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Chapter 1

Differentiation of measures

1.1 Covering theorems

Covering theorems provide a tool which enables us to infer global properties from local ones in
the context of measure theory.

Vitali theorem

Definition. Let A C R". We say that a system V consisting of closed balls from R" forms Vitali
cover of A, if
Vre AVe >03dBeV:xe€ B A diamB < ¢.

Notation.
* )\, ... Lebesgue measure on R"
* )\ ... outer Lebesgue measure on R”

n

e If B C R"isaball and o« > 0, then o x B denotes the ball, which is concentric with B
and with a-times greater radius than B.

Theorem 1.1 (Vitali). Let A C R"™ and V be a system of closed balls forming a Vitali cover of
A. Then there exists a countable disjoint subsystem A C V such that \,(A\ |J.A) = 0.

Proof. First assume that A is bounded. Take an open bounded set G C R"™ with A C G. Set
V'={BeV; BCG}

The system V* is a Vitali cover of A again. If there exists a finite disjoint subsystem V* covering
A, we are done. So assume

(%) there is no finite disjoint subsystem of V* covering A.

7



8 CHAPTER 1. DIFFERENTIATION OF MEASURES

1st step. We set
s; = sup{diam B; B € V*}

and choose a ball B; € V* such that diam B; > s;/2. We know that V* # () and s; < diam G <
0.

k-th step. Suppose that we have already chosen balls By, ..., By_1. We set

k1
si, = sup{diam B; B € V* A BN U B; =0}.

i=1

The supremum is considered for a nonempty set since the set Uf;ll B; is closed, which by (x) does
not cover A, and V* is a Vitali cover of A. We choose a ball B;, € V* such that B, N Uf;ll B, =10
and diam B, > Sk/2

This finishes the construction of the sequence (By)52,. Set A = {By; k € N}. We verify
that A is the desired system.

e A is countable. This follows immediately from the construction.
e A is disjoint. This follows from the construction.

e It holds \,(A\ |JA) = 0. We have
S A(By) = An<U BZ-) < A(G) < 0.
=1 =1

Thus the series >~ A\,(B;) is convergent, therefore lim; \,,(B;) = 0. Using the fact that B;,
1 € N, are balls we also have lim; diam B; = 0. We know that 2 diam B; > s;, consequently
‘We show that

Voe A\| JAVieNTjeN,j>i: z€5%DB;.

Take z € A\ |JAand i € N. Denote § = dist(z,J,_, B). It holds § > 0 and there exists
B € V* such that z € B and diam B < §. Then we have B N UZ;:1 By = (). Thus we have
diam B > s, for some p € N since lim; s; = 0. Therefore there exists j > 4 with B;NB # (). Let
J be the smallest number with this property. Then we have s; > diam B since BN U{;ll B, = 0.
Further we have diam B; > s; /2 > % diam B. Together we have 2 diam B; > diam B. This
impliesx € B C 5+ B;.

For any ¢« € N we have

A;;(A\UA) < )\n([j5*Bj) < i)\n@*Bj) = 5”§:An(3j).
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Using lim; o0 > oo A (B;) = 0 we get A (A A) = 0, and therefore \,, (A A) = 0.
J=1 J n

Now we assume that the set A is a general subset of R". Let (G;)32, be a sequence of bounded
disjoint open sets such that \,(R™ \ U2, G;) = 0. Denote

Vi={BeV; BCGy}.

The system V7 forms a Vitali cover of the bounded set GG; N A. Using the previous part of the
construction we find a countable disjoint system A; C V5 with X, ((G; N 4) \ J.A;) = 0. Now
we set A = J; A;. O

Definition. We say that a measure © on R" satisfies Vitali theorem, if for every M/ C R" and
every Vitali cover V of M there exists countable disjoint cover A C V such that (M \U A) = 0.

Remark. (1) By Theorem|[I.1]| \,, satisfies Vitali theorem.

(2) If pu satisfies Vitali theorem and v < p, then v satisfies Vitali theorem.

Remark. If 1. is the Borel measure on R? such that z(A) = A\ (AN (R x {0})) forany A C R?
Borel, then Vitali theorem does not hold for .

The end of the lecture no. 1, 1.10.2024

Theorem 1.2. Let E C R™ be measurable and S be a finite system of closed balls covering E.
Then there exists a disjoint system L C S such that \,(E) < 3" Y 5., An(B).

Proof. Without any loss of generality we may assume that § is nonempty. Choose B; € S
with maximal radius among balls in S. Suppose that we have already constructed By, . .., By_1.
If possible, choose By, € S disjoint with | J,_, B; and with maximal radius among balls in S
satisfying this property. We construct a finite sequence of closed balls B, ..., By and set £ =
{Bi,...,Bn}. Wehave £ C |Jg, 3* B. To this end consider # € E. Then there exists B € S
with 2 € B. We find minimal % such that B N By, # (). Then we have radius(B) < radius(By).
This implies that x € B C 3 % B;,.
Then we have

A(E) < )\n<U 3*3) <3 MB*B) =33 A(B).

BeLl BeLl BeLl

Besicovitch theorem

Theorem 1.3 (Besicovitch [?]). For eachn € N there exists N € N with the following property.
IfAC R"and A: A — (0,00) is a bounded function, then there exist sets Ay, ..., Ax such
that
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. {E(x,A(a:)); x € Ai} is disjoint for every i € {1,...,N},
s A U{Bla.A@): v e UY, A,

Proof. The case of a bounded set A. Let R = sup 4, A. Choose B, := B(ay,r1) suchthata; € A
and 1= A(ay) > %R. Assume that we have already chosen balls By, ..., B;j_; where j > 2.
If

j—1

Fy = A\ JB(ai, i) =0,

i=1

then the process stops and we set J = j. If F; # (), we continue by choosing B; := E(aj, ;)
such that a; € F; and
rj = A(a;) > 3sup A. (1.1)
F,

J

If F; # 0 for all j, then we set J = oo. In this case lim;_,o, 7; = 0 because A is bounded and

the inequalities
2 1 1 1 1

1
||CLZ' — Clj” Z r, = g’l“i + g’f‘i > gT‘i + 57“]' > g?“i + 57"]'
forv < j < J imply that
{3 * Bj; j < J} is a disjoint family. (1.2)

In case J < oo, we have A C |J,_; B;. This is also true in the case J = co. Otherwise there

exista € (2, F and jo € N with r;, < 2 A(a), contradicting the choice of 7.

Fix k < J. Weset = {i < k; B; N B, # (0}. We now prove that there exists M/ € N
depending only on n which estimates |/|. To this end we split [ into I; and I, and we estimate
their cardinality separately.

I I{Z < k; BiﬂBk#@,'I"i < 10Tk},
]2:{2 < k’7 BlmBk#@,’f’z > 10rk}

The estimate of |I,|. We have ; x B; C 15 x By for every ¢ € I;. Indeed, if © € 5 x B;, then

10 43
H.I — (lk” S ||JI — CLIH —+ ||CL1 — akH S 37“]4 +7”2‘ —|—T’k S ng < 157’k
Hence, there are at most 60" elements of [;, because for any © € I; we have

M3 % Bi) = M(B(0,1)) - (37:)" > Ma(B(0,1)) - (37%)" = %An(w*Bk).

The end of the lecture no. 2, 8.10.2024
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The estimate of |I5|. Denote b; = a; — a;. An elementary mesh-like construction gives a family

{Qm; 1 < m < (22n)"} of closed cubes with edge length 1/(11n) (so that diam @,,, < 1/11),

which cover [—1, 1] and thus in particular the unit sphere. We claim that for each 1 < m <

(22n)™ there is at most one ¢ € I, such that b;/||b;|| € @,,,, which estimates the cardinality of /.
If the claim were not valid, then there would exist 7, 7 € I5,7 < j, such that

lia -l =1
< =
10:ll ol — 11
Notice that
ri <||bill <ri+re and vy < ||bj|| < rj 1, (1.3)

as the balls B;, B; intersect Bj, but does not contain a;. Hence

1
1Bl = 110511 < Jrs =75 4+ 73 < frs — 73] + 07
and 1 1
;]| <7j+1K <71+ 10 Erj. (1.4)
We have
13,
l|a i
[: H 4]
_ ‘ [0:llbs N1bs]l, ‘ b Hb bl
1ol bl ol 1o
< [lIball = [16511] + ﬁllbjll
1
<|r; —rj| + 10" + 10" (using (1.3) and (T.4))
< Ti—§Tj<7"7; if7’1'>7'j,
B —7”2‘4—%7“]' < —Ti-i-%n- <r; ifr; < .

In the last inequality we have used that © < j and thus r; < %n by (1.1). We arrived at a
contradiction as ¢ < j and thus a; ¢ B,. Hence |I5| < (22n)".

