefore $\mu(M)=0$.
The proof for $\underline{D}(\nu, \mu, x)$ is analogous.
Theorem 1.7. Let ν and μ be Radon measures on \mathbf{R}^{n}, μ satisfy Vitali theorem, $c \in(0, \infty)$, and $M \subset \mathbf{R}^{n}$.
(i) If for every $x \in M$ we have $\bar{D}(\nu, \mu, x)>c$, then $\nu^{*}(M) \geq c \mu^{*}(M)$.
(ii) Iffor every $x \in M$ we have $\underline{D}(\nu, \mu, x)<c$, then there exists $H \subset M$ such that $\mu(M \backslash H)=0$ and $\nu^{*}(H) \leq c \mu^{*}(M)$.

Proof. (i) Choose $\varepsilon>0$. There exists an open set $G \subset \mathbf{R}^{n}$ with $M \subset G$ and $\nu(G) \leq \nu^{*}(M)+\varepsilon$. Set

$$
\mathcal{V}=\{B \in \mathcal{B} ; B \subset G, \nu(B)>c \mu(B)\}
$$

The family \mathcal{V} is a Vitali cover of M. There exists a disjoint countable subfamily $\mathcal{A} \subset \mathcal{V}$ with $\mu(M \backslash \bigcup \mathcal{A})=$ 0 . Then we have

$$
\begin{aligned}
\nu^{*}(M)+\varepsilon & \geq \nu(G) \geq \nu(\bigcup \mathcal{A})=\sum_{B \in \mathcal{A}} \nu(B) \\
& \geq \sum_{B \in \mathcal{A}} c \mu(B)=c \mu(\bigcup \mathcal{A}) \geq c \mu^{*}(M) .
\end{aligned}
$$

Taking $\varepsilon \rightarrow 0+$ we get the desired inequality.
The end of the lecture no. 5, 7.11.2022
(ii) Choose $k \in \mathbf{N}$. There exists an open set $G_{k} \subset \mathbf{R}^{n}$ such that $M \subset G_{k}$ and $\mu\left(G_{k}\right) \leq \mu^{*}(M)+1 / k$. Set

$$
\mathcal{V}_{k}=\left\{B \in \mathcal{B} ; B \subset G_{k}, \nu(B)<c \mu(B)\right\} .
$$

The system \mathcal{V}_{k} is a Vitali cover of M. Thus there exists a countable disjoint subfamily $\mathcal{A}_{k} \subset \mathcal{V}_{k}$ such that $\mu\left(M \backslash \bigcup \mathcal{A}_{k}\right)=0$. Set $H_{k}=M \cap \bigcup \mathcal{A}_{k}$. Then $\mu\left(M \backslash H_{k}\right)=0, H_{k} \subset M$ and we have

$$
\begin{aligned}
\nu^{*}\left(H_{k}\right) & \leq \nu\left(\bigcup \mathcal{A}_{k}\right)=\sum_{B \in \mathcal{A}} \nu(B) \leq c \sum_{B \in \mathcal{A}} \mu(B)=c \mu(\bigcup \mathcal{A}) \\
& \leq c \mu\left(G_{k}\right) \leq c\left(\mu^{*}(M)+\frac{1}{k}\right)
\end{aligned}
$$

Now we set $H=\bigcap_{k=1}^{\infty} H_{k}$. Then we have $\nu^{*}(H) \leq c \mu^{*}(M)$ and

$$
\mu(M \backslash H)=\mu^{*}(M \backslash H) \leq \sum_{k=1}^{\infty} \mu^{*}\left(M \backslash H_{k}\right)=0
$$

Theorem 1.8. Let ν and μ be Radon measures on \mathbf{R}^{n} and μ satisfies Vitali theorem. Then $D(\nu, \mu, x)$ is finite μ-a.e.
Proof. Denote

$$
\begin{aligned}
D & =\left\{x \in \mathbf{R}^{n} ; D(\nu, \mu, x) \in\langle 0, \infty)\right\} \\
N_{1} & =\left\{x \in \mathbf{R}^{n} ; \bar{D}(\nu, \mu, x) \text { is not defined }\right\} \\
N_{2} & =\left\{x \in \mathbf{R}^{n} ; \underline{D}(\nu, \mu, x) \text { is not defined }\right\} \\
N_{3} & =\left\{x \in \mathbf{R}^{n} ; \bar{D}(\nu, \mu, x)=\infty\right\} \\
N_{4} & =\left\{x \in \mathbf{R}^{n} ; \underline{D}(\nu, \mu, x)<\bar{D}(\nu, \mu, x)\right\}
\end{aligned}
$$

Then we have

- $D=\mathbf{R}^{n} \backslash\left(N_{1} \cup N_{2} \cup N_{3} \cup N_{4}\right)$,
- $\mu\left(N_{1}\right)=\mu\left(N_{2}\right)=0$ (Theorem 1.6.

Further we define

$$
\begin{aligned}
A_{k} & =\left\{x \in \mathbf{R}^{n} ; \bar{D}(\nu, \mu, x)>k\right\} \\
A(r, s) & =\left\{x \in \mathbf{R}^{n} ; \underline{D}(\nu, \mu, x)<s<r<\bar{D}(\nu, \mu, x)\right\}, \quad s, r \in \mathbf{Q}^{+}, s<r .
\end{aligned}
$$

The we have

$$
\begin{aligned}
& N_{3}=\bigcap_{k=1}^{\infty} A_{k} \\
& N_{4}=\bigcup\left\{A(r, s) ; r, s \in \mathbf{Q}^{+}, s<r\right\}
\end{aligned}
$$

We show $\mu\left(N_{3}\right)=0$. Choose $Q \subset N_{3}$ bounded. By Theorem 1.7 i) we have

$$
k \mu^{*}(Q) \leq \nu^{*}(Q)<\infty
$$

for every $k \in \mathbf{N}$. Therefore $\mu^{*}(Q)=0$ and thus also $\mu\left(N_{3}\right)=0$, since N_{3} is a countable union of bounded sets.

