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Chapter 1

Differentiation of measures

1.1 Covering theorems
Covering theorems provide a tool which enables us to infer global properties from local ones in
the context of measure theory.

Vitali theorem
Definition. LetA ⊂ Rn. We say that a system V consisting of closed balls from Rn forms Vitali
cover of A, if

∀x ∈ A ∀ε > 0 ∃B ∈ V : x ∈ B ∧ diamB < ε.

Notation.

• λn . . . Lebesgue measure on Rn

• λ∗n . . . outer Lebesgue measure on Rn

• If B ⊂ Rn is a ball and α > 0, then α ? B denotes the ball, which is concentric with B
and with α-times greater radius than B.

Theorem 1.1 (Vitali). Let A ⊂ Rn and V be a system of closed balls forming a Vitali cover of
A. Then there exists a countable disjoint subsystem A ⊂ V such that λn(A \

⋃
A) = 0.

Proof. First assume that A is bounded. Take an open bounded set G ⊂ Rn with A ⊂ G. Set

V∗ = {B ∈ V ; B ⊂ G}.

The system V∗ is a Vitali cover of A again. If there exists a finite disjoint subsystem V∗ covering
A, we are done. So assume

(?) there is no finite disjoint subsystem of V∗ covering A.

7



8 CHAPTER 1. DIFFERENTIATION OF MEASURES

1st step. We set
s1 = sup{diamB;B ∈ V∗}

and choose a ball B1 ∈ V∗ such that diamB1 > s1/2. We know that V∗ 6= ∅ and s1 ≤ diamG <
∞.

k-th step. Suppose that we have already chosen balls B1, . . . , Bk−1. We set

sk = sup
{

diamB; B ∈ V∗ ∧ B ∩
k−1⋃
i=1

Bi = ∅
}
.

The supremum is considered for a nonempty set since the set
⋃k−1
i=1 Bi is closed, which by (?) does

not coverA, and V∗ is a Vitali cover ofA. We choose a ballBk ∈ V∗ such thatBk∩
⋃k−1
i=1 Bi = ∅

and diamBk > sk/2.
This finishes the construction of the sequence (Bk)

∞
k=1. Set A = {Bk; k ∈ N}. We verify

that A is the desired system.

• A is countable. This follows immediately from the construction.

• A is disjoint. This follows from the construction.

• It holds λn(A \
⋃
A) = 0. We have

∞∑
i=1

λn(Bi) = λn

( ∞⋃
i=1

Bi

)
≤ λn(G) <∞.

Thus the series
∑∞

i=1 λn(Bi) is convergent, therefore limi λn(Bi) = 0. Using the fact that Bi,
i ∈ N, are balls we also have limi diamBi = 0. We know that 2 diamBi > si, consequently
limi si = 0.

We show that

∀x ∈ A \
⋃
A ∀i ∈ N ∃j ∈ N, j > i : x ∈ 5 ? Bj.

Take x ∈ A \
⋃
A and i ∈ N. Denote δ = dist(x,

⋃i
k=1Bk). It holds δ > 0 and there exists

B ∈ V∗ such that x ∈ B and diamB < δ. Then we have B ∩
⋃i
k=1Bk = ∅. Thus we have

diamB > sp for some p ∈ N since limi si = 0. Therefore there exists j > iwithBj∩B 6= ∅. Let
j be the smallest number with this property. Then we have sj ≥ diamB since B ∩

⋃j−1
l=1 Bl = ∅.

Further we have diamBj > sj/2 ≥ 1
2

diamB. Together we have 2 diamBj ≥ diamB. This
implies x ∈ B ⊂ 5 ? Bj .

For any i ∈ N we have

λ∗n(A \
⋃
A) ≤ λn

(∞⋃
j=i

5 ? Bj

)
≤

∞∑
j=i

λn(5 ? Bj) = 5n
∞∑
j=i

λn(Bj).
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Using limi→∞
∑∞

j=i λn(Bj) = 0 we get λ∗n(A \
⋃
A) = 0, and therefore λn(A \

⋃
A) = 0.

Now we assume that the set A is a general subset of Rn. Let (Gj)
∞
j=1 be a sequence of bounded

disjoint open sets such that λn(Rn \
⋃∞
j=1Gj) = 0. Denote

V∗j = {B ∈ V ; B ⊂ Gj}.

The system V∗j forms a Vitali cover of the bounded set Gj ∩ A. Using the previous part of the
construction we find a countable disjoint system Aj ⊂ V∗j with λn

(
(Gj ∩A) \

⋃
Aj
)

= 0. Now
we set A =

⋃
j Aj .

Definition. We say that a measure µ on Rn satisfies Vitali theorem, if for every M ⊂ Rn and
every Vitali cover V ofM there exists countable disjoint coverA ⊂ V such that µ

(
M\

⋃
A
)

= 0.

Remark. (1) By Theorem 1.1 λn satisfies Vitali theorem.

(2) If µ satisfies Vitali theorem and ν � µ, then ν satisfies Vitali theorem.

Remark. If µ is the Borel measure on R2 such that µ(A) = λ1
(
A∩ (R×{0})

)
for any A ⊂ R2

Borel, then Vitali theorem does not hold for µ.

The end of the lecture no. 1, 1. 10. 2024

Theorem 1.2. Let E ⊂ Rn be measurable and S be a finite system of closed balls covering E.
Then there exists a disjoint system L ⊂ S such that λn(E) ≤ 3n

∑
B∈L λn(B).

Proof. Without any loss of generality we may assume that S is nonempty. Choose B1 ∈ S
with maximal radius among balls in S. Suppose that we have already constructed B1, . . . , Bk−1.
If possible, choose Bk ∈ S disjoint with

⋃
i<k Bi and with maximal radius among balls in S

satisfying this property. We construct a finite sequence of closed balls B1, . . . , BN and set L =
{B1, . . . , BN}. We have E ⊂

⋃
B∈L 3 ?B. To this end consider x ∈ E. Then there exists B ∈ S

with x ∈ B. We find minimal k such that B ∩ Bk 6= ∅. Then we have radius(B) ≤ radius(Bk).
This implies that x ∈ B ⊂ 3 ? Bk.

Then we have

λn(E) ≤ λn

(⋃
B∈L

3 ? B
)
≤
∑
B∈L

λn(3 ? B) = 3n
∑
B∈L

λn(B).

Besicovitch theorem
Theorem 1.3 (Besicovitch [?]). For each n ∈ N there existsN ∈ N with the following property.
If A ⊂ Rn and ∆: A → (0,∞) is a bounded function, then there exist sets A1, . . . , AN such
that
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•
{
B(x,∆(x)); x ∈ Ai

}
is disjoint for every i ∈ {1, . . . , N},

• A ⊂
⋃{

B(x,∆(x)); x ∈
⋃N
i=1Ai

}
.

Proof. The case of a bounded setA. LetR = supA ∆. ChooseB1 := B(a1, r1) such that a1 ∈ A
and r1 := ∆(a1) >

3
4
R. Assume that we have already chosen balls B1, . . . , Bj−1 where j ≥ 2.

If

Fj := A \
j−1⋃
i=1

B(ai, ri) = ∅,

then the process stops and we set J = j. If Fj 6= ∅, we continue by choosing Bj := B(aj, rj)
such that aj ∈ Fj and

rj := ∆(aj) >
3
4

sup
Fj

∆. (1.1)

If Fj 6= ∅ for all j, then we set J = ∞. In this case limj→∞ rj = 0 because A is bounded and
the inequalities

‖ai − aj‖ ≥ ri =
1

3
ri +

2

3
ri >

1

3
ri +

1

2
rj >

1

3
ri +

1

3
rj

for i < j < J imply that {
1
3
? Bj; j < J

}
is a disjoint family. (1.2)

In case J <∞, we have A ⊂
⋃
j<J Bj . This is also true in the case J =∞. Otherwise there

exist a ∈
⋂∞
j=1 Fj and j0 ∈ N with rj0 ≤ 3

4
∆(a), contradicting the choice of rj0 .

Fix k < J . We set I = {i < k; Bi ∩ Bk 6= ∅}. We now prove that there exists M ∈ N
depending only on n which estimates |I|. To this end we split I into I1 and I2 and we estimate
their cardinality separately.

I1 = {i < k; Bi ∩Bk 6= ∅, ri < 10rk},
I2 = {i < k; Bi ∩Bk 6= ∅, ri ≥ 10rk}.

The estimate of |I1|. We have 1
3
? Bi ⊂ 15 ? Bk for every i ∈ I1. Indeed, if x ∈ 1

3
? Bi, then

‖x− ak‖ ≤ ‖x− ai‖+ ‖ai − ak‖ ≤
10

3
rk + ri + rk ≤

43

3
rk < 15rk.

Hence, there are at most 60n elements of I1, because for any i ∈ I1 we have

λn(1
3
? Bi) = λn(B(0, 1)) ·

(
1
3
ri
)n
> λn(B(0, 1)) ·

(
1
4
rk
)n

=
1

60n
λn(15 ? Bk).

The end of the lecture no. 2, 8. 10. 2024
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The estimate of |I2|. Denote bi = ai − ak. An elementary mesh-like construction gives a family
{Qm; 1 ≤ m ≤ (22n)n} of closed cubes with edge length 1/(11n) (so that diamQm ≤ 1/11),
which cover [−1, 1]n and thus in particular the unit sphere. We claim that for each 1 ≤ m ≤
(22n)n there is at most one i ∈ I2 such that bi/‖bi‖ ∈ Qm, which estimates the cardinality of I2.

If the claim were not valid, then there would exist i, j ∈ I2, i < j, such that∥∥∥∥ bi
‖bi‖

− bj
‖bj‖

∥∥∥∥ ≤ 1

11
.

Notice that
ri < ‖bi‖ < ri + rk and rj < ‖bj‖ < rj + rk, (1.3)

as the balls Bi, Bj intersect Bk but does not contain ak. Hence∣∣‖bi‖ − ‖bj‖∣∣ ≤ |ri − rj|+ rk ≤ |ri − rj|+
1

10
rj.

and
‖bj‖ ≤ rj + rk ≤ rj +

1

10
rj =

11

10
rj. (1.4)

We have

‖ai − aj‖ = ‖bi − bj‖ ≤
∥∥∥bi − ‖bj‖‖bi‖ bi

∥∥∥+
∥∥∥‖bj‖‖bi‖ bi − bj

∥∥∥
=
∥∥∥‖bi‖bi‖bi‖

− ‖bj‖
‖bi‖

bi

∥∥∥+
∥∥∥‖bj‖‖bi‖ bi − ‖bj‖‖bj‖bj

∥∥∥
≤
∣∣‖bi‖ − ‖bj‖∣∣+

1

11
‖bj‖

≤ |ri − rj|+
1

10
rj +

1

10
rj (using (1.3) and (1.4))

≤

{
ri − 4

5
rj < ri if ri > rj,

−ri + 6
5
rj ≤ −ri + 8

5
ri < ri if ri ≤ rj.

In the last inequality we have used that i < j and thus rj < 4
3
ri by (1.1). We arrived at a

contradiction as i < j and thus aj /∈ Bi. Hence |I2| ≤ (22n)n.