Thus it is sufficient to choose M > 60" + (22n)".

Choice of Ay, ..., Ay. For each k € N we define A\, € {1,2,..., M} such that \, = k
whenever k£ < M and for £ > M we define A inductively as follows. Thereis A\, € {1,..., M}
such that

BN B i < kX =M} =0

Now weset A; = {a;; \i=j},j=1,..., M.

The case of a general set A. For each | € N apply the previously obtained result with A replaced
by
Al =An{x; 3(1 - 1R < ||z|| < 3R},



12 CHAPTER 1. DIFFERENTIATION OF MEASURES

and denote resulting sets as A%, i = 1,..., M. Then we set

=4 Auu= A i=1....M

[ is odd [ is even

Then we constructed N := 2M subsets which have the required properties. O]

Definition. Let P be a locally compact space and S be a g-algebra of subsets of P. We say that
 is a Radon measure on (P, S) if

(a) S contains all Borel subsets of P,
(b) u(K) < oo for every compact set K C P,
(¢) u(G) =sup{p(K); K C G is compact} for every open set G C P,
(d) pu(A) =inf{u(G); A C G,G is open} forevery A € S,
(e) p is complete.
Definition. Let ;4 be a measure on X. Outer measure corresponding to u is defined by
p*(A) = inf{u(B); A C B, B is y-measurable}.

Remark. Let ;s be a Radon measure on (R”,S) and A € S. Then there exist a Borel set B C R”
such that A C B and pu(B \ A) = 0. If v is a Radon measure on (R",S’) with v < p, then
Scd§.

The end of the lecture no. 3, 15.10.2024

Lemma 1.4. Let ;1 be a measure on X and {A; }?‘;1 be an increasing sequence of subset of X.
Then lim pi*(A;) = (U] LAj).

Proof. For every j € N find a y-measurable set B; with A; C B; and p*(A;) = pu(B;). We set
= ﬂ?zl A;. Then M, is p-measurable A, C My, and pu(My) = p*(Ay) for every k € N.
Moreover, { M} is nondecreasing sequence of sets. Then we have

lim p*(Ag) = hm pu(My) = U My) > p* U Ap) > hm w(Ag)
freo k=1 k=1
and we are done. [

Theorem 1.5. Let ;1 be a Radon measure on R"™ and F be a system of closed balls in R". Let
A denote the set of centers of the balls in F. Assume inf{r; B(a,r) € F} = 0 for each a € A.
Then there exists a countable disjoint system G C F such that 1(A\ |JG) = 0.
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Proof. The case j1*(A) < oo. Let N be the natural number from Theorem [1.3] Fix 6 such that
-+ <0<l
N

Claim. Let U C R" be an open set. There exists a disjoint finite system H C F such that
UH C U and

p((ANT)\|JH) <op (AnD). (1.5)

Proof of Claim. We may assume that ©*(ANU) > 0. Let F; = {B € F; diam B < 1,B C U}.
By Theorem[I.3]there exist disjoint families Gy, ..., Gy C JF; such that

N
Anvc g
=1

Thus N
p(ANU) <) pr(AnUn|G).

=1
Consequently, there exists an integer 1 < 7 < N for which

p(AnUN Ugj) > %M(A NU) > (1 -0)u*(AnU).
Using Lemma[I.4] we find a finite system H C G; such that
p(ANUN|JH) > 1 -0 (AnT).
The set | J H is p-measurable and therefore
pANU) = (AnUn{JH) +p (AnU\ [ JH)
> (1= 0 (AnU) +p (AnU\ [ JH).
This gives (1.3). O

Set U; = R™. Using Claim we find a disjoint finite system H; C F such that | J#; C U; and
p((ANTN)\ | JH1) <Opr(AnTy).

Continuing by induction we obtain a sequence of open set (U;) and finite disjoint finite systems
(H;) suchthat U,y = U; \|UH,;, H; C F,|UH; C U;, and

WANU ) = p (AN U\ M) < 67 (ANT)
for every j € N. Together we have
p(ANUj) < 0 (4)

for every j € N. Since 11*(A) < oo we get u*(A\ 72, UH;) = 0. Thus we set G = |72, H;
and we are done.

The general case. We find a sequence of bounded disjoint open sets (G;)52, such that u(R™ \
U;’;l G j) = 0. Then p(G;) < oo for every j € IN and we proceed as in the proof of Theorem
L]
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1.2 Differentiation of measures

Notation. The symbol B stands for the family of all closed balls in R".
Definition. Let v and p are measures on R™ and « € R"™. Then we define

* upper derivative of » with respect to ;. at x by

D(v,p,z) = lirgl+ (sup{v(B)/u(B); x € B, B € B, diam B < r}),

if the term at the right side is defined,

* lower derivative of » with respect to ;. at x by

D(v,p,x) = lim (inf{v(B)/u(B); x € B, B € B, diam B < r}),

r—0+
if the term at the right side is defined,

* derivative of v with respect to ;1 at x (denoting D(v, i, x)) as the common value of

D(v, p, x) and D(v, u, x), if it is defined.
The end of the lecture no. 4, 22.10.2024
Remark. The value D(v, ji, z) (D(v, 1, z)) is well defined if and only if
VB e B, x€ B: uB)>0.

Theorem 1.6. Let v and i be Radon measures on R™ and p satisfy Vitali theorem. Then

D(v, pu, z) and D(v, u, ) exist u-a.e.
Proof. Denote

M = {z € R"; D(v,u,x) is not defined},
V={BeB; uB)=0}

The family V is a Vitali cover of M. We find a countable disjoint system .A C V such that
u(M\ J.A) = 0. The we have

p(JA) = wB)=o0,

therefore (M) = 0.
The proof for D(v, i1, x) is analogous. O

Theorem 1.7. Let v and 1 be Radon measures on R", 1 satisfy Vitali theorem, ¢ € (0, 00), and
M C R"
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() Iffor every x € M we have D(v, pi, z) > ¢, then v*(M) > cp*(M).
(i) Ifforevery x € M we have D(v, i, x) < c, then there exists H C M such that f( M\ H) =
0and v*(H) < cu*(M).

Proof. (i) Choose € > 0. There exists an open set G C R" with M C G and v(G) < v*(M) +e.
Set
V={BeB; BCG,v(B)>cu(B)}.

The family V) is a Vitali cover of M. There exists a disjoint countable subfamily A C V with
u(M\ JA) = 0. Then we have

V(M) +e>v(G) = v(JA) =D v(B)

BeA

> " en(B) = enl| JA) = ew ()

BeA

Taking ¢ — 0+ we get the desired inequality.

(ii)) Choose k € N. There exists an open set G, C R™ such that M C Gy and pu(Gy) <
w (M) +1/k. Set
Vi ={B € B; BC G, v(B) < cu(B)}.

The system V), is a Vitali cover of M. Thus there exists a countable disjoint subfamily A4, C V)
such that (M \ |J Ax) = 0. Set H, = M NY Ayg. Then u(M \ Hy) = 0, H;, C M and we have

v (Hy) < v((JAr) =D v(B)<cd uB)=cu(l JA)

BeA BeA
< cu(Gr) < e(p (M) + 7).

Now we set H = (,—; Hi. Then we have v*(H) < cp*(M) and
p(M\ H) = p*(M\ H) < Z (M \ Hy) = 0.

O

Theorem 1.8. Let v and ;1 be Radon measures on R"™ and i satisfies Vitali theorem. Then
D(v, u, ) is finite pi-a.e.

Proof. Denote

D ={xeR" D(v,p,x) € (0,00)},
= {z € R"; D(v, i, x) is not defined},
= {z € R"; D(v, 1, x) is not defined},
N3y ={z € R"; D(v,u,z) = <},
Ni = {z € R" D(v, ,2) < D(v, p,)}.

Then we have
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b D:Rn\(N1UN2UN3UN4),
* u(Ny) = p(N2) = 0 (Theorem|[L.6).
Further we define

A, ={z € R"; D(v,u,z) > k},
A(r,s) ={z € R"; D(v,p,z) <s<r < D(v,u,)}, srecQt,s<r

The we have

N3 = ﬂ A,
k=1

Ny = U{A(r, s); r,s € QT s <1}

We show 11(N3) = 0. Choose Q C N3 bounded. By Theorem[1.7(i) we have

kpt(Q) < vi(Q) < oo

for every k € N. Therefore p*(Q)) = 0 and thus also p(/N3) = 0, since V5 is a countable union
of bounded sets.