We show $\mu\left(N_{4}\right)=0$. It is sufficient to show $\mu(A(r, s))=0$ for every $s, r \in \mathbf{Q}^{+}, s<r$. Choose $Q \subset$ $A(r, s)$ bounded. By Theorem 1.7 (ii) there exists $H \subset Q$ such that $\mu(Q \backslash H)=0$ and $\nu^{*}(H) \leq s \mu^{*}(Q)$. By Theorem 1.7 (i) we have $r \mu^{*}(H) \leq \nu^{*}(H)$. We may conclude

$$
r \mu^{*}(Q)=r \mu^{*}(H) \leq \nu^{*}(H) \leq s \mu^{*}(Q)<\infty
$$

Since $r>s>0$, we have $\mu^{*}(Q)=0$. This implies $\mu(A(r, s))=0$.
Lemma 1.9. Let ν and μ be Radon measures on \mathbf{R}^{n} and μ satisfies Vitali theorem. Then the mappings $x \mapsto \bar{D}(\nu, \mu, x), x \mapsto \underline{D}(\nu, \mu, x)$ are μ-measurable.
Proof. We start with the following observation.
The set

$$
M(r, \alpha)=\left\{x \in \mathbf{R}^{n} ; \exists B \in \mathcal{B}: \operatorname{diam} B<r \wedge x \in B \wedge \frac{\nu(B)}{\mu(B)}<\alpha\right\}
$$

is open for every $r>0$ and $\alpha \in \mathbf{R}$.
If $x \in M(r, \alpha)$, then there exist $y \in \mathbf{R}^{n}$ and $s>0$ with $x \in \bar{B}(y, s), 2 s<r$,

$$
\frac{\nu(\bar{B}(y, s))}{\mu(\bar{B}(y, s))}<\alpha
$$

We find $s^{\prime}>s$ such that $2 s^{\prime}<r, \nu\left(\bar{B}\left(y, s^{\prime}\right)\right) / \mu\left(\bar{B}\left(y, s^{\prime}\right)\right)<\alpha$. Now we have $x \in B\left(y, s^{\prime}\right) \subset M(r, \alpha)$. This finishes the proof of the observation.

Denote $D=\left\{x \in \mathbf{R}^{n} ; \underline{D}(\nu, \mu, x)\right.$ exists finite $\}$. The set D is μ-measurable by Theorem 1.8 For every $x \in D$ we have

$$
\begin{aligned}
& \underline{D}(\nu, \mu, x)<\alpha \\
& \Leftrightarrow \exists \tau \in \mathbf{Q}, \tau>0 \forall r \in \mathbf{Q}, r>0 \exists B \in B: \operatorname{diam} B<r, x \in B, \frac{\nu(B)}{\mu(B)}<\alpha-\tau \\
& \Leftrightarrow \exists \tau \in \mathbf{Q}, \tau>0 \forall r \in \mathbf{Q}, r>0: x \in M(r, \alpha-\tau) .
\end{aligned}
$$

The set $\left\{x \in \mathbf{R}^{n} ; \underline{D}(\nu, \mu, x)<\alpha\right\}$ is intersection of D with a Borel set. This implies that the mapping $x \mapsto \underline{D}(\nu, \mu, x)$ is μ-measurable.

Measurability of the mapping $x \mapsto \bar{D}(\nu, \mu, x)$ can be proved analogously.
Theorem 1.10. Let ν and μ be Radon measures on \mathbf{R}^{n}, μ satisfies Vitali theorem, $\nu \ll \mu$, and $B \subset \mathbf{R}^{n}$ is μ-measurable. Then we have

$$
\int_{B} D(\nu, \mu, x) d \mu(x)=\nu(B)
$$

Proof. Let $B \subset \mathbf{R}^{n}$ be a μ-measurable set. Choose $\beta \in \mathbf{R}, \beta>1$. Define

$$
\begin{aligned}
B_{k} & =\left\{x \in B ; \beta^{k}<D(\nu, \mu, x) \leq \beta^{k+1}\right\}, \quad k \in \mathbf{Z} \\
N & =\{x \in B ; D(\nu, \mu, x)=0\}
\end{aligned}
$$

These sets are μ-measurable by Lemma 1.9 Using Theorem 1.8 we have

$$
\mu\left(B \backslash\left(\bigcup_{k=-\infty}^{\infty} B_{k} \cup N\right)\right)=0
$$

Then we have

$$
\begin{aligned}
\int_{B} D(\nu, \mu, x) d \mu(x) & =\sum_{k=-\infty}^{\infty} \int_{B_{k}} D(\nu, \mu, x) d \mu(x) \leq \sum_{k=-\infty}^{\infty} \beta^{k+1} \mu\left(B_{k}\right) \\
& \leq \sum_{k=-\infty}^{\infty} \beta^{k+1} \beta^{-k} \nu\left(B_{k}\right) \leq \beta \nu(B)
\end{aligned}
$$

Going $\beta \rightarrow 1+$ we get

$$
\int_{B} D(\nu, \mu, x) d \mu(x) \leq \nu(B)
$$

Now let $\beta>1$ again. Define

$$
\begin{aligned}
B_{k} & =\left\{x \in B ; \beta^{k} \leq D(\nu, \mu, x)<\beta^{k+1}\right\}, \\
N & =\{x \in B ; D(\nu, \mu, x)=0\}
\end{aligned}
$$

Besides the equality

$$
\mu\left(B \backslash\left(\bigcup_{k=-\infty}^{\infty} B_{k} \cup N\right)\right)=0
$$

we have also $\nu\left(B \backslash\left(\bigcup_{k=-\infty}^{\infty} B_{k} \cup N\right)\right)=0$, since $\nu \ll \mu$. By Theorem 1.7 (ii) and absolute continuity of ν with respect to μ we obtain $\nu^{*}(Q) \leq c \mu^{*}(Q)<\infty$ for any $c>0$ and $Q \subset N$ bounded. Similarly as in
the proof of Theorem 1.8 we get $\nu(N)=0$. Then we have

$$
\begin{aligned}
\int_{B} D(\nu, \mu, x) d \mu(x) & \geq \sum_{k=-\infty}^{\infty} \int_{B_{k}} D(\nu, \mu, x) d \mu(x) \geq \sum_{k=-\infty}^{\infty} \beta^{k} \mu\left(B_{k}\right) \\
& \geq \sum_{k=-\infty}^{\infty} \beta^{k} \beta^{-(k+1)} \nu\left(B_{k}\right)=\frac{1}{\beta} \nu(B)
\end{aligned}
$$

Now it follows $\int_{B} D(\nu, \mu, x) d \mu(x) \geq \nu(B)$.

The end of the lecture no. 6, 14.11.2022

1.3 Lebesgue points

Definition. Let μ be a Radon measure on \mathbf{R}^{n}. The symbol $\mathcal{L}_{\text {loc }}^{1}(\mu)$ denotes the set of all functions $f: \mathbf{R}^{n} \rightarrow \mathbf{C}$, which are μ-measurable and for every $x \in \mathbf{R}^{n}$ there exists $r>0$ such that $\int_{B(x, r)}|f(t)| d \mu(t)<$ ∞.