Thus it is sufficient to choose M > 60n + (22n)n.

Choice of A1, . . . , AM . For each k ∈ N we define λk ∈ {1, 2, . . . ,M} such that λk = k
whenever k ≤M and for k > M we define λk inductively as follows. There is λk ∈ {1, . . . ,M}
such that

Bk ∩
⋃
{Bi; i < k, λi = λk} = ∅.

Now we set Aj = {ai; λi = j}, j = 1, . . . ,M .

The case of a general set A. For each l ∈ N apply the previously obtained result with A replaced
by

Al = A ∩ {x; 3(l − 1)R ≤ ‖x‖ < 3lR},
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and denote resulting sets as Ali, i = 1, . . . ,M . Then we set

Ai =
⋃
l is odd

Ali, AM+i =
⋃

l is even

Ali, i = 1, . . . ,M.

Then we constructed N := 2M subsets which have the required properties.

Definition. Let P be a locally compact space and S be a σ-algebra of subsets of P . We say that
µ is a Radon measure on (P,S) if

(a) S contains all Borel subsets of P ,

(b) µ(K) <∞ for every compact set K ⊂ P ,

(c) µ(G) = sup{µ(K); K ⊂ G is compact} for every open set G ⊂ P ,

(d) µ(A) = inf{µ(G); A ⊂ G,G is open} for every A ∈ S,

(e) µ is complete.

Definition. Let µ be a measure on X . Outer measure corresponding to µ is defined by

µ∗(A) = inf{µ(B); A ⊂ B,B is µ-measurable}.

Remark. Let µ be a Radon measure on (Rn,S) andA ∈ S. Then there exist a Borel setB ⊂ Rn

such that A ⊂ B and µ(B \ A) = 0. If ν is a Radon measure on (Rn,S ′) with ν � µ, then
S ⊂ S ′.

The end of the lecture no. 3, 15. 10. 2024

Lemma 1.4. Let µ be a measure on X and {Aj}∞j=1 be an increasing sequence of subset of X .
Then limµ∗(Aj) = µ∗

(⋃∞
j=1Aj

)
.

Proof. For every j ∈ N find a µ-measurable set Bj with Aj ⊂ Bj and µ∗(Aj) = µ(Bj). We set
Mk =

⋂k
j=1Aj . Then Mk is µ-measurable Ak ⊂ Mk, and µ(Mk) = µ∗(Ak) for every k ∈ N.

Moreover, {Mk} is nondecreasing sequence of sets. Then we have

lim
k→∞

µ∗(Ak) = lim
k→∞

µ(Mk) = µ
( ∞⋃
k=1

Mk

)
≥ µ∗

( ∞⋃
k=1

Ak
)
≥ lim

k→∞
µ∗(Ak)

and we are done.

Theorem 1.5. Let µ be a Radon measure on Rn and F be a system of closed balls in Rn. Let
A denote the set of centers of the balls in F . Assume inf{r; B(a, r) ∈ F} = 0 for each a ∈ A.
Then there exists a countable disjoint system G ⊂ F such that µ

(
A \

⋃
G
)

= 0.
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Proof. The case µ∗(A) < ∞. Let N be the natural number from Theorem 1.3. Fix θ such that
1− 1

N
< θ < 1.

Claim. Let U ⊂ Rn be an open set. There exists a disjoint finite system H ⊂ F such that⋃
H ⊂ U and

µ∗
(
(A ∩ U) \

⋃
H
)
≤ θµ∗(A ∩ U). (1.5)

Proof of Claim. We may assume that µ∗(A∩U) > 0. LetF1 = {B ∈ F ; diamB < 1, B ⊂ U}.
By Theorem 1.3 there exist disjoint families G1, . . . ,GN ⊂ F1 such that

A ∩ U ⊂
N⋃
i=1

⋃
Gi.

Thus

µ∗(A ∩ U) ≤
N∑
i=1

µ∗
(
A ∩ U ∩

⋃
Gi
)
.

Consequently, there exists an integer 1 ≤ j ≤ N for which

µ∗
(
A ∩ U ∩

⋃
Gj
)
≥ 1

N
µ∗(A ∩ U) > (1− θ)µ∗(A ∩ U).

Using Lemma 1.4 we find a finite systemH ⊂ Gj such that

µ∗
(
A ∩ U ∩

⋃
H
)
> (1− θ)µ∗(A ∩ U).

The set
⋃
H is µ-measurable and therefore

µ∗(A ∩ U) = µ∗
(
A ∩ U ∩

⋃
H
)

+ µ∗
(
A ∩ U \

⋃
H
)

≥ (1− θ)µ∗(A ∩ U) + µ∗
(
A ∩ U \

⋃
H
)
.

This gives (1.5).

Set U1 = Rn. Using Claim we find a disjoint finite systemH1 ⊂ F such that
⋃
H1 ⊂ U1 and

µ∗
(
(A ∩ U1) \

⋃
H1

)
≤ θµ∗(A ∩ U1).

Continuing by induction we obtain a sequence of open set (Uj) and finite disjoint finite systems
(Hj) such that Uj+1 = Uj \

⋃
Hj ,Hj ⊂ F ,

⋃
Hj ⊂ Uj , and

µ(A ∩ Uj+1) = µ∗
(
(A ∩ Uj) \

⋃
Hj

)
≤ θµ∗(A ∩ Uj)

for every j ∈ N. Together we have

µ∗
(
A ∩ Uj+1

)
≤ θjµ∗(A)

for every j ∈ N. Since µ∗(A) <∞ we get µ∗
(
A \

⋃∞
j=1

⋃
Hj

)
= 0. Thus we set G =

⋃∞
j=1Hj

and we are done.

The general case. We find a sequence of bounded disjoint open sets (Gj)
∞
j=1 such that µ

(
Rn \⋃∞

j=1Gj

)
= 0. Then µ(Gj) <∞ for every j ∈ N and we proceed as in the proof of Theorem 1.1
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1.2 Differentiation of measures
Notation. The symbol B stands for the family of all closed balls in Rn.

Definition. Let ν and µ are measures on Rn and x ∈ Rn. Then we define

• upper derivative of ν with respect to µ at x by

D(ν, µ, x) = lim
r→0+

(sup{ν(B)/µ(B); x ∈ B, B ∈ B, diamB < r}) ,

if the term at the right side is defined,

• lower derivative of ν with respect to µ at x by

D(ν, µ, x) = lim
r→0+

(inf{ν(B)/µ(B); x ∈ B, B ∈ B, diamB < r}) ,

if the term at the right side is defined,

• derivative of ν with respect to µ at x (denoting D(ν, µ, x)) as the common value of
D(ν, µ, x) and D(ν, µ, x), if it is defined.

The end of the lecture no. 4, 22. 10. 2024

Remark. The value D(ν, µ, x) (D(ν, µ, x)) is well defined if and only if

∀B ∈ B, x ∈ B : µ(B) > 0.

Theorem 1.6. Let ν and µ be Radon measures on Rn and µ satisfy Vitali theorem. Then
D(ν, µ, x) and D(ν, µ, x) exist µ-a.e.

Proof. Denote

M = {x ∈ Rn; D(ν, µ, x) is not defined},
V = {B ∈ B; µ(B) = 0}.

The family V is a Vitali cover of M . We find a countable disjoint system A ⊂ V such that
µ(M \

⋃
A) = 0. The we have

µ
(⋃
A
)

=
∑
B∈A

µ(B) = 0,

therefore µ(M) = 0.
The proof for D(ν, µ, x) is analogous.

Theorem 1.7. Let ν and µ be Radon measures on Rn, µ satisfy Vitali theorem, c ∈ (0,∞), and
M ⊂ Rn.
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(i) If for every x ∈M we have D(ν, µ, x) > c, then ν∗(M) ≥ cµ∗(M).

(ii) If for every x ∈M we haveD(ν, µ, x) < c, then there existsH ⊂M such that µ(M\H) =
0 and ν∗(H) ≤ cµ∗(M).

Proof. (i) Choose ε > 0. There exists an open setG ⊂ Rn withM ⊂ G and ν(G) ≤ ν∗(M)+ε.
Set

V = {B ∈ B; B ⊂ G, ν(B) > cµ(B)}.
The family V is a Vitali cover of M . There exists a disjoint countable subfamily A ⊂ V with
µ(M \

⋃
A) = 0. Then we have

ν∗(M) + ε ≥ ν(G) ≥ ν
(⋃
A
)

=
∑
B∈A

ν(B)

≥
∑
B∈A

cµ(B) = cµ(
⋃
A) ≥ cµ∗(M).

Taking ε→ 0+ we get the desired inequality.

(ii) Choose k ∈ N. There exists an open set Gk ⊂ Rn such that M ⊂ Gk and µ(Gk) ≤
µ∗(M) + 1/k. Set

Vk = {B ∈ B; B ⊂ Gk, ν(B) < cµ(B)}.
The system Vk is a Vitali cover of M . Thus there exists a countable disjoint subfamily Ak ⊂ Vk
such that µ(M \

⋃
Ak) = 0. Set Hk = M ∩

⋃
Ak. Then µ(M \Hk) = 0, Hk ⊂M and we have

ν∗(Hk) ≤ ν
(⋃
Ak
)

=
∑
B∈A

ν(B) ≤ c
∑
B∈A

µ(B) = cµ
(⋃
A
)

≤ cµ(Gk) ≤ c
(
µ∗(M) + 1

k

)
.

Now we set H =
⋂∞
k=1Hk. Then we have ν∗(H) ≤ cµ∗(M) and

µ(M \H) = µ∗(M \H) ≤
∞∑
k=1

µ∗(M \Hk) = 0.

Theorem 1.8. Let ν and µ be Radon measures on Rn and µ satisfies Vitali theorem. Then
D(ν, µ, x) is finite µ-a.e.

Proof. Denote

D = {x ∈ Rn; D(ν, µ, x) ∈ 〈0,∞)},
N1 = {x ∈ Rn; D(ν, µ, x) is not defined},
N2 = {x ∈ Rn; D(ν, µ, x) is not defined},
N3 = {x ∈ Rn; D(ν, µ, x) =∞},
N4 = {x ∈ Rn; D(ν, µ, x) < D(ν, µ, x)}.

Then we have
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• D = Rn \ (N1 ∪N2 ∪N3 ∪N4),

• µ(N1) = µ(N2) = 0 (Theorem 1.6).

Further we define

Ak = {x ∈ Rn; D(ν, µ, x) > k},
A(r, s) = {x ∈ Rn; D(ν, µ, x) < s < r < D(ν, µ, x)}, s, r ∈ Q+, s < r.

The we have

N3 =
∞⋂
k=1

Ak,

N4 =
⋃
{A(r, s); r, s ∈ Q+, s < r}.

We show µ(N3) = 0. Choose Q ⊂ N3 bounded. By Theorem 1.7(i) we have

kµ∗(Q) ≤ ν∗(Q) <∞

for every k ∈ N. Therefore µ∗(Q) = 0 and thus also µ(N3) = 0, since N3 is a countable union
of bounded sets.