We show 1(Ny) = 0. It is sufficient to show p(A(r, s)) = 0 for every s, € QT, s < r. Choose
@ C A(r,s) bounded. By Theorem [1.7(ii) there exists H C @ such that u(Q \ H) = 0 and
v*(H) < sp*(Q). By Theorem[1.7(i) we have rp*(H) < v*(H). We may conclude

rp(Q) = rp*(H) < v'(H) < sp™(Q) < o0,
Since r > s > 0, we have ;*(Q) = 0. This implies u(A(r, s)) = 0. O

Lemma 1.9. Let v and ju be Radon measures on R™ and (i satisfies Vitali theorem. Then the
mappings x© — D(v, pu, x), x — D(v, u, x) are p-measurable.

Proof. We start with the following observation.

The set

M(r,a) ={z e R"; 3B € B: diam B <r Az € BA

v(B)
o < o

is open for every » > 0 and a € R.

If z € M(r, a), then there exist y € R" and s > 0 with x € B(y, s), 25 < r,

—V(Ew’s)) < a.

1(B(y,s))
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We find s’ > s such that 25’ < r, v(B(y, s'))/u(B(y,s')) < a. Now we have z € B(y,s') C
M (r, o). This finishes the proof of the observation.

The end of the lecture no. 5, 29.10.2024

Denote D = {z € R"; D(v, j1, ) exists finite}. The set D is p-measurable by Theorem [1.8]
For every x € D we have

D(v, p,z) < o

B
SdreQ,7>0VreQ,r>0dB e B: diamB<r,x€B’:EB;

SIreQ,r>0VreQ,r>0: z€ M(r,a—r1).

The set {z € R™; D(v,u,x) < «} is intersection of D with a Borel set. This implies that
the mapping « — D(v, y1, ) is yi-measurable.
Measurability of the mapping x — D(v, u, z) can be proved analogously. L

Theorem 1.10. Let v and ;1 be Radon measures on R", p satisfy Vitali theorem, v < u, and
B C R" be p-measurable. Then we have

| D) duta) = v(B),
Proof. Choose 5 € R, § > 1. Define

By ={z € B; 8" < D(v,p,z) <"}, ke,
N ={z € B; D(v,p,x) = 0}.

These sets are ;i-measurable by Lemma[I.9] Using Theorem[I.8 we have

M(B\(O BLUN)) =0.

Then we have

/Dvu, ) dp(x

}j/nDum Yap(z) < S BHu(By)

k=—o00 k=—o00

Theorem|[T.7] .1)

[e.e]

> BB Fu(By) < Br(B).

k=—o00

Going 5 — 1+ we get

éD@wwMM@va)
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Now let § > 1 again. Define
Cr={x € B; 8 < D(v,p,z) < gF}, keZ.
Besides the equality N
w(BA(CU Grum) =o,
k=—00

we have also v(B \ (U;~_.,Ck UN)) = 0, since v < p. By Theorem uii) and absolute
continuity of v with respect to ;1 we obtain v*(Q) < cu*(Q) < oo forany ¢ > Oand Q C N
bounded. Similarly as in the proof of Theorem 1.8 we get v(N) = 0. Then we have

/D v, ) dps(x Z D (v, o) dp(z) > Y Bu(Cr)

k=—00 k=—o00

Theorem.ll) Z 5 ﬁ (k+1),, ): ly(B).

k=—00

Now it follows [, D(v, u, x) du(x) > v(B). O

1.3 Lebesgue points

Definition. Let 1 be a Radon measure on R". The symbol £} (1) denotes the set of all functions
f: R" — C, which are p-measurable and for every x € R™ there exists » > 0 such that

fB(gjﬂ") |f(O)] dp(t) < oo

Definition. Let f € £} (11). We say that x € R"™ is Lebesgue point of f (with respect to 1), if
it holds

1) — f(a)] dut
Ve>036>0VB e B,z € B,diam B < §: JslI(8) = J@)ldutt) _

1(B)

Theorem 1.11. Ler pu be a Radon measure on R" satisfying Vitali theorem and f € L, ().
Then p-a.e. points of [ are Lebesgue points.

Proof. Without any loss of generality we may assume that 4(R") < oo and f € L£'(u). Let
(C}) be a sequence of closed discs in C, which forms a basis of C. We denote

gr(x) == dist(f(z), Cy), x e R"

The function gy, is nonnegative y-measurable function satisfying g, € £'(u). Let vy, = [ gi dp.
By Theorem we have D(vy, i, z) = gx(z) p-a.e. Denote

P = {z € FHCR); ~(D(vi i, 7) = 0)}.
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We have g;, = 0 on f~*(C}), therefore u(P;) = 0. We show that every point from R™ \ ;| P
is a Lebesgue point of f.

Let z € R"\ U;—; Pr. Choose ¢ > 0. We find Cy such that f(z) € Cj and C}, C
B(f(x),e/2). For any t € R" it holds

£ () = fz)] < gn(t) +e.
There exists > 0 such that
t) du(t
Joot) dp(t) _ _
u(B)
since D (v, pu, ) = 0. Take B € B with x € B, diam B < § we get
Jplf @) = @) dpt) _ [y 9x(t) dpt) + en(B)
p(B) - pu(B)
This finishes the proof. O]

VBeB, x € B, diamB < ¢ :

< 2e.

1.4 Density theorem
Definition. Let ;2 be a measure on R"”, A C R" be u-measurable, and + € R"™. We say that
c € [0, 1] is u-density of the set A at x, if

ANB
Ve>036>0VBeB. B, damB <o |[PANB)

1(B)
We denote d,(A4, z) = c.
The end of the lecture no. 6, 12.11.2024

Theorem 1.12. Let 11 be a Radon measure on R" satisfying Vitali theorem and M C R" be
pu-measurable. Then

* d,(M,x) =1 for p-a.e. x € M,
* d,(M,z) =0 for p-a.e. . € R" \ M.
Proof. Define v on R" by
v(A) =pu(AN M) forevery A C R" u-measurable.
Then we have
* d,(M,x) = D(v, i, ), if at least one term is well defined,

'V<</,l/,

s v=[xumdu.
By Theorem we have v = [ D(v,p,z)du(z) therefore d,(M,z) = D(v,u,z) =
Xum(x) p-ae. O



20 CHAPTER 1. DIFFERENTIATION OF MEASURES

1.5 AC and BYV functions
Remark. Fora,c,b € R,a < ¢ < b, it holds
* Vo f=Vif+ Vi,
* |f) = fla)| < Vo f

Example Let f be a function with continuous derivative on an interval [a,b]. Then V° f =

S 1 (@)] de.

Remark. Let / be a closed nonempty interval. Then we have
@ f,g€ AC(I) = f+g € AC(I),
(b) fe AC(I),a e R= af € AC(I).

Theorem 1.13. Let f: [a,b] — R, a < b. Then f is absolutely continuous on [a, b] if and only if
f is difference of of two nondecreasing absolutely continuous functions on [a, b|.

Proof. = We denote v(z) = V? f, © € [a,b]. The function v is well defined since f €
BV (la,x]), x € [a,b]. Forevery z,y € I := [a,b], z <y, we have v(y) — v(x) = VY f.

The function v is nondecreasing. This is obvious.

The function v — f is nondecreasing. For every =,y € I, x < y we have

(v(y) = f(y) — (v(x) = f(2)) = (v(y) —v(x)) = (fly) = f(z) = VI = (f(y)— f(z)) > 0.

The function v is absolutely continuous. Choose € > 0. We find 6 > 0 such that

m
Z flaj)| <e,

whenever a1 < by < ag < by < -+ < a,, < by, are points from I = [a, b] with Z;.n:l(bj —aj) <
0. Now assume that we have points A; < By < Ay < By < --- < A, < B, from [ satisfying
i_1(Bj — Aj) <. Foreach j € {1,...,p} we find points
Aj=d], <l =d)<by=---<l =B

such that

The we have
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and _
Do 1(By) —v(A)| < DO ( W) — flad)l 4 0) <ete=2s
j=1 j=1 i=1
Now we can write f =v — (v — f). O

Remark. Let 7': R — R be nondecreasing function which is continuous at each point from the
right. Then there exists a Radon measure v such that F' is the distribution function of v, i.e.,

vr((a,b]) = F(b) — F(a), a,beR,a <b.
Lemma 1.14. Let f: (a,b) — R, x¢ € (a,b), and f'(zo) € R. Then we have
lim f(x2) = f(@1)

[z1,22]—[z0,20] To — X1
21 <20<%2,T17£T2

= ['(z0).

Lemma 1.15. Let f: (a,b) — R be nondecreasing on (a,b), C(f) be the set of all points of
continuity of f, and A € R. Then for every xo € C(f) it holds

X — x
[x1,22]—=([z0,20] To — X7
1 <20<22,217#T2
z1,22€C(f)

The end of the lecture no. 7, 19.11.2024

Lemma 1.16. Let f be a distribution function of a Radon measure ;s on R, zo € C(f), A € R.
Then
f(@o) = A D(p, A, z0) = A.