Definition. Let $f \in \mathcal{L}_{l o c}^{1}(\mu)$. We say that $x \in \mathbf{R}^{n}$ is Lebesgue point of f (with respect to μ), if it holds

$$
\forall \varepsilon>0 \exists \delta>0 \forall B \in \mathcal{B}, x \in B, \operatorname{diam} B<\delta: \frac{\int_{B}|f(t)-f(x)| d \mu(t)}{\mu(B)}<\varepsilon
$$

Theorem 1.11. Let μ be a Radon measure on \mathbf{R}^{n} satisfying Vitali theorem and $f \in \mathcal{L}_{\text {loc }}^{1}(\mu)$. Then μ-a.e. points of f are Lebesgue points.

Proof. Without any loss of generality we may assume that $\mu\left(\mathbf{R}^{n}\right)<\infty$ and $f \in \mathcal{L}^{1}(\mu)$. Let $\left(C_{k}\right)$ be a sequence of closed discs in \mathbf{C}, which forms a basis of \mathbf{C}. We denote

$$
g_{k}(x):=\operatorname{dist}\left(f(x), C_{k}\right), \quad x \in \mathbf{R}^{n}
$$

The function g_{k} is nonnegative μ-measurable function satisfying $g_{k} \in \mathcal{L}^{1}(\mu)$. Let $\nu_{k}=\int g_{k} d \mu$. By Theorem 1.10 we have $D\left(\nu_{k}, \mu, x\right)=g_{k}(x) \mu$-a.e. Denote

$$
P_{k}=\left\{x \in f^{-1}\left(C_{k}\right) ; \neg\left(D\left(\nu_{k}, \mu, x\right)=0\right)\right\} .
$$

We have $g_{k}=0$ on $f^{-1}\left(C_{k}\right)$, therefore $\mu\left(P_{k}\right)=0$. We show that every point from $\mathbf{R}^{n} \backslash \bigcup_{k=1}^{\infty} P_{k}$ is a Lebesgue point of f.

Let $x \in \mathbf{R}^{n} \backslash \bigcup_{k=1}^{\infty} P_{k}$. Choose $\varepsilon>0$. We find C_{k} such that $f(x) \in C_{k}$ and $C_{k} \subset B(f(x), \varepsilon / 2)$. For any $t \in \mathbf{R}^{n}$ it holds

$$
|f(t)-f(x)| \leq g_{k}(t)+\varepsilon
$$

There exists $\delta>0$ such that

$$
\forall B \in \mathcal{B}, x \in B, \operatorname{diam} B<\delta: \frac{\int_{B} g_{k}(t) d \mu(t)}{\mu(B)}<\varepsilon
$$

since $D\left(\nu_{k}, \mu, x\right)=0$. Take $B \in \mathcal{B}$ with $x \in B$, $\operatorname{diam} B<\delta$ we get

$$
\frac{\int_{B}|f(t)-f(x)| d \mu(t)}{\mu(B)} \leq \frac{\int_{B} g_{k}(t) d \mu(t)+\varepsilon \mu(B)}{\mu(B)}<2 \varepsilon
$$

This finishes the proof.

1.4 Density theorem

Definition. Let μ be a measure on $\mathbf{R}^{n}, A \subset \mathbf{R}^{n}$ be μ-measurable, and $x \in \mathbf{R}^{n}$. We say that $c \in[0,1]$ is μ-density of the set A at x, if

$$
\forall \varepsilon>0 \exists \delta>0 \forall B \in \mathcal{B}, x \in B, \operatorname{diam} B<\delta:\left|\frac{\mu(A \cap B)}{\mu(B)}-c\right|<\varepsilon
$$

We denote $d_{\mu}(A, x)=c$.
Theorem 1.12. Let μ be a Radon measure on \mathbf{R}^{n} satisfying Vitali theorem and $M \subset \mathbf{R}^{n}$ be μ-measurable. Then

- $d_{\mu}(M, x)=1$ for μ-a.e. $x \in M$,
- $d_{\mu}(M, x)=0$ for μ-a.e. $x \in \mathbf{R}^{n} \backslash M$.

Proof. Define ν on \mathbf{R}^{n} by

$$
\nu(A)=\mu(A \cap M) \quad \text { for every } A \subset \mathbf{R}^{n} \mu \text {-measurable. }
$$

Then we have

- $d_{\mu}(M, x)=D(\nu, \mu, x)$, if at least one term is well defined,
- $\nu \ll \mu$,
- $\nu=\int \chi_{M} d \mu$.

By Theorem 1.10 we have $\nu=\int D(\nu, \mu, x) d \mu(x)$ therefore $d_{\mu}(M, x)=D(\nu, \mu, x)=\chi_{M}(x) \mu$ a.e.

1.5 AC and BV functions

Remark. For $a, c, b \in \mathbf{R}, a<c<b$, it holds

- $\mathrm{V}_{a}^{b} f=\mathrm{V}_{a}^{c} f+\mathrm{V}_{c}^{b} f$,
- $|f(b)-f(a)| \leq \mathrm{V}_{a}^{b} f$.

Example. Let f be a function with continuous derivative on an interval $[a, b]$. Then $\mathrm{V}_{a}^{b} f=\int_{a}^{b}\left|f^{\prime}(x)\right| d x$.
Remark. Let I be a closed nonempty interval. Then we have
(a) $f, g \in A C(I) \Rightarrow f+g \in A C(I)$,
(b) $f \in A C(I), \alpha \in \mathbf{R} \Rightarrow \alpha f \in A C(I)$.

Theorem 1.13. Let $f:[a, b] \rightarrow \mathbf{R}, a<b$. Then f is absolutely continuous on $[a, b]$ if and only if f is difference of of two nondecreasing absolutely continuous functions on $[a, b]$.

Proof. \Rightarrow We denote $v(x)=\mathrm{V}_{a}^{x} f, x \in[a, b]$. For every $x, y \in I:=[a, b], x<y$, we have $v(y)-v(x)=$ $V_{x}^{y} f$. The function v is well defined since $f \in B V([a, x]), x \in[a, b]$.