We show µ(N4) = 0. It is sufficient to show µ(A(r, s)) = 0 for every s, r ∈ Q+, s < r. Choose
Q ⊂ A(r, s) bounded. By Theorem 1.7(ii) there exists H ⊂ Q such that µ(Q \ H) = 0 and
ν∗(H) ≤ sµ∗(Q). By Theorem 1.7(i) we have rµ∗(H) ≤ ν∗(H). We may conclude

rµ∗(Q) = rµ∗(H) ≤ ν∗(H) ≤ sµ∗(Q) <∞.

Since r > s > 0, we have µ∗(Q) = 0. This implies µ(A(r, s)) = 0.

Lemma 1.9. Let ν and µ be Radon measures on Rn and µ satisfies Vitali theorem. Then the
mappings x 7→ D(ν, µ, x), x 7→ D(ν, µ, x) are µ-measurable.

Proof. We start with the following observation.

The set

M(r, α) =
{
x ∈ Rn; ∃B ∈ B : diamB < r ∧ x ∈ B ∧ ν(B)

µ(B)
< α

}
is open for every r > 0 and α ∈ R.

If x ∈M(r, α), then there exist y ∈ Rn and s > 0 with x ∈ B(y, s), 2s < r,

ν
(
B(y, s)

)
µ
(
B(y, s)

) < α.
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We find s′ > s such that 2s′ < r, ν
(
B(y, s′)

)
/µ
(
B(y, s′)

)
< α. Now we have x ∈ B(y, s′) ⊂

M(r, α). This finishes the proof of the observation.

The end of the lecture no. 5, 29. 10. 2024

Denote D = {x ∈ Rn; D(ν, µ, x) exists finite}. The set D is µ-measurable by Theorem 1.8.
For every x ∈ D we have

D(ν, µ, x) < α

⇔ ∃τ ∈ Q, τ > 0 ∀r ∈ Q, r > 0 ∃B ∈ B : diamB < r, x ∈ B, ν(B)

µ(B)
< α− τ

⇔ ∃τ ∈ Q, τ > 0 ∀r ∈ Q, r > 0 : x ∈M(r, α− τ).

The set {x ∈ Rn; D(ν, µ, x) < α} is intersection of D with a Borel set. This implies that
the mapping x 7→ D(ν, µ, x) is µ-measurable.

Measurability of the mapping x 7→ D(ν, µ, x) can be proved analogously.

Theorem 1.10. Let ν and µ be Radon measures on Rn, µ satisfy Vitali theorem, ν � µ, and
B ⊂ Rn be µ-measurable. Then we have∫

B

D(ν, µ, x) dµ(x) = ν(B).

Proof. Choose β ∈ R, β > 1. Define

Bk = {x ∈ B; βk < D(ν, µ, x) ≤ βk+1}, k ∈ Z,

N = {x ∈ B; D(ν, µ, x) = 0}.

These sets are µ-measurable by Lemma 1.9. Using Theorem 1.8 we have

µ
(
B \

( ∞⋃
k=−∞

Bk ∪N
))

= 0.

Then we have∫
B

D(ν, µ, x) dµ(x) =
∞∑

k=−∞

∫
Bk

D(ν, µ, x) dµ(x) ≤
∞∑

k=−∞

βk+1µ(Bk)

Theorem 1.7(i)
≤

∞∑
k=−∞

βk+1β−kν(Bk) ≤ βν(B).

Going β → 1+ we get ∫
B

D(ν, µ, x) dµ(x) ≤ ν(B).
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Now let β > 1 again. Define

Ck = {x ∈ B; βk ≤ D(ν, µ, x) < βk+1}, k ∈ Z.

Besides the equality

µ
(
B \ (

∞⋃
k=−∞

Ck ∪N)
)

= 0,

we have also ν
(
B \ (

⋃∞
k=−∞Ck ∪ N)

)
= 0, since ν � µ. By Theorem 1.7(ii) and absolute

continuity of ν with respect to µ we obtain ν∗(Q) ≤ cµ∗(Q) < ∞ for any c > 0 and Q ⊂ N
bounded. Similarly as in the proof of Theorem 1.8 we get ν(N) = 0. Then we have∫

B

D(ν, µ, x) dµ(x) ≥
∞∑

k=−∞

∫
Ck

D(ν, µ, x) dµ(x) ≥
∞∑

k=−∞

βkµ(Ck)

Theorem 1.7(ii)
≥

∞∑
k=−∞

βkβ−(k+1)ν(Ck) =
1

β
ν(B).

Now it follows
∫
B
D(ν, µ, x) dµ(x) ≥ ν(B).

1.3 Lebesgue points
Definition. Let µ be a Radon measure on Rn. The symbolL1

loc(µ) denotes the set of all functions
f : Rn → C, which are µ-measurable and for every x ∈ Rn there exists r > 0 such that∫
B(x,r)

|f(t)| dµ(t) <∞.

Definition. Let f ∈ L1
loc(µ). We say that x ∈ Rn is Lebesgue point of f (with respect to µ), if

it holds

∀ε > 0 ∃δ > 0 ∀B ∈ B, x ∈ B, diamB < δ :

∫
B
|f(t)− f(x)| dµ(t)

µ(B)
< ε.

Theorem 1.11. Let µ be a Radon measure on Rn satisfying Vitali theorem and f ∈ L1
loc(µ).

Then µ-a.e. points of f are Lebesgue points.

Proof. Without any loss of generality we may assume that µ(Rn) < ∞ and f ∈ L1(µ). Let
(Ck) be a sequence of closed discs in C, which forms a basis of C. We denote

gk(x) := dist(f(x), Ck), x ∈ Rn.

The function gk is nonnegative µ-measurable function satisfying gk ∈ L1(µ). Let νk =
∫
gk dµ.

By Theorem 1.10 we have D(νk, µ, x) = gk(x) µ-a.e. Denote

Pk = {x ∈ f−1(Ck); ¬(D(νk, µ, x) = 0)}.
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We have gk = 0 on f−1(Ck), therefore µ(Pk) = 0. We show that every point from Rn \
⋃∞
k=1 Pk

is a Lebesgue point of f .
Let x ∈ Rn \

⋃∞
k=1 Pk. Choose ε > 0. We find Ck such that f(x) ∈ Ck and Ck ⊂

B(f(x), ε/2). For any t ∈ Rn it holds

|f(t)− f(x)| ≤ gk(t) + ε.

There exists δ > 0 such that

∀B ∈ B, x ∈ B, diamB < δ :

∫
B
gk(t) dµ(t)

µ(B)
< ε,

since D(νk, µ, x) = 0. Take B ∈ B with x ∈ B, diamB < δ we get∫
B
|f(t)− f(x)| dµ(t)

µ(B)
≤
∫
B
gk(t) dµ(t) + εµ(B)

µ(B)
< 2ε.

This finishes the proof.

1.4 Density theorem
Definition. Let µ be a measure on Rn, A ⊂ Rn be µ-measurable, and x ∈ Rn. We say that
c ∈ [0, 1] is µ-density of the set A at x, if

∀ε > 0 ∃δ > 0 ∀B ∈ B, x ∈ B, diamB < δ :
∣∣∣µ(A ∩B)

µ(B)
− c
∣∣∣ < ε.

We denote dµ(A, x) = c.

The end of the lecture no. 6, 12. 11. 2024

Theorem 1.12. Let µ be a Radon measure on Rn satisfying Vitali theorem and M ⊂ Rn be
µ-measurable. Then

• dµ(M,x) = 1 for µ-a.e. x ∈M ,

• dµ(M,x) = 0 for µ-a.e. x ∈ Rn \M .

Proof. Define ν on Rn by

ν(A) = µ(A ∩M) for every A ⊂ Rn µ-measurable.

Then we have

• dµ(M,x) = D(ν, µ, x), if at least one term is well defined,

• ν � µ,

• ν =
∫
χM dµ.

By Theorem 1.10 we have ν =
∫
D(ν, µ, x) dµ(x) therefore dµ(M,x) = D(ν, µ, x) =

χM(x) µ-a.e.
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1.5 AC and BV functions
Remark. For a, c, b ∈ R, a < c < b, it holds

• Vb
a f = Vc

a f + Vb
c f ,

• |f(b)− f(a)| ≤ Vb
a f .

Example. Let f be a function with continuous derivative on an interval [a, b]. Then Vb
a f =∫ b

a
|f ′(x)| dx.

Remark. Let I be a closed nonempty interval. Then we have

(a) f, g ∈ AC(I)⇒ f + g ∈ AC(I),

(b) f ∈ AC(I), α ∈ R⇒ αf ∈ AC(I).

Theorem 1.13. Let f : [a, b]→ R, a < b. Then f is absolutely continuous on [a, b] if and only if
f is difference of of two nondecreasing absolutely continuous functions on [a, b].

Proof. ⇒ We denote v(x) = Vx
a f , x ∈ [a, b]. The function v is well defined since f ∈

BV ([a, x]), x ∈ [a, b]. For every x, y ∈ I := [a, b], x < y, we have v(y)− v(x) = V y
x f .

The function v is nondecreasing. This is obvious.

The function v − f is nondecreasing. For every x, y ∈ I, x < y we have(
v(y)− f(y)

)
−
(
v(x)− f(x)

)
=
(
v(y)− v(x)

)
−
(
f(y)− f(x)

)
= V y

x f −
(
f(y)− f(x)

)
≥ 0.

The function v is absolutely continuous. Choose ε > 0. We find δ > 0 such that

m∑
j=1

|f(bj)− f(aj)| < ε,

whenever a1 < b1 ≤ a2 < b2 ≤ · · · ≤ am < bm are points from I = [a, b] with
∑m

j=1(bj − aj) <
δ. Now assume that we have points A1 < B1 ≤ A2 < B2 ≤ · · · ≤ Ap < Bp from I satisfying∑p

j=1(Bj − Aj) < δ. For each j ∈ {1, . . . , p} we find points

Aj = aj1 < bj1 = aj2 < bj2 = · · · < bjmj = Bj

such that

v(Bj)− v(Aj) = V
Bj
Aj
f <

mj∑
i=1

|f(bji )− f(aji )|+
ε

p
.

The we have
p∑
j=1

mj∑
i=1

(bji − a
j
i ) =

p∑
j=1

(Bj − Aj) < δ
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and
p∑
j=1

|v(Bj)− v(Aj)| <
p∑
j=1

( mj∑
i=1

|f(bji )− f(aji )|+
ε

p

)
< ε+ ε = 2ε

Now we can write f = v − (v − f).

Remark. Let F : R→ R be nondecreasing function which is continuous at each point from the
right. Then there exists a Radon measure νF such that F is the distribution function of νF , i.e.,

νF
(
(a, b]

)
= F (b)− F (a), a, b ∈ R, a < b.

Lemma 1.14. Let f : (a, b)→ R, x0 ∈ (a, b), and f ′(x0) ∈ R. Then we have

lim
[x1,x2]→[x0,x0]
x1≤x0≤x2,x1 6=x2

f(x2)− f(x1)

x2 − x1
= f ′(x0).

Lemma 1.15. Let f : (a, b) → R be nondecreasing on (a, b), C(f) be the set of all points of
continuity of f , and A ∈ R. Then for every x0 ∈ C(f) it holds

f ′(x0) = A⇔ lim
[x1,x2]→[x0,x0]
x1≤x0≤x2,x1 6=x2

x1,x2∈C(f)

f(x2)− f(x1)

x2 − x1
= A.