Theorem 1.17 (Lebesgue). Let f be a monotone function on an interval 1. Then we have
(@) f'(z) exists a.e. in I,
(b) f' is measurable and Uab | < 1f() = fla)
©) [ € Lige(D).

Proof. Without any loss of generality we may assume that f is nondecreasing. Let a,b € I,
a < b. We define

, whenever a,b € I,a < b,

limy a4 f(t)’ x € (—OO, a]
g(l’) = hmt—)x-i- f(t)> YIS (aa b)a
f(b), x € [b, 00).

The function ¢ is nondecreasing, continuous from the right at each point of R, and {z €
(a,b) f(x) # g(x)} is countable. By Remark there exists a Radon measure ~ on R such that

Ve,d € R,e < d: v((c,d]) = g(d) — g(c).
We find Radon measures i, o such that v = 0 + pu, 0 < A, and p L.
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Claim. We have D(u, A\, x) = 0 \-a.e.

Proof of Claim. There exists a Borel set N such that A(N) = 0 and u(R \ N) = 0. Denote
D ={x € R\ N; D(u,\,x) > c}. Then we have 0 = (D) > cA(D). This implies A(D) = 0,
and, consequently, A({z € R\ N; D(u,A\,x) > 0}) = 0. This gives the claim. O

Lemma gives ¢’'(x) = D(v, A, x) A-a.e. in [a, b], since g is continuous at each point [a, b]
except a countable set. For every zy € (a,b) N C(f) we have f'(z¢) = A € R if and only if
g (x0) = A € R (Lemma|l.15)), since f(t) = g(t) whenever t € C'(f) N (a,b). This implies (a).
(b) We have

f) = f(a) = g(b) = g(a) = v((a,b]) = o((a,b])

:ZKZXQAxMM@C@fAZXMA@dM@-

(c) This follows from (b). O
Theorem 1.18. Let I be a nonempty interval and f € BV (I). Then f'(x) exists finite a.e. in I.
Theorem 1.19. Let f: [a,b] — R, a < b. Then the following assertions are equivalent.

() f € AC([a,b)).

(i) We have ¢ € L([a,b]) such that

f(a:)zf(&)%—/mgo(t)dt, x € [a,b].
(iii) f'(z) exists a.e. in [a,b], f' € L([a,b]) and

f(z) = f(a) + /x f'(¢t)dt, x € [a,b].

The end of the lecture no. 8, 26.11.2024
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Theorem 1.20 (per partes for Lebesgue integral). Let f,g € AC([a,b]). Then we have

/ab f'g=1fal - /ab g

Theorem 1.21. Let g be a nonnegative function on [a,b] with g € L([a,b]). Let f be a continu-
ous function on [a, b|. Then there exists £ € [a, b] such that

/abfng(f)/abg-

Theorem 1.22. Let f € L'([a,b]) and g be a monotone function on |a,b|. Then there exists

¢ € [a, b] such that
b ¢ b
= + g(b :
[ =g [ 1e00) [ 4
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1.6 Rademacher theorem

Definition. Let M/ C R". We say that f: M — R is Lipschitz (on M), if there exists K > 0
such that

Va,y e M: [f(z) = f(y)] < Kl[z —yll.

Remark. If f is Lipschitz on M, then f is continuous on M.

Theorem 1.23. Let G C R" be open nonempty and f: G — R be Lipschitz on G. Then f is
differentiable a.e. on G.

Lemma 1.24. Let f: R" — R be continuous and i € {1, ... ,n}. Then the set

={z e R" 8f( ) exists }

is Borel.
Proof. We have

of
8l'i
< Ve>030 >0V, ty € (—6,0) \ {0}: | sc+t1eZ —fl=) _ f(ﬁthZZ')*f(fE) <

o Ve e Q+ 35 Q+ Vi ty € (( s, 5) N Q) \{0} |fac+tlez —flz) f(:v+t26i)*f(x){ < e,

to

(x) exists

For € > 0 and nonzero t1, t; denote

D(e,t1,t9) = {x e R™; |{lethed=f@) _ flatie)-fo)| o e}.

t1 to
The set D(e, t1,ty) is open since f is continuous. We have

U (] e

eeQt 5eQt t1€(—6,0)NQ t2€(—6,0)N
t17£0 t27ﬁ0

therefore D; is Borel. O

The end of the lecture no. 9, 3.12.2024
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Lemma 1.25. Let 3 > 0, A # 0, fo,a € A, be 3-Lipschitz function on R" and x € R™ be such
that sup,c 4 fo() is finite. Then the function z — sup,c 4 fa(2) is 5-Lipschitz on R".

Proof. Letu,v € R". Then |f,(u) — f,(z)| < B||u — z|| for any v € A, therefore

F(w) < () + Bllu — zf| < Slelgfa(w) + Bllu — ||

This implies

sup f,(u) < sup fo(z) + Bllu — ||,
yeEA acA

thus sup. ¢ 4 f,(u) € R. Further we have
Fr(w) < f(0) + Blju = vl < sup fo(v) + Blju = v]| - forevery y € A.
aE

We get

sup £, (u) < sup fu(v) + Blu — ||
v€EA acA

Thus we have

sup fo () = sup £o(0) < Blju— 1]

a€cA

Interchanging the roles of u and v we obtain

sup fo (v )—Supfa( ) < BHU_U‘L

acA a€A
which proves S-Lipschitzness. [

Lemma 1.26. Let > 0, E C R" be nonempty and f: E — R be B-Lipschitz. Then there
exists B-Lipschitz function f: R" — R with f|p =

Proof. The function f,: y — f(z) — S ||y — x|| is S-Lipschitz for every = € E since
[fa(w) = fol)| = [B - |lu— || = B~ |lv—=||| < Bllu— vl

for every u,v € R™. For every y € E we have sup,. f(y) < f(y). Using Lemma we get
the mapping defined by

fy) = sup(f(z) = Blly — «l])

el
is B-Lipschitz on R". For z € I we have f(2) > f.(z) = f(2). Moreover f,.(z) = f(x) —
Bllz — z|| < f(2), which gives f(z) < f(z). Thus we prove f(z) = f(2). O

Proof of Theorem[1.23] By Lemma we may suppose that f is Lipschitz with the constant 3
on R", i.e.,
Vr,y € R": [f(z) — f(y)| < Bllz —yll.

We show that f is differentiable a.e. This gives also the statement of the theorem. Let £ C R"
be a set of those points where at least one partial derivative does not exist. The set R \ D; is
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by Lemma [I.24] measurable. We use Fubini theorem and Rademacher theorem for n = 1 (see
Remark) to get A\,(R™ \ D;) = 0. Then we have \,,(E) = 0, since £ = |J;_,(R™\ D;).
For p,q € Q", m € N, denote

S(p.q,m) = {w € RY; Vi€ {1,...,n} ¥t € (~1/m,1/m)\ {0}: p; < LEHDIE < g L

It is easy to verify that the set S(p, ¢, m) is Borel. Let S(p,q,m) be the set of all points of
S(p,q,m), where S(p, ¢, m) has density 1. Then Theorem gives

A (S(p,q.m) \ S(p,q,m)) = 0.

The set .
N = J{S(p,q,m)\ S(p,q,m); p,q € Q",m € N}
is of measure zero.

We show that f is differentiable at each pointz € R" \ (E U N). Take z € R" \ (EU N)
and ¢ € (0,1). Choose p, g € Q" such that

af

ai bi o

() <q, i=1,...,n.

Then there is m € N such that = € S(p, g, m). Since x ¢ N, the point z is a point of density of
the set S(p, ¢, m). Denote S = S(p, ¢, m).
We find 6 € (0,1/m) such that

An(B(z,1)\ S) < (5)" M(B(x, 7))

for every r € (0,20). Notice that the set B(z, (1 + )7) \ S does not contain a ball with radius
et, whenever 7 € (0, ¢). Otherwise it would hold

cn(eT)" < (e/2)"en(1 +€)"7",

a contradiction. (The symbol ¢,, denotes n-dimensional measure of the unit ball.)
Choose y € B(z,d), y # x. Denote

yi = [yhva'"7yiaxi+la"-axn}~

For every i € {0,...,n} define a ball B; = B(y',¢||y — z||). Using the preceding observation
we have B;NS # (). Find points z* € SNB;,i =0,...,n—1, and denote w' = 2"~ '+ (y; —x;)e;,
1=1,...,n.

Then we have
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therefore

< (g = pi)lys — il <elly — 2|

< o) = £ = @ = 0| + U6 = S+ 1) = £

i=1 i=1
< nelly — xf| + 2nfelly — || = e(n + 2nf)|ly — =],

thus the proof is finished. ]

Remark. Let us mention the following two deep results of D. Preiss ([2]).