The function v is nondecreasing. This is obvious.
The function $v-f$ is nondecreasing. For every $x, y \in I, x<y$ we have

$$
(v(y)-f(y))-(v(x)-f(x))=(v(y)-v(x))-(f(y)-f(x))=V_{x}^{y} f-(f(y)-f(x)) \geq 0
$$

The function v is absolutely continuous. Choose $\varepsilon>0$. We find $\delta>0$ such that

$$
\sum_{j=1}^{m}\left|f\left(b_{j}\right)-f\left(a_{j}\right)\right|<\varepsilon
$$

whenever $a_{1}<b_{1} \leq a_{2}<b_{2} \leq \cdots \leq a_{m}<b_{m}$ are points from $I=[a, b]$ with $\sum_{j=1}^{m}\left(b_{j}-a_{j}\right)<\delta$. Now assume that we have points $A_{1}<B_{1} \leq A_{2}<B_{2} \leq \cdots \leq A_{p}<B_{p}$ from I satisfying $\sum_{j=1}^{p}\left(B_{j}-A_{j}\right)<$ δ. For each $j \in\{1, \ldots, p\}$ we find points

$$
A_{j}=a_{1}^{j}<b_{1}^{j}=a_{2}^{j}<b_{2}^{j}=\cdots<b_{m_{j}}^{j}=B_{j}
$$

such that

$$
v\left(B_{j}\right)-v\left(A_{j}\right)=V_{A_{j}}^{B_{j}} f<\sum_{i=1}^{m_{j}}\left|f\left(b_{i}^{j}\right)-f\left(a_{i}^{j}\right)\right|+\frac{\varepsilon}{p}
$$

The we have

$$
\sum_{j=1}^{p} \sum_{i=1}^{m_{j}}\left(b_{i}^{j}-a_{i}^{j}\right)=\sum_{j=1}^{p}\left(B_{j}-A_{j}\right)<\delta
$$

and

$$
\sum_{j=1}^{p}\left|v\left(B_{j}\right)-v\left(A_{j}\right)\right|<\sum_{j=1}^{p}\left(\sum_{i=1}^{m_{j}}\left|f\left(b_{i}^{j}\right)-f\left(a_{i}^{j}\right)\right|+\frac{\varepsilon}{p}\right)<\varepsilon+\varepsilon=2 \varepsilon
$$

Now we can write $f=v-(v-f)$.
The end of the lecture no. 7, 21.11. 2022
Remark. Let $F: \mathbf{R} \rightarrow \mathbf{R}$ be nondecreasing function which is continuous at each point from the right. Then there exists a Radon measure ν_{F} such that F is the distribution function of ν_{F}, i.e.,

$$
\nu_{F}((a, b])=F(b)-F(a), \quad a, b \in \mathbf{R}, a<b
$$

Lemma 1.14. Let $f:(a, b) \rightarrow \mathbf{R}, x_{0} \in(a, b)$, and $f^{\prime}\left(x_{0}\right) \in \mathbf{R}$. Then we have

$$
\lim _{\substack{\left[x_{1}, x_{2}\right] \rightarrow\left[x_{0}, x_{0}\right] \\ x_{1} \leq x_{0} \leq x_{2}, x_{1} \neq x_{2}}} \frac{f\left(x_{2}\right)-f\left(x_{1}\right)}{x_{2}-x_{1}}=f^{\prime}\left(x_{0}\right) .
$$

Lemma 1.15. Let $f:(a, b) \rightarrow \mathbf{R}$ be nondecreasing on $(a, b), C(f)$ be the set of all points of continuity of f, and $A \in \mathbf{R}$. Then for every $x_{0} \in C(f)$ it holds

$$
f^{\prime}\left(x_{0}\right)=A \Leftrightarrow \lim _{\substack{\left[x_{1}, x_{2}\right] \rightarrow\left[x_{0}, x_{0}\right] \\ x_{1} \leq x_{0} \leq x_{2}, x_{1} \neq x_{2} \\ x_{1}, x_{2} \in C(f)}} \frac{f\left(x_{2}\right)-f\left(x_{1}\right)}{x_{2}-x_{1}}=A
$$

Lemma 1.16. Let f be a distribution function of a measure μ on $\mathbf{R}, x_{0} \in C(f), A \in \mathbf{R}$. Then

$$
f^{\prime}\left(x_{0}\right)=A \Leftrightarrow D\left(\mu, \lambda_{1}, x_{0}\right)=A
$$

Theorem 1.17 (Lebesgue). Let f be a monotone function on an interval I. Then we have

- $f^{\prime}(x)$ exists a.e. in I,
- f^{\prime} is measurable and $\left|\int_{a}^{b} f^{\prime}\right| \leq|f(b)-f(a)|$, whenever $a, b \in I, a<b$,
- $f^{\prime} \in \mathcal{L}_{l o c}^{1}(I)$.

Theorem 1.18. Let I be a nonempty interval and $f \in B V(I)$. Then $f^{\prime}(x)$ exists finite a.e. in I.
The end of the lecture no. 8,23.11. 2022
Theorem 1.19. Let $f:[a, b] \rightarrow \mathbf{R}, a<b$. Then the following assertions are equivalent.
(i) $f \in A C([a, b])$.
(ii) We have $\varphi \in \mathcal{L}^{1}([a, b])$ such that

$$
f(x)=f(a)+\int_{a}^{x} \varphi(t) d t, \quad x \in[a, b] .
$$

(iii) $f^{\prime}(x)$ exists a.e. in $[a, b], f^{\prime} \in \mathcal{L}^{1}([a, b])$ and

$$
f(x)=f(a)+\int_{a}^{x} f^{\prime}(t) d t, \quad x \in[a, b]
$$

Theorem 1.20 (per partes for Lebesgue integral). Let $f, g \in A C([a, b])$. Then we have

$$
\int_{a}^{b} f^{\prime} g=[f g]_{a}^{b}-\int_{a}^{b} f g^{\prime}
$$

Theorem 1.21. Let g be a nonnegative function on $[a, b]$ with $g \in \mathcal{L}^{1}([a, b])$. Let f be a continuous function on $[a, b]$. The there exists $\xi \in[a, b]$ such that

$$
\int_{a}^{b} f g=f(\xi) \int_{a}^{b} g
$$

Theorem 1.22. Let $f \in \mathcal{L}^{1}([a, b])$ and g be a monotone function on $[a, b]$. Then there exists $\xi \in[a, b]$ such that

$$
\int_{a}^{b} f g=g(a) \int_{a}^{\xi} f+g(b) \int_{\xi}^{b} f
$$

1.6 Rademacher theorem

Definition. Let $M \subset \mathbf{R}^{n}$. We say that $f: M \rightarrow \mathbf{R}$ is Lipschitz (on M), if there exists $K>0$ such that

$$
\forall x, y \in M:|f(x)-f(y)| \leq K\|x-y\|
$$

Remark. If f is Lipschitz on M, then f is continuous on M.
Theorem 1.23. Let $G \subset \mathbf{R}^{n}$ be open nonempty and $f: G \rightarrow \mathbf{R}$ be Lipschitz on G. Then f is differentiable a.e. on G.