The end of the lecture no. 7, 19. 11. 2024

Lemma 1.16. Let f be a distribution function of a Radon measure µ on R, x0 ∈ C(f), A ∈ R.
Then

f ′(x0) = A⇔ D(µ, λ1, x0) = A.

Theorem 1.17 (Lebesgue). Let f be a monotone function on an interval I . Then we have

(a) f ′(x) exists a.e. in I ,

(b) f ′ is measurable and
∣∣∫ b
a
f ′
∣∣ ≤ |f(b)− f(a)|, whenever a, b ∈ I, a < b,

(c) f ′ ∈ L1
loc(I).

Proof. Without any loss of generality we may assume that f is nondecreasing. Let a, b ∈ I ,
a < b. We define

g(x) =


limt→a+ f(t), x ∈ (−∞, a]

limt→x+ f(t), x ∈ (a, b),

f(b), x ∈ [b,∞).

The function g is nondecreasing, continuous from the right at each point of R, and {x ∈
(a, b) f(x) 6= g(x)} is countable. By Remark there exists a Radon measure ν on R such that

∀c, d ∈ R, c < d : ν((c, d]) = g(d)− g(c).

We find Radon measures µ, σ such that ν = σ + µ, σ � λ, and µ⊥λ.
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Claim. We have D(µ, λ, x) = 0 λ-a.e.

Proof of Claim. There exists a Borel set N such that λ(N) = 0 and µ(R \ N) = 0. Denote
D = {x ∈ R \N ; D(µ, λ, x) > c}. Then we have 0 = µ(D) ≥ cλ(D). This implies λ(D) = 0,
and, consequently, λ({x ∈ R \N ; D(µ, λ, x) > 0}) = 0. This gives the claim.

Lemma 1.16 gives g′(x) = D(ν, λ, x) λ-a.e. in [a, b], since g is continuous at each point [a, b]
except a countable set. For every x0 ∈ (a, b) ∩ C(f) we have f ′(x0) = A ∈ R if and only if
g′(x0) = A ∈ R (Lemma 1.15), since f(t) = g(t) whenever t ∈ C(f) ∩ (a, b). This implies (a).

(b) We have

f(b)− f(a) ≥ g(b)− g(a) = ν((a, b]) ≥ σ((a, b])

=

∫ b

a

D(σ, λ, x) dλ(x)
Claim
=

∫ b

a

D(ν, λ, x) dλ(x).

(c) This follows from (b).

Theorem 1.18. Let I be a nonempty interval and f ∈ BV (I). Then f ′(x) exists finite a.e. in I .

Theorem 1.19. Let f : [a, b]→ R, a < b. Then the following assertions are equivalent.

(i) f ∈ AC([a, b]).

(ii) We have ϕ ∈ L1([a, b]) such that

f(x) = f(a) +

∫ x

a

ϕ(t) dt, x ∈ [a, b].

(iii) f ′(x) exists a.e. in [a, b], f ′ ∈ L1([a, b]) and

f(x) = f(a) +

∫ x

a

f ′(t) dt, x ∈ [a, b].

The end of the lecture no. 8, 26. 11. 2024
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Theorem 1.20 (per partes for Lebesgue integral). Let f, g ∈ AC([a, b]). Then we have∫ b

a

f ′g = [fg]ba −
∫ b

a

fg′.

Theorem 1.21. Let g be a nonnegative function on [a, b] with g ∈ L1([a, b]). Let f be a continu-
ous function on [a, b]. Then there exists ξ ∈ [a, b] such that∫ b

a

fg = f(ξ)

∫ b

a

g.

Theorem 1.22. Let f ∈ L1([a, b]) and g be a monotone function on [a, b]. Then there exists
ξ ∈ [a, b] such that ∫ b

a

fg = g(a)

∫ ξ

a

f + g(b)

∫ b

ξ

f.
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1.6 Rademacher theorem
Definition. Let M ⊂ Rn. We say that f : M → R is Lipschitz (on M ), if there exists K > 0
such that

∀x, y ∈M : |f(x)− f(y)| ≤ K||x− y||.

Remark. If f is Lipschitz on M , then f is continuous on M .

Theorem 1.23. Let G ⊂ Rn be open nonempty and f : G → R be Lipschitz on G. Then f is
differentiable a.e. on G.

Lemma 1.24. Let f : Rn → R be continuous and i ∈ {1, . . . , n}. Then the set

Di =
{
x ∈ Rn; ∂f

∂xi
(x) exists

}
is Borel.

Proof. We have

∂f

∂xi
(x) exists

⇔ ∀ε > 0 ∃δ > 0 ∀t1, t2 ∈ (−δ, δ) \ {0} :
∣∣f(x+t1ei)−f(x)

t1
− f(x+t2ei)−f(x)

t2

∣∣ < ε

⇔ ∀ε ∈ Q+ ∃δ ∈ Q+ ∀t1, t2 ∈
(
(−δ, δ) ∩Q

)
\ {0} :

∣∣f(x+t1ei)−f(x)
t1

− f(x+t2ei)−f(x)
t2

∣∣ < ε.

For ε > 0 and nonzero t1, t2 denote

D(ε, t1, t2) =
{
x ∈ Rn;

∣∣f(x+t1ei)−f(x)
t1

− f(x+t2ei)−f(x)
t2

∣∣ < ε
}
.

The set D(ε, t1, t2) is open since f is continuous. We have

Di =
⋂
ε∈Q+

⋃
δ∈Q+

⋂
t1∈(−δ,δ)∩Q

t1 6=0

⋂
t2∈(−δ,δ)∩Q

t2 6=0

D(ε, t1, t2),

therefore Di is Borel.

The end of the lecture no. 9, 3. 12. 2024
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Lemma 1.25. Let β > 0, A 6= ∅, fα, α ∈ A, be β-Lipschitz function on Rn and x ∈ Rn be such
that supα∈A fα(x) is finite. Then the function z 7→ supα∈A fα(z) is β-Lipschitz on Rn.

Proof. Let u, v ∈ Rn. Then |fγ(u)− fγ(x)| ≤ β||u− x|| for any γ ∈ A, therefore

fγ(u) ≤ fγ(x) + β||u− x|| ≤ sup
α∈A

fα(x) + β||u− x||.

This implies
sup
γ∈A

fγ(u) ≤ sup
α∈A

fα(x) + β||u− x||,

thus supγ∈A fγ(u) ∈ R. Further we have

fγ(u) ≤ fγ(v) + β||u− v|| ≤ sup
α∈A

fα(v) + β||u− v|| for every γ ∈ A.

We get
sup
γ∈A

fγ(u) ≤ sup
α∈A

fα(v) + β||u− v||.

Thus we have
sup
α∈A

fα(u)− sup
α∈A

fα(v) ≤ β||u− v||.

Interchanging the roles of u and v we obtain

sup
α∈A

fα(v)− sup
α∈A

fα(u) ≤ β||u− v||,

which proves β-Lipschitzness.

Lemma 1.26. Let β > 0, E ⊂ Rn be nonempty and f : E → R be β-Lipschitz. Then there
exists β-Lipschitz function f̃ : Rn → R with f̃ |E = f .

Proof. The function fx : y 7→ f(x)− β · ||y − x|| is β-Lipschitz for every x ∈ E since

|fx(u)− fx(v)| =
∣∣β · ||u− x|| − β · ||v − x||∣∣ ≤ β||u− v||

for every u, v ∈ Rn. For every y ∈ E we have supx∈E fx(y) ≤ f(y). Using Lemma 1.25 we get
the mapping defined by

f̃(y) = sup
x∈E

(f(x)− β||y − x||)

is β-Lipschitz on Rn. For z ∈ E we have f̃(z) ≥ fz(z) = f(z). Moreover fx(z) = f(x) −
β||z − x|| ≤ f(z), which gives f̃(z) ≤ f(z). Thus we prove f̃(z) = f(z).

Proof of Theorem 1.23. By Lemma 1.26 we may suppose that f is Lipschitz with the constant β
on Rn, i.e.,

∀x, y ∈ Rn : |f(x)− f(y)| ≤ β||x− y||.

We show that f is differentiable a.e. This gives also the statement of the theorem. Let E ⊂ Rn

be a set of those points where at least one partial derivative does not exist. The set Rn \ Di is
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by Lemma 1.24 measurable. We use Fubini theorem and Rademacher theorem for n = 1 (see
Remark) to get λn(Rn \Di) = 0. Then we have λn(E) = 0, since E =

⋃n
i=1(R

n \Di).
For p, q ∈ Qn, m ∈ N, denote

S(p, q,m) =
{
x ∈ Rn; ∀i ∈ {1, . . . , n} ∀t ∈ (−1/m, 1/m) \ {0} : pi ≤ f(x+tei)−f(x)

t
≤ qi

}
.

It is easy to verify that the set S(p, q,m) is Borel. Let S̃(p, q,m) be the set of all points of
S(p, q,m), where S(p, q,m) has density 1. Then Theorem 1.12 gives

λn
(
S(p, q,m) \ S̃(p, q,m)

)
= 0.

The set
N =

⋃
{S(p, q,m) \ S̃(p, q,m); p, q ∈ Qn,m ∈ N}

is of measure zero.
We show that f is differentiable at each point x ∈ Rn \ (E ∪ N). Take x ∈ Rn \ (E ∪ N)

and ε ∈ (0, 1). Choose p, q ∈ Qn such that

qi − ε < pi <
∂f

∂xi
(x) < qi, i = 1, . . . , n.

Then there is m ∈ N such that x ∈ S(p, q,m). Since x /∈ N , the point x is a point of density of
the set S(p, q,m). Denote S = S(p, q,m).

We find δ ∈ (0, 1/m) such that

λn
(
B(x, r) \ S

)
≤
(
ε
2

)n
λn(B(x, r))

for every r ∈ (0, 2δ). Notice that the set B(x, (1 + ε)τ) \ S does not contain a ball with radius
ετ , whenever τ ∈ (0, δ). Otherwise it would hold

cn(ετ)n ≤ (ε/2)ncn(1 + ε)nτn,

a contradiction. (The symbol cn denotes n-dimensional measure of the unit ball.)
Choose y ∈ B(x, δ), y 6= x. Denote

yi = [y1, y2, . . . , yi, xi+1, . . . , xn].

For every i ∈ {0, . . . , n} define a ball Bi = B(yi, ε||y − x||). Using the preceding observation
we haveBi∩S 6= ∅. Find points zi ∈ S∩Bi, i = 0, . . . , n−1, and denotewi = zi−1+(yi−xi)ei,
i = 1, . . . , n.

Then we have

pi ≤
f(wi)− f(zi−1)

yi − xi
≤ qi if xi 6= yi,

pi <
∂f

∂xi
(x) < qi,
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therefore ∣∣∣f(wi)− f(zi−1)− ∂f

∂xi
(x)(yi − xi)

∣∣∣ ≤ (qi − pi)|yi − xi| ≤ ε‖y − x‖.