1. Let H be a Hilbert space and f: H — R be Lipschitz. Then there exists x € H, where
f is Fréchet differentiable, i.c., there exists a continuous linear mapping L: H — R such
that

h) — — L(h
@+ h) — () = LR)

=0.
h—0 [|h]

2. There exists a closed measure zero set ' C R? such that any Lipschitz function on R? is
differentiable at some point of F'.

The end of the lecture no. 10, 10. 12.2024

1.7 Lipschitz functions and 1>

Remark. We have
Whe(Q) = {u € L*(); du € L=(Q) (in the sense of distributions), i € {1,...,n}}.

Theorem 1.27. Let U C R" be open. Then f: U — R is local Lipschitz on U if and only if
feWwbhe(w).

loc

Without proof.
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1.8 Maximal operator

Definition. Let f: R" — R be measurable. For x € R" we define

1
Mf@)= sw 315 / 71

Theorem 1.28 (Hardy-Littlewood-Wiener).
(@) If f € LP(R"), 1 < p < oo, then M [ is finite a.e.

(b) There exists ¢ > 0 such that for every f € L*(R") and o > 0 we have

M(fo € R M) > a}) < = fll

(c) Let p € (1,00|. Then there exists A such that for every f € LP(R™) we have | M f||, <
Allflp-
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Hausdorff measures

2.1 Basic notions

Convention. We will assume that (P, p) is a metric space.

Definition. Let p > 0, A C P. Denote

Hy(4,0) = inf{ " (diam A;)"s A € ] 4, diam A; <5}, >0,
=1 j=1

H,(A) =sup H,(A,9).
5>0
The function A — H,(A) is called p-dimensional outer Hausdorff measure.

Remark. Definice H; se nezméni, pokud budeme uvaZovat A,, uzaviené (resp. oteviené).

Definition. Outer measure y on P is called metric, if for every A, B C P with inf{p(z,y); = €
A,y € B} >0wehave y(AU B) =v(A) +v(B).

Theorem 2.1. Let v be a metric outer measure on P. Then every Borel subset of P is -
measurable.

Proof. We have that y-measurable sets form o-algebra. Therefore it is sufficient to prove that
closed sets are y-measurable. Necht' tedy F' C P je uzaviend. Vezméme testovaci mnoZinu
T C P. Bez Gjmy na obecnosti mizeme predpoklddat, Ze v(7) < oo, nebot’ chceme dokdzat
nerovnost

VT) 2T NF)+~(T\ F).

OznaCme

Py={z €T, dist(z, F) > 1},
Py ={x e€T; z7 <dist(z,F) < ;} proj € N.

29
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Mnoziny Fy, Py, Py, ... maji od sebe navzdjem kladné vzdalenosti, a tedy pro libovolné m € N

plati
S5t =2 ) <ot
=0
Podobné . .
> A (Paoj1) = v Pojr) < A(T).
=0 =0
Dostdvédme tak, Ze fada ) 7=, () je konvergentni. Ddle plati, Ze vzddlenost T'N I a |J}~, P
je kladna. Mame tedy

m

Y(TnF) Ul P)=yTnF) +7[LJ

Jj=0

Dostavame tak

8
>

V(TﬂF)Jr’V(T\F)—v(TﬂFHv(

<.
Il
o

<yTnF)++(JP)+1( U B
7=0 Jj=m+1

<y(rnryulJr)+a U P

j=0 j=m+1
<A(TnFyulJP)+ ) (P

j=0 Jj=m+1
<A+ D AP

j=m+1
Pro m — oo se posledni Clen bliZi k nule, a dostdvame tak dokazovanou nerovnost. [

Theorem 2.2. H, is a metric outer measure.

Vv,

Proof. Neni tézké ukdzat, ze funkce A — H,(A,¢) je vnéjsi mira. Limitni pfechod 6 — 0+,

pak dava, ze H, je vnéjSi mira.
Necht’ nyni A, B C P ainf{p(a,b); a € A,b € B} =y > 0. Pokudnyni C C AU B a
diam C' < 4§y, pak C' C A nebo C' C B. Mame tedy

Hy(AU B, d) = Hy(A,0) + H,y(B,0)
pro libovolné § € (0, dg). Odtud
Hy(AUB) =H,(A) + H,(B).



2.2. AREA FORMULA 31

Corollary 2.3. Every Borel subset of P is H,-measurable.
Theorem 2.4. Let k,n € N, k <n, K =[0,1)" x {0}"* C R"™. Then 0 < H(K) < co.

Proof. Zvolme § > 0. K nému nalezneme m € N takové, Ze ‘/FE < 4. Krychli [0, 1]* rozd&lime
na m” neptekryvajicich se krychli K1, Ks, ..., K, jejichZ hrany délky 1/m jsou rovnob&zné
se soufadnymi osami. Diametr t&chto krychli je vk /m. Potom

mk ]Ck 2

/
Hp(K,6) <) (diam(K; x {0}")F = m* - = kF2,

1

<

Odtud plyne H(K) < oc.
Necht 7 : R® — R je projekce m(z1,...,7,) = [x1,...,z;]. Oznaéme A(A) = \p(m(AN
K)). Pokud A C R", pak
AMA) < 2%(diam A)F.

Necht’ (A;) je posloupnost podmnoZin K takovd, ze | J A; = K. Potom
> (diam Aj)F > 2 kZA ) > 27 FN(K) = 27",
j=1

TakZe plati Hy(K) > 27*, O
Remark. It can be shown that r, := Hy ([0, 1]% x {0}"7F) = (4/m)"*T(1 + £).

Definition. Let £ € N. The k-dimensional normalized Hausdorff measure is defined by
1
= —Hy.
Kk

Theorem 2.5 (regularity of Hausdorff measure). Let k,n € N,k < n, and A C R". Then there
exists a Borel set B C R" such that A C B and H*(A) = H*(B).

Theorem 2.6. Letn € N and A C R". Then H"(A) = A" (A).

2.2 Area formula

Notation. Let k&,n € N,k < n, and L: R* — R" be a linear mapping. We denote vol L =

vdet LTL.

Definition. Let k,n € N, k < n, and G C R* be open. A mapping f: G — R" is said to be
regular, if f € C'(G) and for every = € G the rank of f'(a) is k.

Theorem 2.7 (area formula). Let k,n € N,k < n, G C R¥ be an open set, p: G — R" bean
injective regular mapping and f: o(G) — R be H*-measurable. Then we have

/ flz)d H*(x /f )) vol () d ¥ (1),

if the integral at the right side converges.
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2.3 Hausdorff dimension

Lemma 2.8. Let0 <p < g A C P, and H,(A) < oc. Then H,(A) = 0.

Proof. Let 0 € (0,1) and {A;}32, be a sequence of subsets of P such that A C [J;2, A
diam A; < ¢ forevery j € N, and 3% | (diam A;)P < H,(A) + 1. Then we have

M8

H, (A, 0) <) (diam A;) Z (diam A;)? - (diam A;)?"?
j=1

1

<.
Il

'M8

(diam A;)? - 5777 < §97P(H,(A) + 1).

1

<
Il

Sending § — 0+ we get H,(A) = 0. O
Definition. Let A C P. Hausdorff dimension of A is defined by

dim A = inf{t > 0; H;(A) < oo}.
Remark. By Lemma[2.8 we have

ORR b

Corollary 2.9. (i) Forevery A C B C P we have dim A < dim B.
(ii) Forevery A; C P, i € N, we have dim(|J;-, A;) = sup, dim 4;.
(iii) We have dim([0,1]¥ x {0}"7*) = k, in particular, dim[0, 1]" =

Example (Cantor set). For s € {0} U J;~,{0,1}* we define inductively closed intervals I; as
follows

® I@ = [O, 1],
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* lfIs = [CL, b],then Is/\i = [a,(lj— 3( CL)L 1 Z y
[b_g(b—a)7b]7 ifs =1.

Cantor set is defined by

C:ﬁ U =

k=0 se{0,1}*
The set C' has the following properties:
» (' is compact,

e (' is nowhere dense,

¢ (' is uncountable.

Theorem 2.10. We have dim C = %.

Proof. Denote d = ioﬂ.
og3

We prove Hq(C') < 1. We have C' C (U ¢ (g 1yx £5 and diam [, < 37,5 € {0, 1}*. We infer
> (diam )" =2%- (37F)! = 1.
s€{0,1}*
Then we have H,(C) < 1.

We prove H4(C') > 1/4. Tt is sufficient to prove that

o0

> (diam I;)* > 1/4,

i=1

where I;, j € N, are open intervals and C' C U‘;‘;l I;. Convex envelope of an open set G C R is
an open interval with the same diameter as GG. The set C' is compact, therefore there exist intervals
L,..., I, covering C. Since C is nowhere dense, we may assume that, that the endpoints of
Iy, ..., I, are not in C'. Then there exists 6 > 0 such that

dist(C, endpoints of I1,...,1,) > 0.
Let k € N and 37% < 4. Then we have
Vs € {0,1}F 35 € {1,...,n}: I, C I;. 2.1)
Claim. Let / C R be an interval and [ € N we have
> (diam I,)? < 4(diam I).