Lemma 1.24. Let $f: \mathbf{R}^{n} \rightarrow \mathbf{R}$ be continuous and $i \in\{1, \ldots, n\}$. Then the set

$$
D_{i}=\left\{x \in \mathbf{R}^{n} ; \frac{\partial f}{\partial x_{i}}(x) \text { exists }\right\}
$$

is Borel.
Proof. We have

$$
\begin{aligned}
& \frac{\partial f}{\partial x_{i}}(x) \text { exists } \\
& \Leftrightarrow \forall \varepsilon>0 \exists \delta>0 \forall t_{1}, t_{2} \in(-\delta, \delta) \backslash\{0\}:\left|\frac{f\left(x+t_{1} e_{i}\right)-f(x)}{t_{1}}-\frac{f\left(x+t_{2} e_{i}\right)-f(x)}{t_{2}}\right|<\varepsilon \\
& \Leftrightarrow \forall \varepsilon \in \mathbf{Q}^{+} \exists \delta \in \mathbf{Q}^{+} \forall t_{1}, t_{2} \in((-\delta, \delta) \cap \mathbf{Q}) \backslash\{0\}:\left|\frac{f\left(x+t_{1} e_{i}\right)-f(x)}{t_{1}}-\frac{f\left(x+t_{2} e_{i}\right)-f(x)}{t_{2}}\right|<\varepsilon
\end{aligned}
$$

The end of the lecture no. 9, 28.11. 2022
For $\varepsilon>0$ and nonzero t_{1}, t_{2} denote

$$
D\left(\varepsilon, t_{1}, t_{2}\right)=\left\{x \in \mathbf{R}^{n} ;\left|\frac{f\left(x+t_{1} e_{i}\right)-f(x)}{t_{1}}-\frac{f\left(x+t_{2} e_{i}\right)-f(x)}{t_{2}}\right|<\varepsilon\right\} .
$$

The set $D\left(\varepsilon, t_{1}, t_{2}\right)$ is open since f is continuous. We have

$$
D_{i}=\bigcap_{\varepsilon \in \mathbf{Q}^{+}} \bigcup_{\delta \in \mathbf{Q}^{+}} \bigcap_{\substack{t_{1} \in(-\delta, \delta) \cap \mathbf{Q} \\ t_{1} \neq 0}} \bigcap_{\substack{ \\t_{2} \in(-\delta, \delta) \cap \mathbf{Q} \\ t_{2} \neq 0}} D\left(\varepsilon, t_{1}, t_{2}\right)
$$

therefore D_{i} is Borel.
Lemma 1.25. Let $\beta>0, A \neq \emptyset, f_{\alpha}, \alpha \in A$, be β-Lipschitz function on \mathbf{R}^{n} and $x \in \mathbf{R}^{n}$ be such that $\sup _{\alpha \in A} f_{\alpha}(x)$ is finite. Then the function $z \mapsto \sup _{\alpha \in A} f_{\alpha}(z)$ is β-Lipschitz on \mathbf{R}^{n}.

Proof. Let $u, v \in \mathbf{R}^{n}$. Then $\left|f_{\gamma}(u)-f_{\gamma}(x)\right| \leq \beta\|u-x\|$ for any $\gamma \in A$, therefore

$$
f_{\gamma}(u) \leq f_{\gamma}(x)+\beta\|u-x\| \leq \sup _{\alpha \in A} f_{\alpha}(x)+\beta\|u-x\| .
$$

This implies

$$
\sup _{\gamma \in A} f_{\gamma}(u) \leq \sup _{\alpha \in A} f_{\alpha}(x)+\beta\|u-x\|
$$

thus $\sup _{\gamma \in A} f_{\gamma}(u) \in \mathbf{R}$. Further we have

$$
f_{\gamma}(u) \leq f_{\gamma}(v)+\beta\|u-v\| \leq \sup _{\alpha \in A} f_{\alpha}(v)+\beta\|u-v\| \quad \text { for every } \gamma \in A
$$

We get

$$
\sup _{\gamma \in A} f_{\gamma}(u) \leq \sup _{\alpha \in A} f_{\alpha}(v)+\beta\|u-v\|
$$

Thus we have

$$
\sup _{\alpha \in A} f_{\alpha}(u)-\sup _{\alpha \in A} f_{\alpha}(v) \leq \beta\|u-v\|
$$

Interchanging the roles of u and v we obtain

$$
\sup _{\alpha \in A} f_{\alpha}(v)-\sup _{\alpha \in A} f_{\alpha}(u) \leq \beta\|u-v\|
$$

which proves β-Lipschitzness.
Lemma 1.26. Let $E \subset \mathbf{R}^{n}$ be nonempty and $f: E \rightarrow \mathbf{R}$ be β-Lipschitz. Then there exists β-Lipschitz function $\tilde{f}: \mathbf{R}^{n} \rightarrow \mathbf{R}$ with $\left.\tilde{f}\right|_{E}=f$.

Proof. The function $f_{x}: y \mapsto f(x)-\beta \cdot\|y-x\|$ is β-Lipschitz for every $x \in E$ since

$$
\left|f_{x}(u)-f_{x}(v)\right|=|\beta \cdot\|u-x\|-\beta \cdot\|v-x|\|\mid \leq \beta\| u-v \|
$$

for every $u, v \in \mathbf{R}^{n}$. For every $y \in E$ we have $\sup _{x \in E} f_{x}(y) \leq f(y)$. Using Lemma 1.25 we get the mapping defined by

$$
\tilde{f}(y)=\sup _{x \in E}(f(x)-\beta\|y-x\|)
$$

is β-Lipschitz on $\mathbf{R}_{\tilde{f}}$. For $z \in E$ we have $\tilde{f}(z) \geqq f_{z}(z)=f(z)$. Moreover $f_{x}(z)=f(x)-\beta\|z-x\| \leq$ $f(z)$, which gives $\tilde{f}(z) \leq f(z)$. Thus we prove $\tilde{f}(z)=f(z)$.

Proof of Theorem 1.23. By Lemma 1.26 we may suppose that f is Lipschitz with the constant β on \mathbf{R}^{n}, i.e.,

$$
\forall x, y \in \mathbf{R}^{n}:|f(x)-f(y)| \leq \beta\|x-y\|
$$

We show that f is differentiable a.e. This gives also the statement of the theorem. Let $E \subset \mathbf{R}^{n}$ be a set of those points where at least one partial derivative does not exist. The set $\mathbf{R}^{n} \backslash D_{i}$ is by Lemma 1.24 measurable. We use Fubini theorem and Rademacher theorem for $n=1$ (see Remark) to get $\lambda_{n}\left(\mathbf{R}^{n} \backslash\right.$ $\left.D_{i}\right)=0$. Then we have $\lambda_{n}(E)=0$, since $E=\bigcup_{i=1}^{n}\left(\mathbf{R}^{n} \backslash D_{i}\right)$.