Then we have

∣∣∣f(y)− f(x)−
n∑
i=1

∂f

∂xi
(x)(yi − xi)

∣∣∣
≤

n∑
i=1

∣∣∣f(wi)− f(zi−1)− ∂f

∂xi
(x)(yi − xi)

∣∣∣+
n∑
i=1

(|f(yi)− f(wi)|+ |f(zi−1)− f(yi−1)|)

≤ nε||y − x||+ 2nβε||y − x|| = ε(n+ 2nβ)||y − x||,

thus the proof is finished.

Remark. Let us mention the following two deep results of D. Preiss ([2]).

1. Let H be a Hilbert space and f : H → R be Lipschitz. Then there exists x ∈ H , where
f is Fréchet differentiable, i.e., there exists a continuous linear mapping L : H → R such
that

lim
h→0

|f(x+ h)− f(x)− L(h)|
||h||

= 0.

2. There exists a closed measure zero set F ⊂ R2 such that any Lipschitz function on R2 is
differentiable at some point of F .

The end of the lecture no. 10, 10. 12. 2024

1.7 Lipschitz functions and W 1,∞

Remark. We have

W 1,∞(Ω) =
{
u ∈ L∞(Ω); ∂iu ∈ L∞(Ω) (in the sense of distributions), i ∈ {1, . . . , n}

}
.

Theorem 1.27. Let U ⊂ Rn be open. Then f : U → R is local Lipschitz on U if and only if
f ∈ W 1,∞

loc (U).

Without proof.
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1.8 Maximal operator
Definition. Let f : Rn → R be measurable. For x ∈ Rn we define

Mf(x) = sup
B∈B,x∈B

1

λn(B)

∫
B

|f |.

Theorem 1.28 (Hardy-Littlewood-Wiener).

(a) If f ∈ Lp(Rn), 1 ≤ p ≤ ∞, then Mf is finite a.e.

(b) There exists c > 0 such that for every f ∈ L1(Rn) and α > 0 we have

λn({x ∈ Rn; Mf(x) > α}) ≤ c

α
‖f‖1.

(c) Let p ∈ (1,∞]. Then there exists A such that for every f ∈ Lp(Rn) we have ‖Mf‖p ≤
A‖f‖p.



Chapter 2

Hausdorff measures

2.1 Basic notions
Convention. We will assume that (P, ρ) is a metric space.

Definition. Let p > 0, A ⊂ P . Denote

Hp(A, δ) = inf
{ ∞∑
j=1

(diamAj)
p; A ⊂

∞⋃
j=1

Aj, diamAj ≤ δ
}
, δ > 0;

Hp(A) = sup
δ>0
Hp(A, δ).

The function A 7→ Hp(A) is called p-dimensional outer Hausdorff measure.

Remark. DefiniceHs se nezmění, pokud budeme uvažovat An uzavřené (resp. otevřené).

Definition. Outer measure γ on P is called metric, if for every A,B ⊂ P with inf{ρ(x, y); x ∈
A, y ∈ B} > 0 we have γ(A ∪B) = γ(A) + γ(B).

Theorem 2.1. Let γ be a metric outer measure on P . Then every Borel subset of P is γ-
measurable.

Proof. We have that γ-measurable sets form σ-algebra. Therefore it is sufficient to prove that
closed sets are γ-measurable. Necht’ tedy F ⊂ P je uzavřená. Vezměme testovací množinu
T ⊂ P . Bez újmy na obecnosti můžeme předpokládat, že γ(T ) < ∞, nebot’ chceme dokázat
nerovnost

γ(T ) ≥ γ(T ∩ F ) + γ(T \ F ).

Označme

P0 = {x ∈ T ; dist(x, F ) ≥ 1},
Pj = {x ∈ T ; 1

j+1
≤ dist(x, F ) < 1

j
} pro j ∈ N.

29
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Množiny P0, P2, P4, . . . mají od sebe navzájem kladné vzdálenosti, a tedy pro libovolné m ∈ N
platí

m∑
j=0

γ(P2j) = γ(
m⋃
j=0

P2j) ≤ γ(T ).

Podobně
m∑
j=0

γ(P2j+1) = γ(
m⋃
j=0

P2j+1) ≤ γ(T ).

Dostáváme tak, že řada
∑∞

j=0 γ(Pj) je konvergentní. Dále platí, že vzdálenost T ∩ F a
⋃m
j=0 Pj

je kladná. Máme tedy

γ((T ∩ F ) ∪
m⋃
j=0

Pj) = γ(T ∩ F ) + γ(
m⋃
j=0

Pj).

Dostáváme tak

γ(T ∩ F ) + γ(T \ F ) = γ(T ∩ F ) + γ(
∞⋃
j=0

Pj)

≤ γ(T ∩ F ) + γ(
m⋃
j=0

Pj) + γ(
∞⋃

j=m+1

Pj)

≤ γ((T ∩ F ) ∪
m⋃
j=0

Pj) + γ(
∞⋃

j=m+1

Pj)

≤ γ((T ∩ F ) ∪
m⋃
j=0

Pj) +
∞∑

j=m+1

γ(Pj)

≤ γ(T ) +
∞∑

j=m+1

γ(Pj).

Pro m→∞ se poslední člen blíží k nule, a dostáváme tak dokazovanou nerovnost.

Theorem 2.2. Hp is a metric outer measure.

Proof. Není těžké ukázat, že funkce A 7→ Hp(A, δ) je vnější míra. Limitní přechod δ → 0+,
pak dává, žeHp je vnější míra.

Necht’ nyní A,B ⊂ P a inf{ρ(a, b); a ∈ A, b ∈ B} = δ0 > 0. Pokud nyní C ⊂ A ∪ B a
diamC < δ0, pak C ⊂ A nebo C ⊂ B. Máme tedy

Hp(A ∪B, δ) = Hp(A, δ) +Hp(B, δ)

pro libovolné δ ∈ (0, δ0). Odtud

Hp(A ∪B) = Hp(A) +Hp(B).
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Corollary 2.3. Every Borel subset of P isHp-measurable.

Theorem 2.4. Let k, n ∈ N, k ≤ n, K = [0, 1)k × {0}n−k ⊂ Rn. Then 0 < Hk(K) <∞.

Proof. Zvolme δ > 0. K němu nalezneme m ∈ N takové, že
√
k
m
< δ. Krychli [0, 1]k rozdělíme

na mk nepřekrývajících se krychlí K1, K2, . . . , Kmk , jejichž hrany délky 1/m jsou rovnoběžné
se souřadnými osami. Diametr těchto krychlí je

√
k/m. Potom

Hk(K, δ) ≤
mk∑
j=1

(diam(Kj × {0}n−k)k = mk · k
k/2

mk
= kk/2.

Odtud plyneHk(K) <∞.
Necht’ π : Rn → Rk je projekce π(x1, . . . , xn) = [x1, . . . , xk]. Označme λ(A) = λk(π(A ∩

K)). Pokud A ⊂ Rn, pak
λ(A) ≤ 2k(diamA)k.

Necht’ (Aj) je posloupnost podmnožin K taková, že
⋃
Aj = K. Potom

∞∑
j=1

(diamAj)
k ≥ 2−k

∞∑
j=1

λ(Aj) ≥ 2−kλ(K) = 2−k.

Takže platíHk(K) ≥ 2−k.

Remark. It can be shown that κk := Hk

(
[0, 1]k × {0}n−k

)
= (4/π)k/2Γ(1 + k

2
).

Definition. Let k ∈ N. The k-dimensional normalized Hausdorff measure is defined by
Hk = 1

κk
Hk.

Theorem 2.5 (regularity of Hausdorff measure). Let k, n ∈ N, k ≤ n, and A ⊂ Rn. Then there
exists a Borel set B ⊂ Rn such that A ⊂ B and Hk(A) = Hk(B).

Theorem 2.6. Let n ∈ N and A ⊂ Rn. Then Hn(A) = λn∗(A).

2.2 Area formula
Notation. Let k, n ∈ N, k ≤ n, and L : Rk → Rn be a linear mapping. We denote volL =√

detLTL.

Definition. Let k, n ∈ N, k ≤ n, and G ⊂ Rk be open. A mapping f : G → Rn is said to be
regular, if f ∈ C1(G) and for every x ∈ G the rank of f ′(a) is k.

Theorem 2.7 (area formula). Let k, n ∈ N, k ≤ n, G ⊂ Rk be an open set, ϕ : G → Rn be an
injective regular mapping and f : ϕ(G)→ R be Hk-measurable. Then we have∫

ϕ(G)

f(x) dHk(x) =

∫
G

f(ϕ(t)) volϕ′(t) dλk(t),

if the integral at the right side converges.
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2.3 Hausdorff dimension
Lemma 2.8. Let 0 < p < q, A ⊂ P , andHp(A) <∞. ThenHq(A) = 0.

Proof. Let δ ∈ (0, 1) and {Aj}∞j=1 be a sequence of subsets of P such that A ⊂
⋃∞
j=1Aj ,

diamAj ≤ δ for every j ∈ N, and
∑∞

j=1(diamAj)
p < Hp(A) + 1. Then we have

Hq(A, δ) ≤
∞∑
j=1

(diamAj)
q =

∞∑
j=1

(diamAj)
p · (diamAj)

q−p

≤
∞∑
j=1

(diamAj)
p · δq−p ≤ δq−p(Hp(A) + 1).

Sending δ → 0+ we getHq(A) = 0.

Definition. Let A ⊂ P . Hausdorff dimension of A is defined by

dimA = inf{t ≥ 0; Ht(A) <∞}.

Remark. By Lemma 2.8 we have

Ht(A) =

{
∞ for t < dim(A),

0 for t > dim(A).

Corollary 2.9. (i) For every A ⊂ B ⊂ P we have dimA ≤ dimB.

(ii) For every Ai ⊂ P , i ∈ N, we have dim(
⋃∞
i=1Ai) = supi dimAi.

(iii) We have dim([0, 1]k × {0}n−k) = k, in particular, dim[0, 1]n = n.

Example (Cantor set). For s ∈ {∅} ∪
⋃∞
k=1{0, 1}k we define inductively closed intervals Is as

follows

• I∅ = [0, 1],
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• if Is = [a, b], then Is∧i =

{
[a, a+ 1

3
(b− a)], if i = 0,

[b− 1
3
(b− a), b], if i = 1.

Cantor set is defined by

C =
∞⋂
k=0

⋃
s∈{0,1}k

Is.

The set C has the following properties:

• C is compact,

• C is nowhere dense,

• C is uncountable.

Theorem 2.10. We have dimC = log 2
log 3

.

Proof. Denote d = log 2
log 3

.

We proveHd(C) ≤ 1. We have C ⊂
⋃
s∈{0,1}k Is and diam Is ≤ 3−k, s ∈ {0, 1}k. We infer∑

s∈{0,1}k
(diam Is)

d = 2k · (3−k)d = 1.

Then we haveHd(C) ≤ 1.