I,cI
se{0,1}
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Proof of Claim. Suppose that the sum at the left side is nonzero. Let m be the smallest natural
number such that I contains some [;, ¢ € {0, 1}™. Then we have obviously m < [. Let J;,...,J,
are those intervals among I, s € {0,1}"™, which intersect /. The we have p < 4 by the choice
of m. Then we have

4(diam I)* > Z (diam J;)® Z Z (diam I;)

i=1 I,CJ;
s€{0,1}!

Indeed, we have

IsCJ;
s€{0,1}!
[]
Then we have
c1 n @])
42 (diam ;) S Z Z (diam 1) Z (diam I,)¢ = 1.
j=1 IClj se{o,1}k
s€{0, 1}’C

This finishes the proof. O]

The end of Winter Semester
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Chapter 3

Area and coarea formulae

Theorem 3.1. Let (P, p1) and (P, po) be metric spaces, s > 0, and f: Py — P, be B-Lipschitz.
Then H, (f( )) < B*Hs(Py).

Proof. Choose 0 > 0. Let sets A;,j7 € N, satisfy P, = UoilA and diam A; < ¢ for every
j € N. Then we have f(P) = 2, f(4;) and diam f(A;) < Bdiam A; < ﬂé Then we have

Hs( Z diam f(A Z (diam A;)
J=1 J=1
This implies H(f(P1), 30) < B5Hs(Py,0). Sending 6 — 0+, we get H (f(Py)) < B5Hs(Py).

]

Lemma 3.2. Let k,n € N,k < n, a L: R* — R" be an injective linear mapping. Then for
every \*-measurable set A C R” it holds

H*(L(A)) = Vdet LTL - N*(A). (3.1

Proof. The mapping L is linear and injective, therefore the dimension of the vector space L(R*)
is k. Thus there exists a linear isometry Q: R¥ — R" such that Q(R*) = L(R”). Then we have

HH(L(A)) = HY(Q " o L(A)) = M(Q 0 L(A))

= |det(Q7'L)| - N*(A). (3.2)

(det(Q7'L))* = det (Q'L)TQ'L)
det (((Q ' Le;, Q' Lej))ti—y) (3.3)
d

et (((Le;, Lej))ti_y) = det(L"L).

The desired equality (3.1)) follows from (3.2) a (3.3). O

Notation. Let k,n € N,k < n, and L: R* — R" be a linear mapping. We denote vol L, =

Vdet LTL.

37
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Remark. (a) The matrix L” L is called Gram matrix. By Lemmawe have H*(L([0,1]%)) =
vol L, thus vol L is k-dimensional volume of L([0,1]¥). If ¢ € C*(G), then the mapping ¢
vol ¢(t) is continuous on the set G.

(b) If L is a matrix of the type n x k, then the matrix L” L is symmetric and of the type k x k.

(c) Gram determinant is nonnegative, since for every matrix A of the type n x k and for every = €
R”* we have (L” Lx,z) = (Lz, Lz) > 0, thus AT A is positive semidefinite. Gram determinant
is positive definite, whenever the rank of L is k.

Lemma 3.3. Let k,n € N,k < n, G C R be open set, p: G — R" be an injective regular
mapping, v € G, and 3 > 1. Then there exists a neighbourhood V' of the point x such that

(a) the mapping y — ¢(¢'(x)"(y)) is B-Lipschitz on ¢'(z)(V),

(b) the mapping z — ¢'(x)(p~'(2)) is B-Lipschitz on o(V').

p(V)

Figure 3.1:

Proof. First we infer several auxiliary inequalities. The linear mapping v — ¢'(z)(v) is injec-
tive, therefore there exists > 0 such that

Vo € R ||/ (2)(v)]| = nllvll. (3.4)
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We set ) = inf{||¢'(z)(v)|; v € R¥, ||v|| = 1}. The mapping v — ¢'(z)(v) is continuous and
the unit sphere {v € R*; ||v|| = 1} is compact, therefore the infimum is attained at a point vo.
Since ¢'(z)(vy) # 0, n is positive.

We find € € (0, 37) such that

% +1<p. (3.5)
Further we find a ball V' centered at the point = such that
VyeVill¢'(y) — (@)l <e.

We show that for every u, v € V' it holds

le(u) = p(v) = ¢'(2)(u =) < ellu— . (3.6)
Fix v € V and consider the mapping

9w o(w) — () —¢'(@)(w—-v), weV

For w € V' we have ¢'(w) = ¢'(w) — ¢'(z). Then we have

le(u) = p(v) = ' (x)(u— ) = llg(u) — g(v)]]
< sup{llg'(w)ll; w e V}- [u—v]
S 6||U - UHa

this implies (3.6).
Further we show that for every u, v € V' we have

i) = (@)l 2 3nllu— ol 37
For u,v € V we compute
le(u) = o) = =llo(u) = (v) = ¢ (@) (u = )| + [1¢'(z)(u — V)|

1
—ellu = vl +nllu —vf} 2 Fnfu o],

v

this gives (3.7).
(a) Choose a,b € ¢'(x)(V). We find u,v € V such that ¢'(z)(u) = a, ¢'(z)(v) = b. We
compute
le(#'(2) 7 (@) = (&' (@) @) = lle(w) — p(v)]
< llo(u) — ¢(v) = ¢'(@)(u = V)l + ¢ (z)(u - )|
2D ellu vl + ¢/ () — o)
la—bll +lla—bl = (£ +1)]la bl

<
&3
<
&3
< Blla—b]|.
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(b) Choose p, ¢ € (V). We find u,v € V with p(u) = p, ¢(v) = ¢q. Compute
l¢'(z) (7 (p) — ¢'(2)(¢™ (@) | = ¢ () (u) — &' () (V)]

= ll¢'(z)(u — V)|
< llp(u) = @(v) = (@) (u = )| + o (w) = (V)|

(EX)
< ellu—vll + [lp — qll
=) = o) +llp = all = (% + 1)[lp — g
2 Bllp - al.
This finishes the proof. [

The end of the lecture no. 1, 20.2.2025

Lemma 3.4. Let k,n € N,k < n, G C R” be an open set, p: G — R" be an injective regular
mapping, v € G, and o > 1. Then there exists a neighbourhood V' of x such that for every
Ne-measurable E C 'V we have

04_1/ vol ' (t) dN¥(t) < H*(p(E)) < a/ vol ' (t) d NF ().

Proof. Find > 1 a7 > 1 such that
B < a. (3.8)

By Lemma we find V; of x such that for ¢ and 5 (a) and (b) of the lemma holds. Using
continuity of the mapping ¢ — vol ¢’(t) on G we find a neighbourhood V5 of x such that

Vt € Vo: 7 vol ¢/ (x) < vol ¢/ (t) < 7vol ¢ (z). (3.9)

Set V=V N V5. We show that V' is the desired neighbourhood.
Let £ C V be \*-measurable. By (3.9) we get

T vol ¢ (z) - \(E) < / vol ¢/ (t) A XF(t) < Tvol ¢ (z) - \F(E). (3.10)
B

By Lemma[3.2] we have vol ¢'(z) - M(E) = H*(¢/()(E)), and we can write

T H (¢ (2)(E)) < /Evolgpl(t)d/\k(t) < 7H"(¢'(z)(E)). (3.11)

By Lemma [3.3(a) and by the choice of V; we get
H*(p(E)) = H* (9o ¢'(x)™" 0 ¢/ (2)(B)) < B*H* (¢ (2)(E))
@ 5’“7/ vol /() d A¥(t) @ a/ vol ' (t) d NF ().
E E
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By Lemma [3.3(b) and by the choice of V; we get
H(p(E)) > B7°H (¢ (x) 0 7t 0 p(E)) = B7°H* (¢ () (E))

@ﬂ_kT_l/volgol(t)d/\k(t)@a‘l/volgo'(t)d)\k(t).
B E

]

Theorem 3.5 (area formula). Let k,n € N,k < n, G C R* be an open set, o: G — R" be an
injective regular mapping and f: o(G) — R be H*-measurable. Then we have

/ flz)d H*(x /f )) vol () d ¥ (1),

if the integral at the right side converges.

Figure 3.2:

Proof. The mapping ¢ is injective, therefore there exists an inverse mapping ¢~ '. Each open set
H C G is a countable union of compact sets, therefore ¢(H) is a countable union of compact
sets. Thus we get that ¢! is Borel and the set ¢(G) is Borel.