For $p, q \in \mathbf{Q}^{n}, m \in \mathbf{N}$, denote

$$
S(p, q, m)=\left\{x \in \mathbf{R}^{n} ; \forall i \in\{1, \ldots, n\} \forall t \in(-1 / m, 1 / m) \backslash\{0\}: p_{i} \leq \frac{f\left(x+t e_{i}\right)-f(x)}{t} \leq q_{i}\right\}
$$

It is easy to verify that the set $S(p, q, m)$ is Borel. Let $\tilde{S}(p, q, m)$ be the set of all points of $S(p, q, m)$, where $S(p, q, m)$ has density 1 . Then Theorem 1.12 gives

$$
\lambda_{n}(S(p, q, m) \backslash \tilde{S}(p, q, m))=0
$$

The set

$$
N=\bigcup\left\{S(p, q, m) \backslash \tilde{S}(p, q, m) ; p, q \in \mathbf{Q}^{n}, m \in \mathbf{N}\right\}
$$

is of measure zero.
We show that f is differentiable at each point $x \in \mathbf{R}^{n} \backslash(E \cup N)$. Take $x \in \mathbf{R}^{n} \backslash(E \cup N)$ and $\varepsilon \in(0,1)$. Choose $p, q \in \mathbf{Q}^{n}$ such that

$$
q_{i}-\varepsilon<p_{i}<\frac{\partial f}{\partial x_{i}}(x)<q_{i}, \quad i=1, \ldots, n
$$

Then there is $m \in \mathbf{N}$ such that $x \in S(p, q, m)$. Since $x \notin N$, the point x is a point of density of the set $S(p, q, m)$. Denote $S=S(p, q, m)$.

We find $\delta \in(0,1 / m)$ such that

$$
\lambda_{n}(B(x, r) \backslash S) \leq\left(\frac{\varepsilon}{2}\right)^{n} \lambda_{n}(B(x, r))
$$

for every $r \in(0,2 \delta)$. Notice that the set $B(x,(1+\varepsilon) \tau) \backslash S$ does not contain a ball with radius $\varepsilon \tau$, whenever $\tau \in(0, \delta)$. Otherwise it would hold

$$
c_{n}(\varepsilon \tau)^{n} \leq(\varepsilon / 2)^{n} c_{n}(1+\varepsilon)^{n} \tau^{n}
$$

a contradiction. (The symbol c_{n} denotes n-dimensional measure of the unit ball.)
Choose $y \in B(x, \delta), y \neq x$. Denote

$$
y^{i}=\left[y_{1}, y_{2}, \ldots, y_{i}, x_{i+1}, \ldots, x_{n}\right]
$$

For every $i \in\{0, \ldots, n\}$ define a ball $B_{i}=B\left(y^{i}, \varepsilon\|y-x\|\right)$. Using the preceding observation we have $B_{i} \cap S \neq \emptyset$. Find points $z^{i} \in S \cap B_{i}, i=0, \ldots, n-1$, and denote $w^{i}=z^{i-1}+\left(y_{i}-x_{i}\right) e_{i}, i=1, \ldots, n$.

The end of the lecture no. 10,5.12. 2022
Then we have

$$
\begin{aligned}
& p_{i} \leq \frac{f\left(w^{i}\right)-f\left(z^{i-1}\right)}{y_{i}-x_{i}} \leq q_{i} \quad \text { if } x_{i} \neq y_{i} \\
& p_{i}<\frac{\partial f}{\partial x_{i}}(x)<q_{i}
\end{aligned}
$$

therefore

$$
\left|f\left(w^{i}\right)-f\left(z^{i-1}\right)-\frac{\partial f}{\partial x_{i}}(x)\left(y_{i}-x_{i}\right)\right| \leq\left(q_{i}-p_{i}\right)\left|y_{i}-x_{i}\right| \leq \varepsilon\|y-x\|
$$

Then we have

$$
\begin{aligned}
& \left|f(y)-f(x)-\sum_{i=1}^{n} \frac{\partial f}{\partial x_{i}}(x)\left(y_{i}-x_{i}\right)\right| \\
& \leq \sum_{i=1}^{n}\left|f\left(w^{i}\right)-f\left(z^{i-1}\right)-\frac{\partial f}{\partial x_{i}}(x)\left(y_{i}-x_{i}\right)\right|+\sum_{i=1}^{n}\left(\left|f\left(y^{i}\right)-f\left(w^{i}\right)\right|+\left|f\left(z^{i-1}\right)-f\left(y^{i-1}\right)\right|\right) \\
& \leq n \varepsilon\|y-x\|+2 n \beta \varepsilon\|y-x\|=\varepsilon(n+2 n \beta)\|y-x\|
\end{aligned}
$$

thus the proof is finished.
Remark. Let us mention the following two deep results of D. Preiss.

1. Let H be a Hilbert space and $f: H \rightarrow \mathbf{R}$ be Lipschitz. Then there exists $x \in H$, where f is Fréchet differentiable, i.e., there exists a continuous linear mapping $L: H \rightarrow \mathbf{R}$ such that

$$
\lim _{h \rightarrow 0} \frac{|f(x+h)-f(x)-L(h)|}{\|h\|}=0
$$

2. There exists a closed measure zero set $F \subset \mathbf{R}^{2}$ such that any Lipschitz function on \mathbf{R}^{2} is differentiable at some point of F.

1.7 Maximal operator

Definition. Let $f: \mathbf{R}^{n} \rightarrow \mathbf{R}$ be measurable. For $x \in \mathbf{R}^{n}$ we define

$$
M f(x)=\sup _{B \in \mathcal{B}, x \in B} \frac{1}{\lambda_{n}(B)} \int_{B}|f|
$$

Lecture no. 3
Theorem 1.27 (Hardy-Littlewood-Wiener).
(a) If $f \in L^{p}\left(\mathbf{R}^{n}\right), 1 \leq p \leq \infty$, then $M f$ is finite a.e.
(b) There exists $c>0$ such that for every $f \in L^{1}\left(\mathbf{R}^{n}\right)$ and $\alpha>0$ we have

$$
\lambda_{n}\left(\left\{x \in \mathbf{R}^{n} ; M f(x)>\alpha\right\}\right) \leq \frac{c}{\alpha}\|f\|_{1}
$$

(c) Let $p \in(1, \infty]$. Then there exists A such that for every $f \in L^{p}\left(\mathbf{R}^{n}\right)$ we have $\|M f\|_{p} \leq A\|f\|_{p}$.

1.8 Lipschitz functions and $W^{1, \infty}$

Remark. We have

$$
W^{1, \infty}(\Omega)=L^{p}(\Omega) \cap\left\{u ; \partial_{i} u \in L^{\infty}(\Omega) \text { (in the sense of distributions), } i \in\{1, \ldots, n\}\right\}
$$

Theorem 1.28. Let $U \subset \mathbf{R}^{n}$ be open. Then $f: U \rightarrow \mathbf{R}$ is local Lipschitz on U if and only if $f \in$ $W_{\mathrm{loc}}^{1, \infty}(U)$.