We proveHd(C) ≥ 1/4. It is sufficient to prove that

∞∑
j=1

(diam Ij)
d ≥ 1/4,

where Ij, j ∈ N, are open intervals and C ⊂
⋃∞
j=1 Ij . Convex envelope of an open set G ⊂ R is

an open interval with the same diameter asG. The setC is compact, therefore there exist intervals
I1, . . . , In covering C. Since C is nowhere dense, we may assume that, that the endpoints of
I1, . . . , In are not in C. Then there exists δ > 0 such that

dist(C, endpoints of I1, . . . , In) > δ.

Let k ∈ N and 3−k < δ. Then we have

∀s ∈ {0, 1}k ∃j ∈ {1, . . . , n} : Is ⊂ Ij. (2.1)

Claim. Let I ⊂ R be an interval and l ∈ N we have∑
Is⊂I

s∈{0,1}l

(diam Is)
d ≤ 4(diam I)d.
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Proof of Claim. Suppose that the sum at the left side is nonzero. Let m be the smallest natural
number such that I contains some It, t ∈ {0, 1}m. Then we have obviouslym ≤ l. Let J1, . . . , Jp
are those intervals among Is, s ∈ {0, 1}m, which intersect I . The we have p ≤ 4 by the choice
of m. Then we have

4(diam I)d ≥
p∑
i=1

(diam Ji)
d =

p∑
i=1

∑
Is⊂Ji
s∈{0,1}l

(diam Is)
d

≥
∑
Is⊂I

s∈{0,1}l

(diam Is)
d.

Indeed, we have

(diam Ji)
d = (3−m)d = 2−m,∑

Is⊂Ji
s∈{0,1}l

(diam Is)
d = 2l−m · (3−l)d = 2−m.

Then we have

4
∞∑
j=1

(diam Ij)
d

Claim
≥

n∑
j=1

∑
Is⊂Ij

s∈{0,1}k

(diam Is)
d

(2.1)
≥

∑
s∈{0,1}k

(diam Is)
d = 1.

This finishes the proof.

The end of Winter Semester
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Chapter 3

Area and coarea formulae

Theorem 3.1. Let (P1, ρ1) and (P2, ρ2) be metric spaces, s > 0, and f : P1 → P2 be β-Lipschitz.
ThenHs

(
f(P1)

)
≤ βsHs(P1).

Proof. Choose δ > 0. Let sets Aj, j ∈ N, satisfy P1 =
⋃∞
j=1Aj and diamAj < δ for every

j ∈ N. Then we have f(P1) =
⋃∞
j=1 f(Aj) and diam f(Aj) ≤ β diamAj ≤ βδ. Then we have

Hs(f(P1), βδ) ≤
∞∑
j=1

(diam f(Aj))
s ≤

∞∑
j=1

βs(diamAj)
s.

This implies Hs(f(P1), βδ) ≤ βsHs(P1, δ). Sending δ → 0+, we get Hs(f(P1)) ≤ βsHs(P1).

Lemma 3.2. Let k, n ∈ N, k ≤ n, a L : Rk → Rn be an injective linear mapping. Then for
every λk-measurable set A ⊂ Rk it holds

Hk
(
L(A)

)
=
√

detLTL · λk(A). (3.1)

Proof. The mapping L is linear and injective, therefore the dimension of the vector space L(Rk)
is k. Thus there exists a linear isometry Q : Rk → Rn such that Q(Rk) = L(Rk). Then we have

Hk
(
L(A)

)
= Hk(Q−1 ◦ L(A)) = λk

(
Q−1 ◦ L(A)

)
= | det(Q−1L)| · λk(A).

(3.2)

(
det(Q−1L)

)2
= det

(
(Q−1L)TQ−1L

)
= det

(
(〈Q−1Lei, Q−1Lej〉)ni,j=1

)
= det

(
(〈Lei, Lej〉)ni,j=1

)
= det(LTL).

(3.3)

The desired equality (3.1) follows from (3.2) a (3.3).

Notation. Let k, n ∈ N, k ≤ n, and L : Rk → Rn be a linear mapping. We denote volL =√
detLTL.

37
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Remark. (a) The matrix LTL is called Gram matrix. By Lemma 3.2 we haveHk
(
L([0, 1]k)

)
=

volL, thus volL is k-dimensional volume of L
(
[0, 1]k

)
. If ϕ ∈ C1(G), then the mapping t 7→

volϕ′(t) is continuous on the set G.

(b) If L is a matrix of the type n× k, then the matrix LTL is symmetric and of the type k × k.

(c) Gram determinant is nonnegative, since for every matrixA of the type n×k and for every x ∈
Rk we have (LTLx, x) = (Lx, Lx) ≥ 0, thus ATA is positive semidefinite. Gram determinant
is positive definite, whenever the rank of L is k.

Lemma 3.3. Let k, n ∈ N, k ≤ n, G ⊂ Rk be open set, ϕ : G → Rn be an injective regular
mapping, x ∈ G, and β > 1. Then there exists a neighbourhood V of the point x such that

(a) the mapping y 7→ ϕ
(
ϕ′(x)−1(y)

)
is β-Lipschitz on ϕ′(x)(V ),

(b) the mapping z 7→ ϕ′(x)
(
ϕ−1(z)

)
is β-Lipschitz on ϕ(V ).

Figure 3.1:

Proof. First we infer several auxiliary inequalities. The linear mapping v 7→ ϕ′(x)(v) is injec-
tive, therefore there exists η > 0 such that

∀v ∈ Rk : ‖ϕ′(x)(v)‖ ≥ η‖v‖. (3.4)
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We set η = inf
{
‖ϕ′(x)(v)‖; v ∈ Rk, ‖v‖ = 1

}
. The mapping v 7→ ϕ′(x)(v) is continuous and

the unit sphere {v ∈ Rk; ‖v‖ = 1} is compact, therefore the infimum is attained at a point v0.
Since ϕ′(x)(v0) 6= 0, η is positive.

We find ε ∈ (0, 1
2
η) such that

2ε

η
+ 1 < β. (3.5)

Further we find a ball V centered at the point x such that

∀y ∈ V : ‖ϕ′(y)− ϕ′(x)‖ ≤ ε.

We show that for every u, v ∈ V it holds

‖ϕ(u)− ϕ(v)− ϕ′(x)(u− v)‖ ≤ ε‖u− v‖. (3.6)

Fix v ∈ V and consider the mapping

g : w 7→ ϕ(w)− ϕ(v)− ϕ′(x)(w − v), w ∈ V.

For w ∈ V we have g′(w) = ϕ′(w)− ϕ′(x). Then we have

‖ϕ(u)− ϕ(v)− ϕ′(x)(u− v)‖ = ‖g(u)− g(v)‖
≤ sup{‖g′(w)‖; w ∈ V } · ‖u− v‖
≤ ε‖u− v‖,

this implies (3.6).
Further we show that for every u, v ∈ V we have

‖ϕ(u)− ϕ(v)‖ ≥ 1

2
η‖u− v‖. (3.7)

For u, v ∈ V we compute

‖ϕ(u)− ϕ(v)‖ ≥ −‖ϕ(u)− ϕ(v)− ϕ′(x)(u− v)‖+ ‖ϕ′(x)(u− v)‖

≥ −ε‖u− v‖+ η‖u− v‖ ≥ 1

2
η‖u− v‖,

this gives (3.7).

(a) Choose a, b ∈ ϕ′(x)(V ). We find u, v ∈ V such that ϕ′(x)(u) = a, ϕ′(x)(v) = b. We
compute

‖ϕ
(
ϕ′(x)−1(a)

)
− ϕ

(
ϕ′(x)−1(b)

)
‖ = ‖ϕ(u)− ϕ(v)‖

≤ ‖ϕ(u)− ϕ(v)− ϕ′(x)(u− v)‖+ ‖ϕ′(x)(u− v)‖
(3.6)
≤ ε‖u− v‖+ ‖ϕ′(x)(u− v)‖

(3.4)
≤ ε

η
‖a− b‖+ ‖a− b‖ =

(
ε
η

+ 1
)
‖a− b‖

(3.5)
≤ β‖a− b‖.
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(b) Choose p, q ∈ ϕ(V ). We find u, v ∈ V with ϕ(u) = p, ϕ(v) = q. Compute

‖ϕ′(x)
(
ϕ−1(p)

)
− ϕ′(x)

(
ϕ−1(q)

)
‖ = ‖ϕ′(x)(u)− ϕ′(x)(v)‖

= ‖ϕ′(x)(u− v)‖
≤ ‖ϕ(u)− ϕ(v)− ϕ′(x)(u− v)‖+ ‖ϕ(u)− ϕ(v)‖
(3.6)
≤ ε‖u− v‖+ ‖p− q‖

(3.7)
≤ 2ε

η
‖ϕ(u)− ϕ(v)‖+ ‖p− q‖ = (2ε

η
+ 1)‖p− q‖

(3.5)
≤ β‖p− q‖.

This finishes the proof.

The end of the lecture no. 1, 20. 2. 2025

Lemma 3.4. Let k, n ∈ N, k ≤ n, G ⊂ Rk be an open set, ϕ : G→ Rn be an injective regular
mapping, x ∈ G, and α > 1. Then there exists a neighbourhood V of x such that for every
λk-measurable E ⊂ V we have

α−1
∫
E

volϕ′(t) dλk(t) ≤ Hk
(
ϕ(E)

)
≤ α

∫
E

volϕ′(t) dλk(t).

Proof. Find β > 1 a τ > 1 such that
βkτ < α. (3.8)

By Lemma 3.3 we find V1 of x such that for ϕ and β (a) and (b) of the lemma holds. Using
continuity of the mapping t 7→ volϕ′(t) on G we find a neighbourhood V2 of x such that

∀t ∈ V2 : τ−1 volϕ′(x) ≤ volϕ′(t) ≤ τ volϕ′(x). (3.9)

Set V = V1 ∩ V2. We show that V is the desired neighbourhood.
Let E ⊂ V be λk-measurable. By (3.9) we get

τ−1 volϕ′(x) · λk(E) ≤
∫
E

volϕ′(t) dλk(t) ≤ τ volϕ′(x) · λk(E). (3.10)

By Lemma 3.2 we have volϕ′(x) · λk(E) = Hk
(
ϕ′(x)(E)

)
, and we can write

τ−1Hk
(
ϕ′(x)(E)

)
≤
∫
E

volϕ′(t) dλk(t) ≤ τHk
(
ϕ′(x)(E)

)
. (3.11)

By Lemma 3.3(a) and by the choice of V1 we get

Hk
(
ϕ(E)

)
= Hk

(
ϕ ◦ ϕ′(x)−1 ◦ ϕ′(x)(E)

)
≤ βkHk

(
ϕ′(x)(E)

)
(3.11)
≤ βkτ

∫
E

volϕ′(t) dλk(t)
(3.8)
≤ α

∫
E

volϕ′(t) dλk(t).
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By Lemma 3.3(b) and by the choice of V1 we get

Hk
(
ϕ(E)

)
≥ β−kHk

(
ϕ′(x) ◦ ϕ−1 ◦ ϕ(E)

)
= β−kHk

(
ϕ′(x)(E)

)
(3.11)
≥ β−kτ−1

∫
E

volϕ′(t) dλk(t)
(3.8)
≥ α−1

∫
E

volϕ′(t) dλk(t).