The mappings ¢ is locally Lipschitz. Therefore ¢(G) is H*-o-finite by Theorem The
mappings ¢! is also locally Lipschitz (by Lemma 3.3).

1. Suppose that f =y, where L C ¢(G) is H*-measurable. We show

H*(L) = / vol /(1) d \¥(t). (3.12)
e~ 1(L)
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Choose o > 1. By Lemma [3.4] we find for every y € G a neighbourhood V,, C G of the point y
such that for every \*-measurable set £ C V, we have

at / vol ¢/ (t) d A*(t) < H¥(p(E)) < oz/ vol ' (t) d A¥(t). (3.13)
E B
It holds | J{V,; v € G} = G. The space R” is separable, therefore we can find a sequence {y;}

of elements of G such that, we have | J7, V,, = G. The measure H* restricted to ¢ (G) is o-
finite. Using this and Theorem 2.5 we ﬁnd Borel sets B,N C ¢(G)suchthat BC L C BUN
and H*(N) = 0. Using local lipschitzness of ¢~ we get \(o=1(N)) = H*(p~}(N)) = 0.
Thus we obtain that the set ¢~ !(L) is A*-measurable. Set

A= 00 v\ Un).

Then we have

(a) the set A; is A\¥-measurable for every j € N,
(b) A; CV,, forevery j € N,

(©) Vj,j' €N, j#j's AN Ay =0,

@ Uiz, 45 = o7 (L),

(e) forevery j € N we have

oc_l/ vol ' (t) dN*(t) < H*(p(4;)) < a/ vol ' (t) d NF (1),
A A

J J

(f) forevery j € N the set p(A;) is H*-measurable.
From (a) and (c)—(f) we get

ol / vol ¢/ (8) dNE(E) < H (p(™ (L)) < a / vol o (#) d A (1),
e~ H(L) (L)

Since « has been chosen arbitrarily, we get (3.12)).

2. Suppose that f is a nonnegative simple \*-measurable function, i.e., f = Z§:1 ¢jXL,;» Where
L; C p(G) is H*-measurable and ¢; > 0, j = 1,...,p. Then by (3.12)) we have

flz)d H*(z chH’c Zc]/ Volgo () d \e(t)

= ch/ X1, © @(t) vol ' (t) d X () (3.14)
j=1 “¢

»(G)

_ /G £ o o(t) vol o (£) A (1),
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3. Let f be anonnegative H*-measurable function. We find a nonnegative simple H*-measurable
functions f;: ¢(G) — R, j € N, such that f; — fa f; < f;41. Then by Levi theorem we get

im [ f@die) = [ fe)dEa),
(@)

I Je(@)
lim [ o) vl a0 = [ F( @) vl axe)

Using the point 2 we have for every ;7 € N the equality

F@a @) = [ fem)vl i axe)
G

»(G)

we get

/ f(x)d H*(x /f )) vol ' (t) d \¥(2).

4. Let f be a H*-measurable function and the integral [, f(¢(t)) vol¢'(t) d A*(t) converges.
Set f =max{f,0} a f~ = max{—f,0}. By the point 3 it holds

/ fH(x)d H"(x /f+ )) vol @' () d N¥(2). (3.15)

The last integral equals [,,(f((t)) voly'(t))™ d A*(t), thus it is finite by assumption. Similarly
we get

/ e = /G (Flo(t)) vol (1))~ d A1), (3.16)

the last integral is finite again. This implies

f(x)d H (z /f )) vol ' (t) d \¥(2).

»(G)

Remark. Area formula holds even for locally Lipschitz ¢ (cf. [1, F.34]).

The end of the lecture no. 2, 27.2.2025
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Example. Compute H?(S,), where S, = {z € R?; ||z|| = 1}.
The set S, can be written as a disjoint union Sy = A; U As, where

Ay ={x €Sy 29 =0,2; <0},
Ay =S5\ Ar.

The set A; is a Lipschitz image of a closed interval. Thus H'(A,) < co. By Theorem
we get H?(Ay) = 0.

Using area formula we compute H?(A,). We use spherical coordinate system ¢: G — R3,
where G = (—m,m) X (—7/2,7/2) a

p(a, ) = [cos(7) cos(a), cos(v) sin(a), sin(7)].

The mapping ¢ is injective regular and it holds ¢(G) = As. We infer vol ¢'(«,y) = cos~y for
(cr,v) € G. Then we have

H2(¢(G)):/ 1dH2=/volgo’d>\2

us

e(G) G
T 5 z

= / Cosvdvda:%r/ cosydy = 4m.
—rd-Z _

%
We may conclude H2(S,) = 4.

Theorem 3.6 (coarea formula). Let k,n € N,k > n, ¢: R* — R" be Lipschitz mapping,
f: R¥ — R be \e-integrable function. Then we have

[ oA @ @

_ /n([p_l({y}) Fla)d HY" (1)) X' ().

Without proof.

Theorem 3.7. Let f: R* — R be \+-integrable function. Then we have
f(z)d N(2) :/ (/ f(x)dH’“l(x)) dMH(r). (3.17)
RF 0 {z€RF; ||z[|=r}

Proof. Define ¢: R* — R by ¢(z) = ||z||. Then we have

@) = (o7 ar, o ol Traw), @ € RF\ {0},
¢'(2)¢(2)" = 1.

By Theorem [3.6| we have (3.17). O



Chapter 4

Semicontinuous functions

Definition. Let X be a topological space and f: X — R*. We say that f is lower semicon-
tinuous, if the set {x € X; f(x) > a} is open for every a € R. We say that f is upper
semicontinuous, if the set {z € X; f(x) < a} is open for every a € R.

Notation. The abbreviations Isc and usc are used.

Remark. (a) The function f: X — R is Isc if and only if liminf,,, f(¢) > f(x) whenever
xe X,

(b) If f: K — R is Isc on a nonempty compact space K, then f attains its minimum on K.

Theorem 4.1. Let X be a metrizable topological space and f: X — R* be bounded from below.
Then the function f is Isc, if and only if there exists a nondecreasing sequence { f,,} of continuous
functions from X to R such that f,, — f.
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Chapter 5

Functions of Baire class 1

Definition. Let X and Y be metrizable topological spaces. A function f: X — Y is of
Baire class 1 (B;-function) if for every open set U the set f~1(U) is F,.

Theorem 5.1 (Lebesgue—Hausdorff-Banach). Let X be a metrizable topological space and
f: X — R be a By-function. Then there exists a sequence { f,,} of continuous functions from X
to Rwith f, — f.

Lemma 5.2. Let X be a metrizable topological space and A C X be G5 and F, set. Then x 4 is
a pointwise limit of a sequence of continuous functions.

The end of the lecture no. 3, 6.3.2025

Lemma 5.3. Let X be a metrizable topological space, p,: X — R, n € w, be a pointwise limit
of continuous functions. If the sequence {p,} converges uniformly to p, then p is a pointwise
limit of continuous functions.

Lemma 5.4 (reduction for F, sets). Let X be a metrizable topological space, A,, be F, set for
every n € w. Then there are F, sets A* C A,, n € w, such that A* N A* = (), whenever
n,m € w,n#m,and ], ., Ay, = Uneco An-

Remark. Theorem 5.1 holds also for X zero-dimensional and Y separable metrizable.

Theorem 5.5 (Baire). Let X,Y be metrizable topological spaces, Y be separable, and f: X —
Y be B:-function. Then the set of points of continuity of f is residual and Gj.

Lemma 5.6. Let X be a Polish topological space, i.e., separable topological space metrizable
by a complete metric, A, B C X, ANB = (. If there is no set C which is G5 and F, with A C C
and C' N B = (), then there exists a closed nonempty set F such that AN F, BN F are dense in
F.

The end of the lecture no. 4, 13.3.2025
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Proof. We define Iy = X, F,py = ANF, N BNFE,, whenever a < wy, and F,, = ﬂa<n F,,
whenever 7 < wj is a limit ordinal. Then (F}, )., is a nonincreasing sequence of closed sets in
X. One can infer that there exists ( < w; such that Fi: = Fi ;.

Claim. F; # (

Proof of Claim. We assume towards contradiction that F = (). Then we can write

X = [ J(Fa\ Fapn). (5.1)

a<(

We set C' = Ua<<(A N Fy \ Fat1). Then one can get A C C and C'N B = (). We have that C
is I, as well as G5. To check the latter fact we define G5 sets

Go=ANF,U(X\ Fo) U Foyq, a <,

and we verify that

C =G

a<(

The inclusion C. For x € C there exists oy < wy such thatz € AN F,, \ F,,+1. Take o < wy.
We distinguish the following three possibilities. If o < «y, then

reANEF,, CF, CFy1 CG,.

If o = «, then
r e ANFE,, C Gy =G,

If a > ag then
re€ X\ Fom CX\F, CG,.