Without proof.

Chapter 2

Hausdorff measures

2.1 Basic notions

Convention. We will assume that (P, ρ) is a metric space.
Definition. Let $p>0, A \subset P$. Denote

$$
\begin{aligned}
\mathcal{H}_{p}(A, \delta) & =\inf \left\{\sum_{j=1}^{\infty}\left(\operatorname{diam} A_{j}\right)^{p} ; A \subset \bigcup_{j=1}^{\infty} A_{j}, \operatorname{diam} A_{j} \leq \delta\right\}, \quad \delta>0 \\
\mathcal{H}_{p}(A) & =\sup _{\delta>0} \mathcal{H}_{p}(A, \delta)
\end{aligned}
$$

The function $A \mapsto \mathcal{H}_{p}(A)$ is called p-dimensional outer Hausdorff measure.
Remark. Definice \mathcal{H}_{s} se nezmění, pokud budeme uvažovat A_{n} uzavřené (resp. otevřené).
Definition. Outer measure γ on P is called metric, if for every $A, B \subset P$ with $\inf \{\rho(x, y) ; x \in A, y \in$ $B\}>0$ we have $\gamma(A \cup B)=\gamma(A)+\gamma(B)$.
Theorem 2.1. Let γ be a metric outer measure on P. Then every Borel subset of P is γ-measurable.
The end of the lecture no. $11,12.12 .2022$
Theorem 2.2. \mathcal{H}_{p} is a metric outer measure.
Corollary 2.3. Every Borel subset of P is \mathcal{H}_{p}-measurable.
Theorem 2.4. Let $k, n \in \mathbf{N}, k \leq n, K=[0,1)^{k} \times\{0\}^{n-k} \subset \mathbf{R}^{n}$. Then $0<\mathcal{H}_{k}(K)<\infty$.
Remark. It can be shown that $\kappa_{k}:=\mathcal{H}_{k}\left([0,1]^{k} \times\{0\}^{n-k}\right)=(4 / \pi)^{k / 2} \Gamma\left(1+\frac{k}{2}\right)$.
Definition. Let $k \in \mathbf{N}$. The k-dimensional normalized Hausdorff measure is defined by $H^{k}=\frac{1}{\kappa_{k}} \mathcal{H}_{k}$.
Theorem 2.5 (regularity of Hausdorff measure). Let $k, n \in \mathbf{N}, k \leq n$, and $A \subset \mathbf{R}^{n}$. Then there exists a Borel set $B \subset \mathbf{R}^{n}$ such that $A \subset B$ and $H^{k}(A)=H^{k}(B)$.

Theorem 2.6. Let $n \in \mathbf{N}$ and $A \subset \mathbf{R}^{n}$. Then $H^{n}(A)=\lambda^{n *}(A)$.

2.2 Area formula

Notation. Let $k, n \in \mathbf{N}, k \leq n$, and $L: \mathbf{R}^{k} \rightarrow \mathbf{R}^{n}$ be a linear mapping. We denote $\operatorname{vol} L=\sqrt{\operatorname{det} L^{T} L}$.
Definition. Let $k, n \in \mathbf{N}, k \leq n$, and $G \subset \mathbf{R}^{k}$ be open. A mapping $f: G \rightarrow \mathbf{R}^{n}$ is said to be regular, if $f \in \mathcal{C}^{1}(G)$ and for every $x \in G$ the rank of $f^{\prime}(a)$ is k.

Theorem 2.7 (area formula). Let $k, n \in \mathbf{N}, k \leq n, G \subset \mathbf{R}^{k}$ be an open set, $\varphi: G \rightarrow \mathbf{R}^{n}$ be an injective regular mapping and $f: \varphi(G) \rightarrow \mathbf{R}$ be H^{k}-measurable. Then we have

$$
\int_{\varphi(G)} f(x) d H^{k}(x)=\int_{G} f(\varphi(t)) \operatorname{vol} \varphi^{\prime}(t) d \lambda^{k}(t),
$$

if the integral at the right side converges.

The end of the lecture no. 12, 19.12. 2022

2.3 Hausdorff dimension

Lemma 2.8. Let $0<p<q, A \subset P$, and $\mathcal{H}_{p}(A)<\infty$. Then $\mathcal{H}_{q}(A)=0$.
Proof. Let $\delta \in(0,1)$ and $\left\{A_{j}\right\}_{j=1}^{\infty}$ be a sequence of subsets of P such that $A \subset \bigcup_{j=1}^{\infty} A_{j}$, $\operatorname{diam} A_{j} \leq \delta$ for every $j \in \mathbf{N}$, and $\sum_{j=1}^{\infty}\left(\operatorname{diam} A_{j}\right)^{p}<\mathcal{H}_{p}(A)+1$. Then we have

$$
\begin{aligned}
\mathcal{H}_{q}(A, \delta) & \leq \sum_{j=1}^{\infty}\left(\operatorname{diam} A_{j}\right)^{q}=\sum_{j=1}^{\infty}\left(\operatorname{diam} A_{j}\right)^{p} \cdot\left(\operatorname{diam} A_{j}\right)^{q-p} \\
& \leq \sum_{j=1}^{\infty}\left(\operatorname{diam} A_{j}\right)^{p} \cdot \delta^{q-p} \leq \delta^{q-p}\left(\mathcal{H}_{p}(A)+1\right)
\end{aligned}
$$

Sending $\delta \rightarrow 0+$ we get $\mathcal{H}_{q}(A)=0$.
Definition. Let $A \subset P$. Hausdorff dimension of A is defined by

$$
\operatorname{dim} A=\inf \left\{t \geq 0 ; \mathcal{H}_{t}(A)<\infty\right\}
$$

Remark. By Lemma 2.8 we have

$$
\mathcal{H}_{t}(A)= \begin{cases}\infty & \text { for } t<\operatorname{dim}(A) \\ 0 & \text { for } t>\operatorname{dim}(A)\end{cases}
$$

Corollary 2.9. (i) For every $A \subset B \subset P$ we have $\operatorname{dim} A \leq \operatorname{dim} B$.
(ii) For every $A_{i} \subset P, i \in \mathbf{N}$, we have $\operatorname{dim}\left(\bigcup_{i=1}^{\infty} A_{i}\right)=\sup _{i} \operatorname{dim} A_{i}$.
(iii) We have $\operatorname{dim}\left([0,1]^{k} \times\{0\}^{n-k}\right)=k$, in particular, $\operatorname{dim}[0,1]^{n}=n$.