Theorem 3.5 (area formula). Let k, n ∈ N, k ≤ n, G ⊂ Rk be an open set, ϕ : G → Rn be an
injective regular mapping and f : ϕ(G)→ R be Hk-measurable. Then we have∫

ϕ(G)

f(x) dHk(x) =

∫
G

f(ϕ(t)) volϕ′(t) dλk(t),

if the integral at the right side converges.

Figure 3.2:

Proof. The mapping ϕ is injective, therefore there exists an inverse mapping ϕ−1. Each open set
H ⊂ G is a countable union of compact sets, therefore ϕ(H) is a countable union of compact
sets. Thus we get that ϕ−1 is Borel and the set ϕ(G) is Borel.

The mappings ϕ is locally Lipschitz. Therefore ϕ(G) is Hk-σ-finite by Theorem 3.1. The
mappings ϕ−1 is also locally Lipschitz (by Lemma 3.3).

1. Suppose that f = χL, where L ⊂ ϕ(G) is Hk-measurable. We show

Hk(L) =

∫
ϕ−1(L)

volϕ′(t) dλk(t). (3.12)
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Choose α > 1. By Lemma 3.4 we find for every y ∈ G a neighbourhood Vy ⊂ G of the point y
such that for every λk-measurable set E ⊂ Vy we have

α−1
∫
E

volϕ′(t) dλk(t) ≤ Hk(ϕ(E)) ≤ α

∫
E

volϕ′(t) dλk(t). (3.13)

It holds
⋃
{Vy; y ∈ G} = G. The space Rk is separable, therefore we can find a sequence {yj}

of elements of G such that, we have
⋃∞
j=1 Vyj = G. The measure Hk restricted to ϕ(G) is σ-

finite. Using this and Theorem 2.5 we find Borel sets B,N ⊂ ϕ(G) such that B ⊂ L ⊂ B ∪N
and Hk(N) = 0. Using local lipschitzness of ϕ−1 we get λk(ϕ−1(N)) = Hk(ϕ−1(N)) = 0.
Thus we obtain that the set ϕ−1(L) is λk-measurable. Set

Aj = ϕ−1(L) ∩
(
Vyj \

j−1⋃
i=1

Vyi
)
.

Then we have

(a) the set Aj is λk-measurable for every j ∈ N,

(b) Aj ⊂ Vyj for every j ∈ N,

(c) ∀j, j′ ∈ N, j 6= j′ : Aj ∩ Aj′ = ∅,

(d)
⋃∞
j=1Aj = ϕ−1(L),

(e) for every j ∈ N we have

α−1
∫
Aj

volϕ′(t) dλk(t) ≤ Hk
(
ϕ(Aj)

)
≤ α

∫
Aj

volϕ′(t) dλk(t),

(f) for every j ∈ N the set ϕ(Aj) is Hk-measurable.

From (a) and (c)–(f) we get

α−1
∫
ϕ−1(L)

volϕ′(t) dλk(t) ≤ Hk
(
ϕ(ϕ−1(L))

)
≤ α

∫
ϕ−1(L)

volϕ′(t) dλk(t).

Since α has been chosen arbitrarily, we get (3.12).

2. Suppose that f is a nonnegative simple λk-measurable function, i.e., f =
∑p

j=1 cjχLj , where
Lj ⊂ ϕ(G) is Hk-measurable and cj ≥ 0, j = 1, . . . , p. Then by (3.12) we have∫

ϕ(G)

f(x) dHk(x) =

p∑
j=1

cjH
k(Lj) =

p∑
j=1

cj

∫
ϕ−1(Lj)

volϕ′(t) dλk(t)

=

p∑
j=1

cj

∫
G

χLj ◦ ϕ(t) volϕ′(t) dλk(t)

=

∫
G

f ◦ ϕ(t) volϕ′(t) dλk(t).

(3.14)
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3. Let f be a nonnegativeHk-measurable function. We find a nonnegative simpleHk-measurable
functions fj : ϕ(G)→ R, j ∈ N, such that fj → f a fj ≤ fj+1. Then by Levi theorem we get

lim
j→∞

∫
ϕ(G)

fj(x) dHk(x) =

∫
ϕ(G)

f(x) dHk(x),

lim
j→∞

∫
G

fj(ϕ(t)) volϕ′(t) dλk(t) =

∫
G

f(ϕ′(t)) volϕ′(t) dλk(t).

Using the point 2 we have for every j ∈ N the equality∫
ϕ(G)

fj(x) dHk(x) =

∫
G

fj(ϕ(t)) volϕ′(t) dλk(t),

we get ∫
ϕ(G)

f(x) dHk(x) =

∫
G

f(ϕ(t)) volϕ′(t) dλk(t).

4. Let f be a Hk-measurable function and the integral
∫
G
f(ϕ(t)) volϕ′(t) dλk(t) converges.

Set f+ = max{f, 0} a f− = max{−f, 0}. By the point 3 it holds∫
ϕ(G)

f+(x) dHk(x) =

∫
G

f+(ϕ(t)) volϕ′(t) dλk(t). (3.15)

The last integral equals
∫
G

(f(ϕ(t)) volϕ′(t))+ dλk(t), thus it is finite by assumption. Similarly
we get ∫

ϕ(G)

f−(x) dHk(x) =

∫
G

(f(ϕ(t)) volϕ′(t))− dλk(t), (3.16)

the last integral is finite again. This implies∫
ϕ(G)

f(x) dHk(x) =

∫
G

f(ϕ(t)) volϕ′(t) dλk(t).

Remark. Area formula holds even for locally Lipschitz ϕ (cf. [1, F.34]).

The end of the lecture no. 2, 27. 2. 2025
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Example. Compute H2(S2), where S2 = {x ∈ R3; ‖x‖ = 1}.

The set S2 can be written as a disjoint union S2 = A1 ∪ A2, where

A1 = {x ∈ S2; x2 = 0, x1 ≤ 0},
A2 = S2 \ A1.

The set A1 is a Lipschitz image of a closed interval. Thus H1(A2) < ∞. By Theorem 3.1
we get H2(A2) = 0.

Using area formula we compute H2(A2). We use spherical coordinate system ϕ : G → R3,
where G = (−π, π)× (−π/2, π/2) a

ϕ(α, γ) = [cos(γ) cos(α), cos(γ) sin(α), sin(γ)].

The mapping ϕ is injective regular and it holds ϕ(G) = A3. We infer volϕ′(α, γ) = cos γ for
(α, γ) ∈ G. Then we have

H2
(
ϕ(G)

)
=

∫
ϕ(G)

1 dH2 =

∫
G

volϕ′ dλ2

=

∫ π

−π

∫ π
2

−π
2

cos γ d γ dα = 2π

∫ π
2

−π
2

cos γ d γ = 4π.

We may conclude H2(S2) = 4π.

Theorem 3.6 (coarea formula). Let k, n ∈ N, k ≥ n, ϕ : Rk → Rn be Lipschitz mapping,
f : Rk → R be λk-integrable function. Then we have∫

Rk

f(x)
√

det(ϕ′(x)ϕ′(x)T ) dλk(x)

=

∫
Rn

(∫
ϕ−1({y})

f(x) dHk−n(x)
)

dλn(y).

Without proof.

Theorem 3.7. Let f : Rk → R be λk-integrable function. Then we have∫
Rk

f(x) dλk(x) =

∫ ∞
0

(∫
{z∈Rk; ‖z‖=r}

f(x) dHk−1(x)
)

dλ1(r). (3.17)

Proof. Define ϕ : Rk → R by ϕ(x) = ‖x‖. Then we have

ϕ′(x) = (‖x‖−1x1, . . . , ‖x‖−1xk), x ∈ Rk \ {0},
ϕ′(x)ϕ′(x)T = 1.

By Theorem 3.6 we have (3.17).



Chapter 4

Semicontinuous functions

Definition. Let X be a topological space and f : X → R∗. We say that f is lower semicon-
tinuous, if the set {x ∈ X; f(x) > a} is open for every a ∈ R. We say that f is upper
semicontinuous, if the set {x ∈ X; f(x) < a} is open for every a ∈ R.

Notation. The abbreviations lsc and usc are used.

Remark. (a) The function f : X → R is lsc if and only if lim inft→x f(t) ≥ f(x) whenever
x ∈ X ′.

(b) If f : K → R is lsc on a nonempty compact space K, then f attains its minimum on K.

Theorem 4.1. LetX be a metrizable topological space and f : X → R∗ be bounded from below.
Then the function f is lsc, if and only if there exists a nondecreasing sequence {fn} of continuous
functions from X to R such that fn → f .
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Chapter 5

Functions of Baire class 1

Definition. Let X and Y be metrizable topological spaces. A function f : X → Y is of
Baire class 1 (B1-function) if for every open set U the set f−1(U) is Fσ.

Theorem 5.1 (Lebesgue–Hausdorff–Banach). Let X be a metrizable topological space and
f : X → R be a B1-function. Then there exists a sequence {fn} of continuous functions from X
to R with fn → f .

Lemma 5.2. Let X be a metrizable topological space and A ⊂ X be Gδ and Fσ set. Then χA is
a pointwise limit of a sequence of continuous functions.

The end of the lecture no. 3, 6. 3. 2025

Lemma 5.3. Let X be a metrizable topological space, pn : X → R, n ∈ ω, be a pointwise limit
of continuous functions. If the sequence {pn} converges uniformly to p, then p is a pointwise
limit of continuous functions.

Lemma 5.4 (reduction for Fσ sets). Let X be a metrizable topological space, An be Fσ set for
every n ∈ ω. Then there are Fσ sets A∗n ⊂ An, n ∈ ω, such that A∗n ∩ A∗m = ∅, whenever
n,m ∈ ω, n 6= m, and

⋃
n∈ω A

∗
n =

⋃
n∈ω An.

Remark. Theorem 5.1 holds also for X zero-dimensional and Y separable metrizable.

Theorem 5.5 (Baire). Let X, Y be metrizable topological spaces, Y be separable, and f : X →
Y be B1-function. Then the set of points of continuity of f is residual and Gδ.

Lemma 5.6. Let X be a Polish topological space, i.e., separable topological space metrizable
by a complete metric, A,B ⊂ X , A∩B = ∅. If there is no set C which isGδ and Fσ with A ⊂ C
and C ∩ B = ∅, then there exists a closed nonempty set F such that A ∩ F , B ∩ F are dense in
F .

The end of the lecture no. 4, 13. 3. 2025
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Proof. We define F0 = X , Fα+1 = A ∩ Fα ∩ B ∩ Fα, whenever α < ω1, and Fη =
⋂
α<η Fα,

whenever η < ω1 is a limit ordinal. Then (Fα)α<ω1 is a nonincreasing sequence of closed sets in
X . One can infer that there exists ζ < ω1 such that Fζ = Fζ+1.

Claim. Fζ 6= ∅

Proof of Claim. We assume towards contradiction that Fζ = ∅. Then we can write

X =
⋃
α<ζ

(Fα \ Fα+1). (5.1)

We set C =
⋃
α<ζ

(
A ∩ Fα \ Fα+1

)
. Then one can get A ⊂ C and C ∩ B = ∅. We have that C

is Fσ as well as Gδ. To check the latter fact we define Gδ sets

Gα = A ∩ Fα ∪ (X \ Fα) ∪ Fα+1, α < ζ,

and we verify that
C =

⋂
α<ζ

Gα.