The inclusion >. Now suppose that € [, Ga. By (B.I) there exists # < ¢ with z €
F3\ Fpy1. We also have © € G . This implies that z € AN Fp \ Fzq C C.

Thus C' is a G5 and F, set separating A form B, a contradiction. This finishes the proof of
Claim. L

Now it is sufficient to set /' = F¢. []
Remark. Theorem 5.1 holds also for X zero-dimensional and Y separable metrizable.

Theorem 5.7 (Baire). Let X,Y be metrizable topological spaces, Y be separable, and f: X —
Y be Bi-function. Then the set of points of continuity of f is residual and G.
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Proof. Let {V,; n € w} be an open basis of Y. Then = € X is a point of discontinuity of f if
and only if there is n € w such that z € f~!(V},) \ interiorf~*(V,,). Thus we have

the set of points of discontinuity of f = U (f~"(V,,) \ interior f ' (V},)).

new

Fix n € w. Then there are closed sets F}, j € w such that f~(V},) \ interior f~1(V},) = U, F}-
Each F} has empty interior, thus the set f~*(V,,) \ interiorf~!(V},) is meager. This means that
the set of points of discontinuity of f is meager as well and we are done. ]

Theorem 5.8 (Baire). Let X be Polish, Y separable metrizable, and f: X — Y. Then the
following are equivalent

(1) f is a Bi-function.
(ii) f|r has a point of continuity for every F' C X closed.
Proof. (i) = (ii) It follows from Theorem[5.7]

(i) = (i) Let U C Y be open. We write U = Unew F,,, where F,’s are closed. It is sufficient to
show that for every n € w there exists D,, € AJ(X) such that f~'(F,) € D,,and D, f~1(Y'\
U) = (). Towards contradiction, we assume that this is not the case. Thus there exists ny € w
such that there is no AJ set separating f~*(F,,,) from f~1(Y \ U). Using Lemmawe find a
nonempty closed set F' such that f~!(F,, ) N Fisdense in F and f~' (Y \ U) N F is dense in F'.
Let z* € F be a point of continuity of f|z. We find a sequence {z,,} of points of f~(F, )N F
converging to z*. Then lim f(x,) = f(z*) € F,,. Similarly we find a sequence {z/,} of points
of =YY \ U) N F converging to z*. Then lim f(z,) = f(z*) € Y \ U, a contradiction. O

The end of the lecture no. 5, 20. 3.2025
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Chapter 6

Density topology, approximate continuity
and differentiability

Definition. Let f be a function from Rto R, a € R, and L € R. We say that f has approximate
limit L at the point a if

Ve >030 > 0VB € B,a€ B, diamB < §: \*({z € B; |f(z) — L| > e}) < eAn(B).

Theorem 6.1. Let f be a function from R to R, a € R. Then f has at most one approximate
limit at a.

Proof. Towards contradiction assume that L, ' € R, L # L', are approximate limit of [ at
a € R. Find € > 0 such that |L — L'| > 3. We find 6 > 0 such that

N({eeBi [fl@)~LI>e)) 1

B B,diam B < §:
VB € B,a € B,diam B < ) \B) <2
AHeeBilf@@) -L=e}) 1
\(B) 2

Fix B € B,a € B,diam B < ¢. Then we have
BC{veB; |f(x)— L > e} U{z € B; |f(a) = [/| > ¢},

Thus we get
. _ > . — I >
LAMB) _{reBif@)Llzc) {reBilf) -Llzep 11
A(B) A(B) A(B) 2 2
a contradiction. OJ

Notation. Let f be a function from R to R. The approximate limit of f at a € R is denoted by
ap-lim,_,, f(x).

Definition. A function from R to R is approximately continuous at « € R if ap-lim,_,, f(x) =

f(a).
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Definition. We say that a measurable set A C R is d-open, if each point of A is a point of
density of A.

Theorem 6.2. The system of d-open sets forms a topology.

Notation. The symbol 7, stands for the density topology from the previous theorem.

PROPERTIES OF DENSITY TOPOLOGY

* The topology 74 is finer than the standard topology.

The topology 74 is not metrizable.

A set K C R is 74-compact if and only if K is finite.

The topology 74 is not normal.

Baire theorem holds in (R, 7).

Theorem 6.3. The topology 7, is completely regular; i.e., if F C R is 14-closed and o € R\ F,
then there exists T4-continuous function f: R — [0, 1] such that f(y) = 0 for everyy € F and

flzo) = L

Lemma 6.4. Let E C R be measurable, X C FEis closed and d(E,z) = 1 for every x € X.
Then there exists a closed set P C R such that

- XCPCE,
e VreX:dPx) =1

e VxeP: d(E,z) =1
The end of the lecture no. 6, 27.3.2025

Remark. Let f be a function from R to R.
(a) The function f is approximately continuous at a € R if and only if f is 7;-continuous at a.

(b) The function f is approximately continuous at @ € R if and only there exists a measurable
set M C R suchthat d(M,a) =1 and lim,_,, e f(2) = f(a).

Theorem 6.5 (Denjoy). Let f: R — R. Then the function f is approximately continuous a.e. if
and only if f is measurable.
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Proof. = We set

N = {z € R; f is not approximately continuous at z }.

Then we have A\;(N) = 0. Choose ¢ € R andset M = {x € R; f(x) > c¢}. Theset M \ N
is d-open, therefore it is a measurable set. This implies that M is measurable. Consequently, we
have that f is measurable.

< Choose ¢ > 0. By Luzin theorem there exist a closed set F' C R with A\;(R \ F') < cand a
function g: F' — R which is continuous on F satisfying f|r = g. We have that a.e. point in F’
is a density point of F, therefore f is approximately continuous at a.e. point in F'. This implies
that f is approximately continuous a.e. in R. ]

The end of the lecture no. 7, 3.4.2025

Theorem 6.6. Let f: R — R be a bounded approximately continuous function. Then [ has an
antiderivative on R.

Proof. Find K € R such that |f(z)| < K for every € R. We set F(z) = [/ f. The function
f is measurable by Theorem|[6.5]and is bounded, therefore I is well deﬁned Choose x € R. Let
e > 0. We find § > 0 such that for every h € (0, ) it holds

Iy € [+ B 1)~ (@) 2 <)) <<

Fix h € (0,9) and denote M = {y € [x,x + h]; |f(y) — f(x)| > €}. It holds

1 1 z+h
T (F+n) = F@) = @) =3| [ (6~ @)
1
<1 / 0= sl g [ 1) = fl
< h2K ah—i-% he = (2K + 1)e.
This implies I (x) = f(x). One can infer F’ (x) = f(x) analogously. O

Corollary 6.7. Let f: R — R be a bounded approximately continuous function. Then f has
Darboux property and is in B;.

Theorem 6.8. There exists a differentiable function f: R — R such that the sets {x € R; f'(x) >
0} and {x € R; f'(x) < 0} are dense.

Proof. Let A, B C R be countable, dense, and disjoint. Suppose that A = {a,; n € N} and
B = {b,; n € N}. Observe that A and B are 74-closed. Using Theorem we find for every
n € N approximately continuous functions g,, and h,, such that

gn(an) = ]-7 hn<bn) = 17
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We define - .
=) 27"g = > 2"y,
n=1 n=1

Then the function ) is bounded, approximately continuous, positive on A, and negative on B.
By Theorem [6.6] there is a function f such that f' = 1) and we are done. ]

Remark. We say that a differentiable function g is of Kopcke type if ¢’ is bounded and the sets
{¢' > 0} and {¢' < 0} are dense.



Chapter 7

More on derivatives

Theorem 7.1 (Caratheodory—Vitali). Let f: R — R satisfy f € L'(\) and € > 0. Then there
exists u,v: R — R* such that

cu< f<u,
* u is usc and bounded from above,
* v is Isc and bounded from below,
s [(u—v)dI<e
Proof. To be added. See [3]]. O

Theorem 7.2. Let f be differentiable at each point of [a,b] C R and ' € L'([a,b]). Then we
have

f(x) — f(a) = (L) / ftyde, xelad)
Proof. To be added. See [3, 7.21]. ]

Lemma 7.3. Let F be a differentiable at each point of the interval [a,b] C R and F' is bounded
from below. Then F is absolutely continuous on [a, b].

Proof. To be added. [

Notation. Let / be a nonempty open interval. The set of all real functions defined on [ which
have an antiderivative on [ is denoted by A’(7).

Remark. We have ap — C,(I) C A'(I) C DBy (I).

Theorem 7.4 (Denjoy-Clarkson). Let I be a nonempty open interval and f € A'(I) Then f
has Denjoy-Clarkson property, i.e., for every open G C R we have that either f~1(G) = ) or

ASHG)) > 0.
Proof. To be added. [
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