Example (Cantor set). For $s \in\{\emptyset\} \cup \bigcup_{k=1}^{\infty}\{0,1\}^{k}$ we define inductively closed intervals I_{s} as follows

- $I_{\emptyset}=[0,1]$,
- if $I_{s}=[a, b]$, then $I_{s^{\wedge} i}= \begin{cases}{\left[a, a+\frac{1}{3}(b-a)\right],} & \text { if } i=0, \\ {\left[b-\frac{1}{3}(b-a), b\right],} & \text { if } i=1 .\end{cases}$

Cantor set is defined by

$$
C=\bigcap_{k=0}^{\infty} \bigcup_{s \in\{0,1\}^{k}} I_{s}
$$

The set C has the following properties:

- C is compact,
- C is nowhere dense,
- C is uncountable.

Theorem 2.10. We have $\operatorname{dim} C=\frac{\log 2}{\log 3}$.
Proof. Denote $d=\frac{\log 2}{\log 3}$.
We prove $\mathcal{H}_{d}(C) \leq 1$. We have $C \subset \bigcup_{s \in\{0,1\}^{k}} I_{s}$ and $\operatorname{diam} I_{s} \leq 3^{-k}, s \in\{0,1\}^{k}$. We infer

$$
\sum_{s \in\{0,1\}^{k}}\left(\operatorname{diam} I_{s}\right)^{d}=2^{k} \cdot\left(3^{-k}\right)^{d}=1
$$

Then we have $\mathcal{H}_{d}(C) \leq 1$.
We prove $\mathcal{H}_{d}(C) \geq 1 / 4$. It is sufficient to prove that

$$
\sum_{j=1}^{\infty}\left(\operatorname{diam} I_{j}\right)^{d} \geq 1 / 4
$$

where $I_{j}, j \in \mathbf{N}$, are open intervals and $C \subset \bigcup_{j=1}^{\infty} I_{j}$. Convex envelope of an open set $G \subset \mathbf{R}$ is an open interval with the same diameter as G. The set C is compact, therefore there exist intervals I_{1}, \ldots, I_{n} covering C. Since C is nowhere dense, we may assume that, that the endpoints of I_{1}, \ldots, I_{n} are not in C. Then there exists $\delta>0$ such that

$$
\operatorname{dist}\left(C, \text { endpoints of } I_{1}, \ldots, I_{n}\right)>\delta
$$

Let $k \in \mathbf{N}$ and $3^{-k}<\delta$. Then we have

$$
\begin{equation*}
\forall s \in\{0,1\}^{k} \exists j \in\{1, \ldots, n\}: I_{s} \subset I_{j} \tag{2.1}
\end{equation*}
$$

Claim. Let $I \subset \mathbf{R}$ be an interval and $l \in \mathbf{N}$ we have

$$
\sum_{\substack{I_{s} \subset I \\ s \in\{0,1\}^{l}}}\left(\operatorname{diam} I_{s}\right)^{d} \leq 4(\operatorname{diam} I)^{d}
$$

Proof of Claim. Suppose that the sum at the left side is nonzero. Let m be the smallest natural number such that I contains some $I_{t}, t \in\{0,1\}^{m}$. Then we have obviously $m \leq l$. Let J_{1}, \ldots, J_{p} are those intervals among $I_{s}, s \in\{0,1\}^{m}$, which intersect I. The we have $p \leq 4$ by the choice of m. Then we have

$$
\begin{aligned}
4(\operatorname{diam} I)^{d} & \geq \sum_{i=1}^{p}\left(\operatorname{diam} J_{i}\right)^{d}=\sum_{i=1}^{p} \sum_{\substack{I_{s} \subset J_{i} \\
s \in\{0,1\}^{l}}}\left(\operatorname{diam} I_{s}\right)^{d} \\
& \geq \sum_{\substack{I_{s} \subset I \\
s \in\{0,1\}^{l}}}\left(\operatorname{diam} I_{s}\right)^{d}
\end{aligned}
$$

Indeed, we have

$$
\begin{gathered}
\left(\operatorname{diam} J_{i}\right)^{d}=\left(3^{-m}\right)^{d}=2^{-m} \\
\sum_{\substack{I_{s} \subset J_{i} \\
s \in\{0,1\}^{l}}}\left(\operatorname{diam} I_{s}\right)^{d}=2^{l-m} \cdot\left(3^{-l}\right)^{d}=2^{-m}
\end{gathered}
$$

Then we have

$$
4 \sum_{j=1}^{\infty}\left(\operatorname{diam} I_{j}\right)^{d} \stackrel{\text { Claim }}{\geq} \sum_{j=1}^{n} \sum_{\substack{I_{s} \subset I_{j} \\ s \in\{0,1\}^{k}}}\left(\operatorname{diam} I_{s}\right)^{d} \stackrel{[2.1]}{\geq} \sum_{s \in\{0,1\}^{k}}\left(\operatorname{diam} I_{s}\right)^{d}=1
$$

This finishes the proof.

The end of the lecture no. 13, 2. 1. 2023 \qquad
The end of Winter semester \longrightarrow
Example. Let $\alpha>0$. We define

$$
E_{\alpha}=\left\{x \in \mathbf{R} ; \text { there exists infinitely many pairs }(p, q) \in \mathbf{Z} \times \mathbf{N} \text { such that }\left|x-\frac{p}{q}\right| \leq q^{-(2+\alpha)}\right\}
$$

Jarník's theorem says that $\operatorname{dim} E_{\alpha}=\frac{2}{2+\alpha}$.
Definition. The mapping $f: \mathbf{R}^{n} \rightarrow \mathbf{R}^{n}$ is called similitude with ratio r if $\|f(x)-f(y)\|=r\|x-y\|$ for every $x, y \in \mathbf{R}^{n}$.

Theorem 2.11. Let $m \in \mathbf{N}$ and $\psi_{1}, \ldots, \psi_{m}$ be similitudes of \mathbf{R}^{n} with ratios $r_{1}, \ldots, r_{m} \in(0,1)$ such that there exists an open set $V \subset \mathbf{R}^{n}$ such that $\psi(V) \subset V$ and for every $i, j \in\{1, \ldots, m\}, i \neq j$, we have $\psi_{i}(V) \cap \psi_{j}(V)=\emptyset$. Let E be a nonempty compact set satisfying $E=\bigcup_{i=1}^{m} \psi_{i}(E)$ and s satisfies $\sum_{i=1}^{m} r_{i}^{s}=1$. Then we have $0<\mathcal{H}^{s}(E)<\infty$.

Without proof.
Example (Koch curve). One can use Theorem 2.11 to prove Theorem 2.10 or to infer that Hausdorff dimension of Koch curve is $\frac{\log 4}{\log 3}$. Here we have several approximations of Koch curve.