The inclusion ⊂. For x ∈ C there exists α0 < ω1 such that x ∈ A ∩ Fα0 \ Fα0+1. Take α < ω1.
We distinguish the following three possibilities. If α < α0, then

x ∈ A ∩ Fα0 ⊂ Fα0 ⊂ Fα+1 ⊂ Gα.

If α = α0, then
x ∈ A ∩ Fα0 ⊂ Gα0 = Gα.

If α > α0 then
x ∈ X \ Fα0+1 ⊂ X \ Fα ⊂ Gα.

The inclusion ⊃. Now suppose that x ∈
⋂
α<ζ Gα. By (5.1) there exists β < ζ with x ∈

Fβ \ Fβ+1. We also have x ∈ Gβ . This implies that x ∈ A ∩ Fβ \ Fβ+1 ⊂ C.

Thus C is a Gδ and Fσ set separating A form B, a contradiction. This finishes the proof of
Claim.

Now it is sufficient to set F = Fζ .

Remark. Theorem 5.1 holds also for X zero-dimensional and Y separable metrizable.

Theorem 5.7 (Baire). Let X, Y be metrizable topological spaces, Y be separable, and f : X →
Y be B1-function. Then the set of points of continuity of f is residual and Gδ.
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Proof. Let {Vn; n ∈ ω} be an open basis of Y . Then x ∈ X is a point of discontinuity of f if
and only if there is n ∈ ω such that x ∈ f−1(Vn) \ interiorf−1(Vn). Thus we have

the set of points of discontinuity off =
⋃
n∈ω

(
f−1(Vn) \ interiorf−1(Vn)

)
.

Fix n ∈ ω. Then there are closed sets Fj, j ∈ ω such that f−1(Vn) \ interiorf−1(Vn) =
⋃
n∈ω Fj .

Each Fj has empty interior, thus the set f−1(Vn) \ interiorf−1(Vn) is meager. This means that
the set of points of discontinuity of f is meager as well and we are done.

Theorem 5.8 (Baire). Let X be Polish, Y separable metrizable, and f : X → Y . Then the
following are equivalent

(i) f is a B1-function.

(ii) f |F has a point of continuity for every F ⊂ X closed.

Proof. (i)⇒ (ii) It follows from Theorem 5.7.

(ii)⇒ (i) Let U ⊂ Y be open. We write U =
⋃
n∈ω Fn, where Fn’s are closed. It is sufficient to

show that for every n ∈ ω there exists Dn ∈∆0
2(X) such that f−1(Fn) ⊂ Dn and Dn

⋂
f−1(Y \

U) = ∅. Towards contradiction, we assume that this is not the case. Thus there exists n0 ∈ ω
such that there is no ∆0

2 set separating f−1(Fn0) from f−1(Y \ U). Using Lemma 5.6 we find a
nonempty closed set F such that f−1(Fn0)∩F is dense in F and f−1(Y \U)∩F is dense in F .
Let x∗ ∈ F be a point of continuity of f |F . We find a sequence {xn} of points of f−1(Fn0) ∩ F
converging to x∗. Then lim f(xn) = f(x∗) ∈ Fn0 . Similarly we find a sequence {x′n} of points
of f−1(Y \ U) ∩ F converging to x∗. Then lim f(xn) = f(x∗) ∈ Y \ U , a contradiction.

The end of the lecture no. 5, 20. 3. 2025
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Chapter 6

Density topology, approximate continuity
and differentiability

Definition. Let f be a function from R to R, a ∈ R, and L ∈ R. We say that f has approximate
limit L at the point a if

∀ε > 0 ∃δ > 0 ∀B ∈ B, a ∈ B, diamB < δ : λ∗
(
{x ∈ B; |f(x)− L| ≥ ε}

)
< ελn(B).

Theorem 6.1. Let f be a function from R to R, a ∈ R. Then f has at most one approximate
limit at a.

Proof. Towards contradiction assume that L,L′ ∈ R, L 6= L′, are approximate limit of f at
a ∈ R. Find ε > 0 such that |L− L′| > 3ε. We find δ > 0 such that

∀B ∈ B, a ∈ B, diamB < δ :
λ∗
(
{x ∈ B; |f(x)− L| ≥ ε}

)
λ(B)

<
1

2

∧
λ∗
(
{x ∈ B; |f(x)− L′| ≥ ε}

)
λ(B)

<
1

2
.

Fix B ∈ B, a ∈ B, diamB < δ. Then we have

B ⊂ {x ∈ B; |f(x)− L| ≥ ε} ∪ {x ∈ B; |f(x)− L′| ≥ ε}.

Thus we get

1 =
λ(B)

λ(B)
≤ {x ∈ B; |f(x)− L| ≥ ε}

λ(B)
+
{x ∈ B; |f(x)− L′| ≥ ε}

λ(B)
<

1

2
+

1

2
= 1,

a contradiction.

Notation. Let f be a function from R to R. The approximate limit of f at a ∈ R is denoted by
ap-limx→a f(x).

Definition. A function from R to R is approximately continuous at a ∈ R if ap-limx→a f(x) =
f(a).
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Definition. We say that a measurable set A ⊂ R is d-open, if each point of A is a point of
density of A.

Theorem 6.2. The system of d-open sets forms a topology.

Notation. The symbol τd stands for the density topology from the previous theorem.

PROPERTIES OF DENSITY TOPOLOGY

• The topology τd is finer than the standard topology.

• The topology τd is not metrizable.

• A set K ⊂ R is τd-compact if and only if K is finite.

• The topology τd is not normal.

• Baire theorem holds in (R, τd).

Theorem 6.3. The topology τd is completely regular, i.e., if F ⊂ R is τd-closed and x0 ∈ R \F ,
then there exists τd-continuous function f : R → [0, 1] such that f(y) = 0 for every y ∈ F and
f(x0) = 1.

Lemma 6.4. Let E ⊂ R be measurable, X ⊂ E is closed and d(E, x) = 1 for every x ∈ X .
Then there exists a closed set P ⊂ R such that

• X ⊂ P ⊂ E,

• ∀x ∈ X : d(P, x) = 1,

• ∀x ∈ P : d(E, x) = 1.

The end of the lecture no. 6, 27. 3. 2025

Remark. Let f be a function from R to R.

(a) The function f is approximately continuous at a ∈ R if and only if f is τd-continuous at a.

(b) The function f is approximately continuous at a ∈ R if and only there exists a measurable
set M ⊂ R such that d(M,a) = 1 and limx→a,x∈M f(x) = f(a).

Theorem 6.5 (Denjoy). Let f : R→ R. Then the function f is approximately continuous a.e. if
and only if f is measurable.
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Proof. ⇒We set

N = {x ∈ R; f is not approximately continuous at x}.

Then we have λ1(N) = 0. Choose c ∈ R and set M = {x ∈ R; f(x) > c}. The set M \ N
is d-open, therefore it is a measurable set. This implies that M is measurable. Consequently, we
have that f is measurable.

⇐ Choose ε > 0. By Luzin theorem there exist a closed set F ⊂ R with λ1(R \ F ) < ε and a
function g : F → R which is continuous on F satisfying f |F = g. We have that a.e. point in F
is a density point of F , therefore f is approximately continuous at a.e. point in F . This implies
that f is approximately continuous a.e. in R.

The end of the lecture no. 7, 3. 4. 2025

Theorem 6.6. Let f : R→ R be a bounded approximately continuous function. Then f has an
antiderivative on R.

Proof. Find K ∈ R such that |f(x)| ≤ K for every x ∈ R. We set F (x) =
∫ x
0
f . The function

f is measurable by Theorem 6.5 and is bounded, therefore F is well defined. Choose x ∈ R. Let
ε > 0. We find δ > 0 such that for every h ∈ (0, δ) it holds

1

h
λ1
(
{y ∈ [x, x+ h]; |f(y)− f(x)| ≥ ε}

)
< ε.

Fix h ∈ (0, δ) and denote M = {y ∈ [x, x+ h]; |f(y)− f(x)| ≥ ε}. It holds∣∣∣1
h

(
F (x+ h)− F (x)

)
− f(x)

∣∣∣ =
1

h

∣∣∣∫ x+h

x

(f(t)− f(x)) dt
∣∣∣

≤ 1

h

∫
M

|f(t)− f(x)| dt+
1

h

∫
[x,x+h]\M

|f(t)− f(x)| dt

≤ 1

h
2K · εh+

1

h
· hε = (2K + 1)ε.

This implies F ′+(x) = f(x). One can infer F ′−(x) = f(x) analogously.

Corollary 6.7. Let f : R → R be a bounded approximately continuous function. Then f has
Darboux property and is in B1.

Theorem 6.8. There exists a differentiable function f : R→ R such that the sets {x ∈ R; f ′(x) >
0} and {x ∈ R; f ′(x) < 0} are dense.

Proof. Let A,B ⊂ R be countable, dense, and disjoint. Suppose that A = {an; n ∈ N} and
B = {bn; n ∈ N}. Observe that A and B are τd-closed. Using Theorem 6.3 we find for every
n ∈ N approximately continuous functions gn and hn such that

gn(an) = 1, hn(bn) = 1,

0 ≤ gn ≤ 1, 0 ≤ hn ≤ 1,

gn|B = 0, hn|A = 0.
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We define

ψ =
∞∑
n=1

2−ngn −
∞∑
n=1

2−nhn.

Then the function ψ is bounded, approximately continuous, positive on A, and negative on B.
By Theorem 6.6 there is a function f such that f ′ = ψ and we are done.

Remark. We say that a differentiable function g is of Köpcke type if g′ is bounded and the sets
{g′ > 0} and {g′ < 0} are dense.



Chapter 7

More on derivatives

Theorem 7.1 (Caratheodory–Vitali). Let f : R → R satisfy f ∈ L1(λ) and ε > 0. Then there
exists u, v : R→ R∗ such that

• u ≤ f ≤ v,

• u is usc and bounded from above,

• v is lsc and bounded from below,

•
∫

(u− v) dλ < ε.

Proof. To be added. See [3].

Theorem 7.2. Let f be differentiable at each point of [a, b] ⊂ R and f ′ ∈ L1([a, b]). Then we
have

f(x)− f(a) = (L)

∫ x

a

f ′(t) d t, x ∈ [a, b].

Proof. To be added. See [3, 7.21].

Lemma 7.3. Let F be a differentiable at each point of the interval [a, b] ⊂ R and F ′ is bounded
from below. Then F is absolutely continuous on [a, b].

Proof. To be added.

Notation. Let I be a nonempty open interval. The set of all real functions defined on I which
have an antiderivative on I is denoted by ∆′(I).

Remark. We have ap− Cb(I) ⊂ ∆′(I) ⊂ DB1(I).

Theorem 7.4 (Denjoy-Clarkson). Let I be a nonempty open interval and f ∈ ∆′(I) Then f
has Denjoy-Clarkson property, i.e., for every open G ⊂ R we have that either f−1(G) = ∅ or
λ(f−1(G)) > 0.

Proof. To be added.
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